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Objectives: To further elucidate the role of the MHC in ankylosing spondylitis by typing
17 genes, searching for HLA-B∗27 independent associations and assessing the impact
of sex on this male biased disease.

Methods: High-confidence two-field resolution genotyping was performed on 310
cases and 2196 controls using an n-1 concordance method. Protein-coding variants
were called from next-generation sequencing reads using up to four software programs
and the consensus result recorded. Logistic regression tests were applied to the dataset
as a whole, and also in stratified sets based on sex or HLA-B∗27 status. The amino acids
driving association were also examined.

Results: Twenty-five HLA protein-coding variants were significantly associated to
disease in the population. Three novel protective associations were found in a HLA-
B∗27 positive population, HLA-A∗24:02 (OR = 0.4, CI = 0.2–0.7), and HLA-A amino
acids Leu95 and Gln156. We identified a key set of seven loci that were common to
both sexes, and robust to change in sample size. Stratifying by sex uncovered three
novel risk variants restricted to the female population (HLA-DQA1∗04.01, -DQB1∗04:02,
-DRB1∗08:01; OR = 2.4–3.1). We also uncovered a set of neutral variants in the female
population, which in turn conferred strong effects in the male set, highlighting how
population composition can lead to the masking of true associations.

Conclusion: Population stratification allowed for a nuanced investigation into the tightly
linked MHC region, revealing novel HLA-B∗27 signals as well as replicating previous
HLA-B∗27 dependent results. This dissection of signals may help to elucidate sex biased
disease predisposition and clinical progression.

Keywords: ankylosing spondylitis, HLA-B∗27 positive, HLA-A∗24:02, sex biased, major histocompatibility
complex, HLA allele typing

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 659042

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.659042
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.659042
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.659042&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/articles/10.3389/fgene.2021.659042/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-659042 July 9, 2021 Time: 19:4 # 2

Nordin et al. HLA Association in Ankylosing Spondylitis

INTRODUCTION

Ankylosing spondylitis (AS) is a chronic inflammatory disease
defined by the inflammation of the spine and sacroiliac joints,
which if left untreated, leads to vertebrae fusion (Cortes et al.,
2013). The disease prevalence in Sweden is 0.18% (Exarchou et al.,
2015) and Europe in 0.24% (Dean et al., 2014), and contrary
to most immunological diseases, AS affects males more often
than females [Sweden 1.6:1 (Exarchou et al., 2015), Europe 2–3:1
(Lee et al., 2008)]. Not only is the prevalence of disease different
between sexes, but so are the manifestations, e.g., males have
greater radiographic changes compared with female patients (Lee
et al., 2008; Ward et al., 2009).

Approximately 80% of AS cases are HLA-B∗27 positive, while
only a small fraction (<5%) of carriers develop disease (Cortes
et al., 2013). This clearly indicates that there are other genetic
factors involved in disease predisposition. Together with HLA-B,
more than 45 genes have been suggested to contribute to disease
risk, e.g., ERAP1, IL23R, and RUNX3 (Burton et al., 2007; Evans
et al., 2011; Cortes et al., 2013; Ranganathan et al., 2017), but
combined, these explain less than 30% of the genetic heritability
(Burton et al., 2007; Evans et al., 2011; Cortes et al., 2013) of this
highly heritable disease (h2 > 90%, Cortes et al., 2013).

The strongest AS association signal comes from the MHC
(Reveille, 2014), a region where the genetic contribution is hard
to dissect due to high linkage disequilibrium (LD). Previous
studies have indicated that variants in addition to HLA-B∗27 are
driving the signal, for example, HLA-A∗02:01 has been associated
with HLA-B∗27 positive [odds ratio (OR) = 1.2] (Reveille, 2014;
Cortes et al., 2015), as well as HLA-B∗27 negative disease
(OR = 1.4) (Reveille, 2014; Cortes et al., 2015). Whereas HLA-
B∗07:02 (OR = 0.8), -B∗40:01 (OR = 1.2), and -DRB1∗01:03
(OR = 1.2) were shown to be significantly associated with AS
in a mixed HLA-B∗27 study, i.e., one containing both HLA-B∗27
positive and negative samples (Cortes et al., 2015). These studies
highlight the challenges in assessing disease HLA associations,
with inconsistencies in replication partly driven by differing
sample ancestry, sample sizes, gene loci considered, genotyping
methods and levels of phenotypic information (e.g., sex ratio).
For example, the small risk conferred by HLA-A∗02:01 is seldom
replicated, likely due to the low odds ratio requiring larger sample
sizes (Reveille, 2014). In other examples, associations may be a
reflection of HLA-B∗27 carrier status and enriched haplotypic
pairs within a population. Several variants within the HLA-
B locus have reported disease association, but only three have
been associated in distinct HLA-B∗27 positive (HLA-B∗40:01)
(Cortes et al., 2015), or negative (HLA-B∗44 and -B∗49) (Reveille
et al., 2019), populations. The same is true for MICA, where
MICA∗007:01 has been shown to contribute strong susceptibility
to both HLA-B∗27 mixed (OR = 60.7) and negative disease
(OR = 9.1) (Zhou et al., 2014). A separate study failed to replicate
the latter and claimed that the mixed result may be due to
linkage to HLA-B∗27 (Cortes et al., 2018). The first study used
lab typing at a two-field resolution (Zhou et al., 2014) while
the latter imputed MICA with SNP2HLA and reported at one-
field resolution (Cortes et al., 2018). Although both examined
Caucasian populations of European ancestry, these differed in

size and composition (sex distribution was not reported in one
study), confounding the comparison (Zhou et al., 2014; Cortes
et al., 2018).

While 37 separate genes are referenced in the IPD-
IMGT/HLA database (release 3.37.0), to date the maximum
number of genes studied in any single study was six, HLA-A, -B, -
C, -DRB1, -DQB1, and -DPB1 (Reveille et al., 2019). That analysis
of a PCR lab-typed Caucasian population (1948 cases/990
controls) performed analyses on their total dataset, followed
by an nested test on only those samples which were HLA-
B∗27 negative (Reveille et al., 2019). At least one variant from
each gene examined was shown to be significantly associated
to disease in the HLA-B∗27 mixed population, with almost two
thirds conferring protection (28 variants; OR = 0.3–0.8, risk
OR = 1.3–21.4) (Reveille et al., 2019). Fewer associations were
detected in the HLA-B∗27 negative population; however five
genes (11 variants) were shown to be linked to AS, with the
protective contribution dropping to around 50% (Reveille et al.,
2019). No similar efforts have been performed in a HLA-B∗27
positive population.

Here we aimed to build the largest typed MHC gene set (17
genes; HLA-A, -B, -C, -DOA, -DOB, -DPA1, -DPB1, -DQA1, -
DQB1, -DRA, -DRB1, -E, -F, -G, MICA MICB, and TAP2) for a
single AS population, and with this data address the following;
can we identify novel signals of AS association, are these different
between the sexes, and are they independent of HLA-B∗27.

MATERIALS AND METHODS

Sample Data
Samples were drawn from existing targeted (SweAS and Uppsala
Bioresource, Eriksson et al., 2016) or whole genome sequencing
(SweGen, Ameur et al., 2017) experiments and used to build
the case and control populations (Table 1). Cases were from
SweAS (n = 310, 26.8% female and 73.2% males) and controls
from SweAS (n = 381, age and region matched to cases from
South East Sweden), SweGen (n = 1000, obtained from across
Sweden), and the Uppsala Bioresource (n = 815, from South East
Sweden). In total, 2196 controls were collated, 40.2% were males
and 59.8% females (ages for cases and controls summarized in
Supplementary Figure 1). Cases were diagnosed according to the
modified New York criteria (van der Linden et al., 1984) and four
comorbidities (psoriasis, uveitis, peripheral joint involvement
and gut involvement) were recorded (Supplementary Figure 2).
The SweAS population was enrolled under the ethical approval
granted from the Regional Committee of Linköping, Dnrs
2010/182-3 and 98110, whereas ethical approvals for SweGen and
the Uppsala Bioresource are as per their cited publications.

HLA Variant Typing
An n-1 concordance method (Nordin et al., 2020) was used to
ensure high quality genotyping across the MHC. The inputs for
this were raw HLA genotype calls generated from four separate
software programs, with consensus variant calls reported with
2-field resolution. In brief, this meant that for a variant to
be called in the final set, the result had to be identical across
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TABLE 1 | Summary of each population tested for the association analyses.

Set1 Cases/
controls2

Cases/controls with HLA-B
genotype3 (% HLA-B27 positive)

FDR4

ALL 310/2196 150 (96.8)/1926 (13.9) 9.4 × 10−4

F 83/1313 70 (92.9)/1137 (13.5) 1.3 × 10−3

M 227/883 179 (98.3)/789 (14.3) 8.8 × 10−4

ALL.B27 241/267 241 (100.0)/267 (100.0) 1.7 × 10−3

F.B27 65/154 65 (100.0)/154 (100.0) 1.7 × 10−3

M.B27 176/113 176 (100.0)/113 (100.0) 2.0 × 10−3

1Set of samples considered; the complete set (ALL), Male (M) and Female (F) and
then that set restricted to HLA-B*27 positive samples.
2The maximum number of samples considered at each gene locus.
3The number of samples with a HLA-B genotype, followed by the fraction which
were HLA-B*27 positive.
4The set specific false discovery rate (FDR) significance threshold determined
via permutation.

three out of four programs (Supplementary Figure 3). As noted
previously (Nordin et al., 2020), this procedure can account
for software biases, such as reference version and algorithm
choice. Called chromosome 6 SNPs were the base data for
imputation (SNP2HLA, Jia et al., 2013), whereas reads mapped
to chromosome 6, plus unmapped reads, were used as inputs for
inference tools [HLA-VBSeq (Nariai et al., 2015), HLAscan (Ka
et al., 2017), and HLA-HD (Kawaguchi et al., 2017)]. SNP2HLA,
HLA-VBSeq and HLAscan were previously used to genotype
SweGen at eight HLA genes (Nordin et al., 2020), however
this was expanded to 17 genes (HLA-A, -B, -C, -DOA, -DOB, -
DPA1, -DPB1, -DQA1, -DQB1, -DRA, -DRB1, -E, -F, -G, MICA,
MICB, and TAP2) with the inclusion of HLA-HD. The impact
of biases on genotyping this set of genes was assessed with
average read depth across each for the three sample populations
[10 bp bins in BEDtools (Quinlan and Hall, 2010) v2.26.0], shared
variant availability across software references, and concordance
rate between the high confidence set and each software. See
Supplementary Methods for information on software algorithms
and running conditions.

Association Tests and Statistical
Methods
In order to address the question of sex bias, the dataset was
partitioned into three sets; ALL, all samples; F, female samples; M,
male samples (Table 1). To test for independence to HLA-B∗27,
each analysis was repeated using only those samples carrying at
least one copy of any HLA-B∗27 variant (HLA-B∗27 positive):
ALL.B27, F.B27, and M.B27 (Table 1).

Genes were excluded from all six analyses if their genotyping
rate was below 80% in ALL. Before the association tests
were performed, the potential impact of data missingness was
investigated with Fisher’s exact test, and sequencing batch effects
were assessed with logistic regression association tests on targeted
versus whole genome sequenced controls. Disease association
employed logistic regression with an additive model. Sex was
shown to be significantly associated with disease status in both the
ALL and ALL.B27 populations and was included as a covariate
in those tests (z-score for proportions, p-value < 1.0 × 10−5).

The association between AS and HLA amino acids in the HLA-
B∗27 positive population, or MICA’s transmembrane region
(TM) for all six sets, were also explored (Fisher’s exact test,
without covariates). This last phase of the association study was
conducted per gene and did not consider individuals with missing
data. Disease association tests were performed with PyHLA
(Fan and Song, 2017). Phenotype permutations (n = 1000) were
used to determine cohort specific significance thresholds (5%
false discovery rate, FDR) for gene, amino acid and TM tests
(Table 1). A second threshold (p-value < 0.05) was used to
identify suggestive gene results, this time compared to Bonferroni
adjusted p-values (number of variants for that gene∗unadjusted
p-value).

Gene level pair-wise LD was measured using the multi-marker
statistic, x2’ (Zhao et al., 2005). Only samples with a 100%
genotyping rate for the genes of interest were taken forward
for phasing as described previously (PHASE v2.1.1, Stephens
et al., 2001; Nordin et al., 2020). Variant level pair-wise LD
was calculated with phased inputs (r2). For significant amino
acids, Students t-test was used to assess phenotype enrichment
(age and C-reactive protein, CRP). The potential consequence of
significant amino acids on protein structure were explored with
SNPeffect 4.0 (De Baets et al., 2012), MHC motif viewer (Rapin
et al., 2010), and visualized with Chimera (Pettersen et al., 2004).

RESULTS

Seventeen genes were genotyped at twofield resolution with
a success rate of between 77 and 100% (Supplementary
Table 1). This rate was driven by a combination of data input
and software biases, where some genes were genotyped at a
higher rate with targeted data than WGS (e.g., TAP2) and
some gene call rates were affected by variant availability and
software choice (Supplementary Table 3 and Supplementary
Figures 4–6). The majority of cases were HLA-B∗27 positive
(cases/controls 96.8/13.9%, Table 1), and as a group, cases
were less polymorphic than controls in terms of variant count,
but more heterozygous overall (Supplementary Table 1). The
presence of HLA-B∗27 was skewed across the sets, with a slightly
higher fraction observed in males compared with females (e.g.,
cases M/F = 98.3/92.9%, Table 1).

Association Tests Revealed Female
Specific Results
Of the 15 genes passing quality control (HLA-DPA1 and
TAP2 excluded), 9 genes (25 protein-coding variants) conferred
a significant effect in ALL (Figure 1 and Supplementary
Table 3). HLA-B∗27:05 demonstrated the most associated risk
(OR = 54.9, p-value = 7.1 × 10−68), followed by MICA∗007:01
(OR = 89.4, p-value = 3.0 × 10−63) and -C∗02:02 (OR = 10.6,
p-value = 6.3× 10−61). Interestingly, HLA-A (∗02:01 and ∗31:01)
showed a purely protective profile (Figure 1). Eight variants
from HLA-A, -B, -C, -DQA1, -DQB1 and –F were suggestively
associated with disease (Supplementary Figure 6).

We next stratified our ALL population by sex to assess if
this covariate was masking signals of association. We found
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FIGURE 1 | Summary of significant HLA protein-coding variant associations and their effect sizes. Plots illustrate the odds ratio (OR) and 95% confidence interval for
each of the six datasets considered. An OR of 1 is indicated with a vertical line. The dataset for which the protein-coding variant was significant is indicated with
boxes: All (ALL), gray; Female (F), white; Male (M), black.

that seven protein-coding variants across HLA-B, -C, MICA,
and MICB were significant, irrespective of sex or population
size (Figure 1, Datasets ALL, F, and M). Perhaps reflecting ALL
dataset composition (73% males), 14 significant variants were
common to the ALL and M sets, but none were shared by only
the ALL and F populations. For most variants shared between
ALL and M (12/14), the OR for F had the same direction of effect,
even though it was not significant. However, for some protein-
coding variants, e.g., HLA-DQA1∗01:01 and -DQB1∗05:01, the
modest effect conferred in ALL and M (OR = 1.6–1.7) was
neutral in F (OR = 1). Intriguingly, three variants were significant
only in F, HLA-DQA1∗04:01, -DQB1∗04:02 and -DRB1∗08:01
(F p-value = 3.4 × 10−5–1.3 × 10−3, M p-value > 0.39,
Figure 1 and Supplementary Table 3). Each of these, class
II variants conferred additional risk (OR = 2.4–3.1), but with
broad confidence intervals (Supplementary Table 3). This result
was not only driven by LD with HLA-B∗27 (r2 < 0.01), as
the HLA-DQA1∗04:01 -DQB1∗04:02 -DRB1∗08:01 haplotype was
also observed to segregate more frequently with HLA-B∗35:01 in
cases than controls (Supplementary Table 4).

The protein-coding variant frequency differences driving
these sex specific signals were explored further. For the three
F specific significant variants, the delta variant frequency
(1VF) between cases and controls was greater than 6% (HLA-
DQA1∗04:01 = 9.3%, -DQB1∗04:02 = 6.6%, -DRB1∗08:01 = 6.5%).
For the same protein-coding variants in M, the 1VF
was < 0.02%, explaining why these signals were not significant
in ALL or M. The largest 1VFs calculated between M and F
datasets were for both DRA variants (>10%, only considering
variants significant in ALL).

HLA-B∗27 Positive Cohort Reveals Novel
HLA-A Association
While the pair-wise LD between the significant MHC genes was
low (x2 ′ < 0.01, Supplementary Table 5), this did not indicate

that the individual protein-coding variants across MHC genes
were independent. For that question, the HLA-B∗27 positive
datasets were tested. The result was a single significant variant
from ALL.B27, HLA-A∗24:02 (OR = 0.4, p-value = 1.7 × 10−3,
Figure 2A and Supplementary Table 3). Phasing revealed
the HLA-A∗24:02-HLA-B∗27:05 combination to be one of the
most common haplotypes in either cases or controls for this
dataset (haplotype case/control = 3.1/8.1%; Supplementary
Table 6). However, HLA-A∗24:02 was observed to be segregating
with nine additional HLA-B protein-coding variants, none of
which were HLA-B∗27 variants (Supplementary Table 7) and
the LD between the HLA-B∗27 and –A∗24:02 was negligible
(r2 < 0.01). Within the divided sex sets, HLA-A∗24:02 showed
suggestive significance within M.B27, along with the risk variant
HLA-DRA∗01:01 and protective variant HLA-DRA∗01:02 (p-
value < 3.0 × 10−3, Supplementary Table 3). No significant or
suggestive associated variants were detected in F.B27.

Amino Acids in HLA-A Are Significantly
Associated With Disease
While no significant associations were observed between disease
and MICA TM repeats, tests of association using amino
acids across the HLA-B∗27 positive population did resolve
divided or underpowered signals from the gene tests. The
result was two protective HLA-A amino acids, Ile/Val95Leu
(ALL.B27 p-value = 3.2× 10−4) and Arg/Leu/Trp156Gln (M.B27
p-value = 1.8 × 10−4; F.B27 p-value > 0.05) (Figure 2A and
Supplementary Table 3). For Leu95, the overall 1VF between
cases and controls (13.7%) was reflected in both M.27 and F.27
(17.4% and 8.8% respectively), however, the skew was more
pronounced for Gln156 (ALL.B27 = 18.0%, M.B27 = 22.6% and
F.B27 = 4.6%). The protein-coding variant driving the result for
both amino acids was HLA-A∗24:02 (significant in ALL.B27 and
suggestive in M.B27, Figure 2A), with additional amino acid
frequency contributed via, HLA-A∗02:05 and -A∗23:01 for Leu95,
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FIGURE 2 | Variants within the HLA-A locus are significantly associated with HLA-B*27 positive disease. (A) Significant association was observed for protein-coding
variant HLA-A*24:02 and amino acid position Leu95 in the ALL cohort and Gln156 in the Male dataset. Odds ratios and 95% confidence intervals are indicated. (B)
The physical position of each amino acid is indicated.

and HLA-A∗03:02, -A∗11:01, and -A∗26:08 for Gln156. Figure 2B
illustrates both amino acids relative to protein structure 3UTQ
(HLA-A∗02:01). Leu95 is located on the β-sheet of the binding
groove in the peptide-binding pocket F and interacts with the
C-terminus of the peptide, while Gln156 is located on an α-
chain which is a part of peptide binding pockets D and E
(Guan et al., 2005) and interacts with three peptide positions.
Due to the HLA-A protein-coding variant composition in our
dataset, the potential amino acid combinations for each position
are Ile/Val95Leu and Arg/Leu/Trp156Gln. For position 95, all
options are hydrophobic, with Val having the smallest side chain.
Arg156 is positively charged, while the other three amino acids
available at this position are uncharged. However Leu (smallest
side chain) and Trp are hydrophobic, compared to hydrophilic
Gln. Both the change of charge and the size of side chain
are factors that can affect peptide binding. We searched for
an enrichment of the protein-coding variant containing these
amino acids with respect to comorbidities, CRP levels and age at
sampling, but none was significant.

DISCUSSION

With this study we have extended the number of MHC genes
examined for a single AS population from 6 up to 15, and found
nine of these significantly linked to disease. Through a nested
analysis, we were also able to reveal patterns of association related
to sex, and HLA-B∗27 status. As we used an n-1 genotyping
methodology, the results are agnostic to individual software
choice (Nordin et al., 2020). This is essential given the variability
of HLA variant frequency observed when only one method is
considered (e.g., HLA-B∗27:05 frequency ranged between 4.8–
8.0% in a study of 1000 Swedes) (Nordin et al., 2020).

The Swedish AS population examined here was largely
reflective of published European datasets (Nordin et al., 2020),
with the most frequent HLA-B∗27 protein-coding variant being
HLA-B∗27:05 (97.8% cases, 7% controls). The risk conferred by
this variant (ALL OR = 54.9) was one of seven significant signals
we identified that had robust effect sizes in each dataset (ALL,
M, and F; Figure 1). Within class I, HLA-C∗01:02 and –C∗02:02
added risk (ALL OR = 4.0–10.6), whilst –C∗07:02 was protective

(ALL OR = 0.3). These variants were in high LD with HLA-
B∗27 and have never been reported as independently associated.
However, HLA-C∗08 variants have previously been linked to
HLA-B∗27 positive disease (Jiao et al., 2010), but in our HLA-
B∗27 positive population these variants were rare (1%), and had
equal frequency in cases and controls.

For class I like genes, MICA∗007:01 and MICB∗005:02
enhanced risk (OR = 89.5 and OR = 3.1), while MICB∗004:01
was protective (OR = 0.4). The role and independence of
MICA∗007:01 is debated with regards to AS predisposition (Zhou
et al., 2014; Cortes et al., 2018; Cortes and Brown, 2019; Zhou
and Reveille, 2019). However, in our population MICA∗007:01
and HLA-B∗27:05 were tightly linked (ALL, r2 = 0.93), and so not
independently associated with disease. Interestingly, even though
HLA-B∗27:05 has the lowest p-value in our study, MICA∗007:01
has the strongest effect (OR = 89.5), stronger than that noted
for the 2014 discovery population (OR = 60.7) (Zhou et al.,
2014). While MICA has been investigated in several publications
(Reveille, 2014; Zhou et al., 2014; Cortes et al., 2018), MICB
has not been equally studied, and except for suggestions of
linkage via LD (Brown et al., 2002), the gene has been largely
overlooked. Three MICB protein-coding variant conferred risk in
ALL and whilst not independent ofHLA-B∗27, may have a disease
modifying effect. For example, the MICB∗005:02 variant encodes
soluble MICB, which in turn inhibits signaling through NKG2D
and leads to hyporesponsive NK cells (Cox et al., 2018). It is not
clear how this reduced reactiveness would increase disease risk,
but the effect could be related to other immune cell interactions.

Due to genotype resolution, it was only possible to compare
our results for HLA-DRB1 and -DQB1 with those from the large
lab-type six gene MHC study (Reveille et al., 2019). In that
experiment, ten class II variants were associated with disease
(protective OR = 0.5–0.6 and risk OR = 1.3–2.7) (Reveille et al.,
2019). We were able to replicate four variants, with similar
effect sizes and same directionality, even though our population
was smaller and we employed additional software programs for
typing (HLA-DRB1∗01:01 OR = 1.8, -DQB1∗05:01 OR = 1.6, -
DRB1∗15:01 and -DQB1∗06:02 both OR = 0.5) (Reveille et al.,
2019). The inability to replicate all signals could be a reflection
of study size, or population differences (Swedish versus a mixed
European). For example, HLA-DRB1∗04:04 had a published
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case/control variant frequency of 6.5/2.5% (OR = 2.72) (Reveille
et al., 2019), while in our dataset it was 4.9/4.1% (OR = 1.28).
Our choice of concordance methodology assisted reproducibility,
but our homogenous genetic background meant some loci were
largely neutral.

Our cases were predominantly male (73%), and this was likely
reflected in the sharing of significant results between the ALL
and M datasets (14 alleles, Figure 1). However, our smaller F set
was sufficiently powered to identify three variants that increased
disease susceptibility in this sex alone (HLA-DQA1∗04:01, -
DRB1∗08:01, -DQB1∗04:02; Figure 1). While HLA-DQB1∗04:02
and -DQA1∗04:01 have not been noted previously, the presence
of DRB1∗08:01 has been shown to be negatively associated with
AS radiographic severity (as BASRI-spine score normalized for
AS duration; Ward et al., 2009). It could be that the increased
frequency of this protein-coding variant in the F dataset reflects
the reduced BASRI-spine score observed in female patients (Lee
et al., 2007). Intriguingly, DRB1∗08:01 has also been shown
to enhance the effect of additional HLA variants in multiple
sclerosis, an autoimmune disease more prevalent in women
(Dyment et al., 2005). Shared genetic risk factors outside of the
MHC have been reported for these diseases previously (e.g., IL7R,
PTGER4, Cortes et al., 2013), and these results suggest additional
investigations are warranted.

We used HLA-B∗27 positive datasets in the attempt to
identify signals independent of this key variant, and discovered
novel associations between HLA-A and AS (HLA-A∗24:02 and
amino acids Ile/Val95Leu and Arg/Leu/Trp156Gln, OR = 0.3–
0.4). While HLA-A∗24:02 was shown to segregate with HLA-
B∗27:05, the presence of nine additional HLA-A∗24:02 haplotypes
indicated that this protective signal was not solely driven by
hitchhiking with HLA–B∗27:05. In terms of HLA-A amino acids,
both Leu95 and Gln156 have the potential to interact with the
peptide within the binding groove domain (Figure 2B). The
Ile/Val95Leu change lies within pocket F which is critical for
the binding of the peptide, and may mediate the peptide’s P�
anchor binding ability (Bade-Doeding et al., 2007). A protective
association was revealed between this amino acid and psoriasis
vulgaris (Okada et al., 2014), however the mode of action was
unknown. Residue 156 is part of pockets D and E, and changes
here can directly impact the protein’s ability to bind peptides, and
changes at Gln156 can also result in shorter than average peptide–
MHC class I complexes being presented to nucleated cells
(Eichmann et al., 2014). Alterations at this position have been
suggested to act as part of the mechanism behind graft rejection
following hematopoietic stem cell transplantation (HSCT) (Balas
et al., 2017). Intriguingly, changes at both residues 95 and 156
have been shown to negatively affect the 100 days survival after
HSCT, highlighting the role of these positions in the immune
response (Marino et al., 2012). A recent study of HLA-DRB1 class
II molecules in multiple sclerosis, suggested that HLA variants
might act in trans to compensate for the effect of risk variants
(Mamedov et al., 2020). In those studies, it was suggested that the
protective molecule possessed the kinetic ability to discriminate
between endogenous and exogenous peptide, a characteristic not
present in the risk variant. This process would serve to reduce
the density of functional MHC clusters and so down regulate
T cell response (Mamedov et al., 2020). In the case of AS,

the compensatory mechanism would be between HLA-A∗24:02
and HLA-B∗27. While certain HLA-A and HLA-B variants can
recognize the same epitopes (Marsh et al., 2021), it is not known if
peptide kinetics could be the protective mechanism for these class
I molecules. It is clear that HLA-A∗24:02, and amino acid residues
95 and 156, warrant further investigation as to their protective
role in AS disease modification.

This is the largest study to search for correlations between
the MHC and AS in Sweden. It is also to date, the largest
MHC gene set considered for this disease. However, there are
certain limitations to the current study. We used short read next
generation sequencing data and the concordance results from
four software programs to genotype the case and control samples
considered here. As noted, our genotypes are robust, but we were
unable to access a similar dataset for replication, or an imputed or
lab typed AS dataset in which to replicate our findings. We also
limited our investigation of AS association to the MHC protein-
coding variants, and note that further clinical investigation of
these results should be undertaken in the context of the nuclear
genomes of the patients and controls considered.

With this work we revealed novel associations with likely
clinical consequence, and confirmed the impact of several key
class I and II protein-coding variants to disease. We clearly
showed that clinical phenotype, sex-stratification of disease, is
mirrored by the underlying genetics of AS, and suggest future
studies consider the sexes separately in order to tease apart the
signals that are being masked in heterogeneous populations.
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