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Metabolites have been shown to be closely related to the occurrence and development
of many complex human diseases by a large number of biological experiments;
investigating their correlation mechanisms is thus an important topic, which attracts
many researchers. In this work, we propose a computational method named
LGBMMDA, which is based on the Light Gradient Boosting Machine (LightGBM) to
predict potential metabolite–disease associations. This method extracts the features
from statistical measures, graph theoretical measures, and matrix factorization results,
utilizing the principal component analysis (PCA) process to remove noise or redundancy.
We evaluated our method compared with other used methods and demonstrated the
better areas under the curve (AUCs) of LGBMMDA. Additionally, three case studies
deeply confirmed that LGBMMDA has obvious superiority in predicting metabolite–
disease pairs and represents a powerful bioinformatics tool.

Keywords: metabolite-disease associations, light gradient boosting machine, features, computational method,
performance evaluation

INTRODUCTION

Metabolism is a series of ordered chemical reactions, which has a significant influence on biological
life maintenance, such as the organism’s growth, reproduction, and reaction to the external
environment (Dunn and Ellis, 2005). Metabolic processes are usually divided into two types.
The first type is decomposing large molecules to acquire energy, such as cell respiration, while
the other type is utilizing energy for the synthesis of each part inside the cells, such as nucleic
acids and proteins (Cheng et al., 2017). In unhealthy conditions, relevant products in metabolism
(metabolites) will be abnormal, which indicates that finding more disease-related metabolites is
beneficial to disease prevention and treatment (Boja et al., 2014). Consequently, it is of high
importance to identify the relationship among metabolites and diseases.

Although some traditional techniques of metabolomics has prompted their analysis
and development, such as nuclear magnetic resonance (NMR) spectroscopy or liquid/gas
chromatography-mass spectrometry (LC/GC-MS) (Xianlin et al., 2011; Tang et al., 2014), the
proportion of undiscovered associations between metabolites and diseases is still high. Moreover,
some limitations exist, such as the time and funds required to mine disease-related metabolites
in biological experiments. Therefore, effective computational methods for predicting disease-
related metabolites are attracting more and more attention, which is beneficial to promoting the

Abbreviations: AUC, area under the curve; GIP, gaussian interaction profile; LOOCV, leave-one-out cross-validation; ROC,
receiver operating characteristic.

Frontiers in Genetics | www.frontiersin.org 1 April 2021 | Volume 12 | Article 660275

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.660275
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.660275
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.660275&domain=pdf&date_stamp=2021-04-13
https://www.frontiersin.org/articles/10.3389/fgene.2021.660275/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-660275 April 13, 2021 Time: 15:29 # 2

Zhang et al. Predicting Potential Metabolite–Disease Associations

development to discover potential metabolite–disease
associations. The idea of Random Walk with Restart for
MiRNA-Disease Association (RWRMDA) (Hu et al., 2018) is to
construct a metabolite–metabolite functional similarity network
and implement RWR from known disease-related metabolite
seed nodes to prioritize potential disease-related ones. However,
this method uses less information for diseases or metabolites
when calculating similarities, and its predictive performance
needs to be improved.

In this article, we present a computational method,
LGBMMDA, based on Light Gradient Boosting Machine
(LightGBM) (Ke et al., 2017), to identify metabolite–disease
associations (Figure 1). Firstly, we extract the data of metabolite-
related pathways as part of the integrated similarity network.
Secondly, features are selected from the relevant similarity
network and known metabolite–disease associations using the
statistical measures, graph theoretical measures, and matrix
factorization measures. Furthermore, the principal component
analysis (PCA) (Deutsch, 2004) algorithm, which is a technique
for analyzing and simplifying datasets, is utilized to extract deep
features. Thirdly, the LightGBM classifier is utilized to obtain
the potential association scores. In addition, the LOOCV and
fivefold cross-validation are adopted to evaluate the performance
of LGBMMDA, which achieves 0.9738 and 0.9715, respectively.
Besides, three types of case studies for common diseases are
carried out to evaluate the ability of the method to predict
metabolites. These aforementioned experiments show that
LGBMMDA is a reliable and excellent model to infer unknown
metabolites–diseases associations.

MATERIALS AND METHODS

Human Metabolite–Disease Associations
We extracted the experimentally confirmed human metabolite–
disease associations from the last updated database (HMDB)
(Wishart et al., 2017). Then, we performed the following steps
on these associations: Firstly, the disease-related symptoms from
the human symptom–disease network (HSDN) (Zhou et al.,
2014; Ma et al., 2016) are used to calculate disease similarity
after repeated associations; thus, the diseases that do not exist
in the HSDN are removed. Secondly, the metabolite-related
pathways from HMDB become part of the metabolite similarities,
such that we keep the metabolites that are relevant to the
diseases we selected. Finally, we obtain 127 diseases and 794
metabolites, which have 1,908 experimentally human metabolite–
disease associations (see Figure 2). The parameters nm and nd
represent the number of metabolites and diseases, respectively.
Matrix M represents the adjacency matrix of metabolite–disease
associations, such that the entity M(i,j) in row i and column j is 1
if disease i is associated with metabolite j and 0 otherwise.

Metabolite Functional Similarity
According to the hypothesis that metabolites with similar
functions have a higher probability of possessing similar
pathways, we utilize the Hamming similarity (Charikar, 2002)
to measure the functional similarity of two metabolites by

considering their related pathways. The metabolite functional
similarity matrix is defined as MHS(nm × nm), such that the
element value is calculated as follows (Zhang et al., 2020)

MHS
(
mi, mj

)
= 1−

∑np
k = 1 MpV(MP

(
k, i
)
, MP

(
k, j
)
)

ns
(1)

MpV(MP
(
k, i
)
, MP

(
k, j
)
)

=

{
1, if the values of MP

(
k, i
)

and MP
(
k, j
)

are different
0, if the values of MP

(
k, i
)

and MP
(
k, j
)

are same

(2)

where MHS
(
mi, mj

)
represents the Hamming similarity between

metabolite node mi and mj; np denotes the number of pathways.
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is set to 1 in metabolite-pathway association
network (MP).

Disease Functional Similarity
Considering the assumption that two diseases with similar
functions usually have similar symptoms, the values of two
disease-related symptom sets are used to obtain their functional
similarities. Let the sets Sd
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describe the symptom
sets of diseases a and b, where as and bs denote the number of
symptoms associated with diseases a and b, respectively. Firstly,
we calculate the information entropy of Sd

a as follows (Gu et al.,
2017)
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where Tn denotes the number of disease-symptom associations,
n(Sd

a(i)) is the number of the ith symptom related with disease a
in the disease-symptom set, p (Sd
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about the ith symptom associated with disease a, and H (Sd

a)
is the information entropy of Sd

a. The normalized mutual
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functional similarity between disease a and b as follows:
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where matrix DNF represents the functional similarity matrix;
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FIGURE 1 | The flowchart of LGBMMDA.

Gaussian Interaction Profile Kernel
Similarity
Following literature (Gu et al., 2017) the GIP kernel for the
similarities about diseases and metabolites captures the key
features of the metabolite–disease association data. Calculating
such kind of similarities is based on the assumption that
similar diseases are more likely to contain functionally similar
metabolites, and vice versa. Let the binary vector V(di), which
is the row vector of the matrix M where the disease di is located,
represent the interaction profiles of disease di. Then, the relevant
similarities for diseases DGS(di, dj) between the diseases di and dj
can be shown as follows:

DGS(di, dj) = exp
(
−ωd||V(di)− V(di)||

2
)

(6)

ωd = ω′d/(
1

nd

nd∑
i = 1

||V(di)||
2) (7)

where ωd is a parameter that controls the kernel bandwidth,
acquired by normalizing the new bandwidth parameter ω

′

d.
Similarly, the GIP kernel of the similaritiesMGS

(
mi, mj

)
between

metabolites mi and mj is defined as follows:

MGS(mi, mj) = exp(−ωd||V(mi)− V(mj)||
2) (8)

ωm = ω′m/(
1
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where ωm is a parameter that controls the kernel bandwidth,
acquired by normalizing the new bandwidth parameter ω ′m.

Integrated Similarity for Metabolites and
Diseases
In order to ensure that similarity information exists for every pair
in metabolites or diseases, we integrated the disease functional
similarities with GIP kernel similarities, which is shown as
follows:

IDS(di, dj) =

{
DNS

(
di, dj

)
if DNS

(
di, dj

)
6= 0

DGS(di, dj) otherwise
(10)

where IDS(di, dj) represents the integrated disease similarities.
Similarly, the integrated metabolite similarity matrix (IMS) is
given as follows:
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FIGURE 2 | A part of known metabolite–disease association network.

IMS(mi, mj) =

{
FHS

(
mi, mj

)
if FHS

(
mi, mj

)
6= 0

MGS(mi, mj) otherwise
(11)

Feature Extraction
Firstly, type 1 features (F1), which consist of the values of the
sum, mean, and histogram distributions of metabolite/disease
similarities, are calculated using the statistical measures for each
disease/metabolite. We start by calculating the number of known
associations in the relevant ith row/jth column of M. Then, the
average of all similarity scores is computed according to the
ith/jth row of IDS/IMS. Simultaneously, the similarity scores that
ranges at [0, 1] are split into n parts (n = 5 in this work), and the
proportion of similarity scores for d(j)/m(i) that fell into each part
are counted as the histogram feature.

Secondly, type 2 features (F2) are calculated, which
include the information about graph theory-related

statistics. Before obtaining this type of features, we
construct the unweighted graph, in which two nodes
have an edge if their similarity score is beyond the mean
value of all entities in IDS/IMS. Then, we extract the
relevant neighbors’ information, betweenness, closeness,
eigenvector centrality, and PageRank (Franceschet, 2010)
scores of the disease/metabolite similarity network in an
unweighted graph.

Thirdly, type 3 features (F3) are calculated. These features
consist of the information about metabolite–disease pairs
based on matrix factorization of M. The nonnegative matrix
factorization (NMF) (Lee and Seung, 1999; Akbar et al., 2020),
which was proposed by Lee and Seung, 1999, can help to
solve the matrix sparsity problem. Thus, the metabolite–disease
association matrix M can be factorized into two low-rank
feature matrices A ∈ Rnm∗k and B ∈ Rk∗nd, where k denotes the
dimension of the metabolite and disease features in the low-rank
spaces (k = 20).
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ALGORITHM 1 | Greedy bundling.

Input: Ft: features, Max_c:: max conflict count

Construct graph G

searchOrder← G.sortByDegree()

bundles←{}, bundlesConflict←{}

for ι in searchOrder do

needNew← True

for j=1 to len(bundles) do

cnt← ConflictCnt(bundles[j],Ft[i])

if cnt + bundlesConflict[i] ≤Max_c then

bundles[j].add(Ft[i]), needNew← False

break

if needNew then

Add Ft[i] as a new bundle to βυνδλεσ

Output: bundles

Finally, the feature sets F(i,j) = [F1, F2, F3] for disease i and
metabolite j is obtained. Meanwhile, PCA is applied to extract the
more useful features.

LIGHT GRADIENT BOOSTING MACHINE

Some boosting algorithms, such as the Gradient Boosting
Decision Tree (GBDT) and eXtreme Gradient Boosting
(XGBoost), have a common weakness that all the sample
points for every feature are scanned when obtaining the
best segmentation point; this is very time-consuming
and computationally expensive to meet current needs.
In order to reduce the cost of the experiment, we

ALGORITHM 2 | Merge exclusive features.

Input: nD: number of data

Input: F: One bundle of exclusive features

binRanges← {0}, totalBin← 0

for f in F do

totalBin +=f.numBin

binRanges.append(totalBin)

newBin← new Bin(numData)

for ι=1 to nD do

newBin[i]← 0

for i=1 to len(F) do

if 8[j].bin[i] 0 then

newBin[i]← F [j].bin[i] + binRanges[j]

Output: newBin, binRanges

use LightGBM as the classifier (Friedman, 2001; Ke
et al., 2017). LightGBM includes two main algorithms:
Gradient-Based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB).

In the GOSS algorithm, the training instances are firstly
ranked according to the absolute values of their gradients in
descending order. Then, the top-a × 100% instances with the
larger gradients are kept and combined into an instance subset A.
Besides, the (1− a) × 100% instances with the smaller gradients
are integrated in the remaining set Ac, and a further subset B with
the size b ×

∣∣AC
∣∣ is randomly sampled. Finally, the instances

are split according to the estimated variance gain Vj
′(d) over the

subset A
⋃

B. The variance gain of splitting feature j at point d is
shown as follows (Ke et al., 2017)

FIGURE 3 | The ROC about LOOCV.
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FIGURE 4 | The ROC about fivefold cross validation.

FIGURE 5 | Comparison of the top k ranks with different methods.
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{
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}
, Ar =

{
xi ∈ A :xij > d

}
,

Bl =
{

xi ∈ B :xij ≤ d
}
, Br =

{
xi ∈ B:xij > d

}
, and 1−a

b is

used to normalize the sum of the gradients over B back to the
size of Ac. Each xi is a vector with the dimension s in space XS.
In every gradient boosting iteration, the negative gradients of the
loss function with respect to the output of the model are defined
as {g1, . . ., gn}, where n is the number of vectors in space XS.

In the EFB algorithm, unnecessary computation for zero
feature values is avoided by binding mutually exclusive features
together in a histogram to form a feature. There are two
main ideas for EFB. In algorithm 1, the function is to
consider which features should be bundled together, while
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FIGURE 6 | Comparison of the precision, recall, and F1_measure with different methods.

FIGURE 7 | The AUC value of different n_estimators.

algorithm 2 determines how to construct the bundle as follows
(Ke et al., 2017):

RESULTS

In this section, we utilize LOOCV and fivefold cross-validation
to evaluate the performance of LGBMMDA. In LOOCV, each

confirmed metabolite–disease pair is treated as the test set in
turn, while the other confirmed pairs are regarded as training
sets. Besides, the unconfirmed associations are regarded as
potential candidates for true associations. We plot the ROCs
curves and use the area under the ROC curve (AUC) as the
evaluating indicator. Furthermore, we also use fivefold cross-
validation as an evaluation tool to verify the performance of
our method. In this method, the known information about
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values of num_leaves, and the Y axis represents relevant AUCs.
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FIGURE 9 | The AUC values of different max_bin and min_data_in_leaf.

metabolites and diseases is randomly divided into five equal
parts. Then, each part is used as the test set in turn, while the
other four parts represent the training set. This helps to avoid
having the test and training data overlapping with each other and
ensures unbiased comparisons. In this study, we compare our
method with some state-of-the-art methods, including the label
propagation algorithm (LP), which is a semi-supervised learning
method based on graph (and its basic idea is to predict the label
information of unlabeled nodes by using the label information of
labeled nodes); random walk (RWR), which is close to Brownian
motion and is the ideal mathematical state of Brownian motion;
logistic regression (LR), which is a machine learning method
solving binary (0 or 1) problems and estimating the possibility
of something; and decision tree (DT), which is the process
of classifying data through a series of rules. The results show
that LGBMMDA achieved AUC values of 0.9738 and 0.9715 in

LOOCV and fivefold cross-validation, respectively (see Figures 3,
4). In addition, we analyze the scores of known associations about
LOOCV and count the number of known associations correctly
identified by each algorithm (see Figure 5). It can be seen from
Figure 6 that our proposed method is superior to other methods
in terms of precision, recall, and F1-measure (0.898596, 0.90566,
and 0.9021, respectively). Although the precision of LR is higher
than our method, the recall of LR is significantly lower. Our
method is steadier than LR.

PARAMETER ANALYSIS

In this section, we select some significant parameters to be
adjusted in LightGBM. Firstly, we set the parameter n_estimators,
which is related to the number of residual trees, from 100 to 500,
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FIGURE 10 | The associations between anemia and some metabolites. The blue ellipses represent the known metabolites about anemia in this study. The yellow
triangles represent the top 10 predicted metabolites relevant to anemia. The blue diamonds represent the top 10 neighbors about predicted or known metabolites.

while other important parameters are set to default. Figure 1
shows that we get better results when n_estimators is set to 300
(see Figure 7). In order to improve the accuracy, the values of the
parameter max_depth, which limits the maximum depth of the
tree model, is set from 3 to 8, and num_leaves, which controls
the number of leaf nodes, is set from 5 to 100. As a result,
max_depth = 7 and num_leaves = 15 achieve better performance
(see Figure 8). Finally, the range of max_bin, which has an effect
on overfitting, is set from 5 to 256, and min_data_in_leaf, which
is the minimum number of samples contained on a leaf node,
is set from 1 to 100. The results show that max_bin = 45 and
min_data_in_leaf = 51 are better than other values (see Figure 9).

CASE STUDY

In this section, we analyze three kinds of diseases, anemia,
uremia, and asthma, in case studies to discover their pathogenic
mechanisms from the perspective of metabolites. There are 10, 9,
and 7 metabolites of these diseases that could be verified out of
the top 10 predicted metabolites, respectively. Figure 10 shows
anemia and its relevant metabolites.

Anemia is caused by the inability of the body to produce
enough hemoglobin, which is a protein that carries oxygen to

blood cells and tissues. This disease has common symptoms, such
as fatigue and dizziness. We conduct our method on a case study
of anemia (see Table 1) to select the top 10 most likely associated
metabolites, and all of them are associated with anemia according
to literature in NCBI. For instance, L-histidine (Peterson et al.,
1998) acts as a semi-essential amino acid, which is medically used
in the treatment of anemia (Wang et al., 2020).

Table 1 | Candidate metabolites of anemia.

Anemia

Rank Metabolite name Evidences

1 L-Histidine PMID: 32498848

2 L-Proline PMID: 26821380

3 Glycine PMID: 30853991

4 L-Arginine PMID: 31355573

5 L-Valine PMID: 30860750

6 L-Tryptophan PMID: 32153576

7 L-Glutamine PMID: 32350885

8 L-Tyrosine PMID: 32764239

9 L-Glutamic acid PMID: 30628549

10 L-Phenylalanine PMID: 26956768
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Table 2 | Candidate metabolites of asthma.

Asthma

Rank Metabolite name Evidences

1 L-Histidine PMID: 31206804

2 L-Proline PMID: 29059088

3 L-Tryptophan PMID: 31951781

4 L-Glutamic acid –

5 3-Hydroxybutyric acid PMID: 32213896

6 Succinic acid PMID: 14846625

7 L-Methionine PMID: 32778730

8 1-Methylhistidine PMID: 24783928

9 L-Threonine –

10 PC(18:1(11Z)/22:1(13Z)) –

Table 3 | Candidate metabolites of uremia.

Uremia

Rank Metabolite name Evidences

1 L-Histidine PMID: 8676800

2 L-Proline PMID: 20355181

3 3-Hydroxybutyric acid

4 Biotin PMID: 6322032

5 Xanthine PMID: 19379356

6 L-Tryptophan PMID: 935125

7 Inosine PMID: 9607216

8 Succinic acid PMID: 13837895

9 L-Glutamic acid PMID: 6508956

10 gamma-Aminobutyric acid PMID: 16797388

Asthma is a common and frequent disease, which has the
main symptoms of paroxysmal wheezing, chest tightness, and
cough. The field of metabolomics has been used to explore the
metabolic signatures of asthma, both for biomarker identification
and pathophysiologic mechanisms research. We perform our
method on a case study of asthma, and 7 of the top 10 predicted
metabolites that are interrelated with asthma are verified to be
correlative (see Table 2). For example, L-proline (Nadler et al.,
1988) is one of metabolic characteristics of asthma, which is
supported by experimental asthma models and clinical studies
in children and adults (Pite et al., 2018). Another example
is L-tryptophan (Hartzema et al., 1991), which has long been
suggested to be relevant to the pathophysiology of asthma
(Hu et al., 2020).

Uremia is a serious kidney disease that is caused by a
disorder in the internal biochemical process after renal function
loss. We conduct our calculation method on a case study of
uremia. As illustrated in Table 3, 9 of the top 10 predicted
metabolites that are interrelated with uremia are verified to be
correlative. For example, L-histidine is found to be significantly
enhanced in the brain in uremia patients (Schmid et al.,
1996). The L-proline in body fluids is a biological parameter
for patients with renal insufficiency and chronic uremia
(Hanwen, Sun et al., 2009).

DISCUSSION

Uncovering complex disease-related metabolites is a vital
research topic in metabolomics. To this end, we proposed a
computational model called LGBMMDA under the framework
of LightGBM. The experimental results by cross-validation have
proven that our method outperforms previously used methods.
Furthermore, three case studies indicate that the metabolite–
disease correlations predicted in our method can be effectively
demonstrated by relevant experiments. The LGBMMDA method
is expected to be a useful biomedical research tool for predicting
potential metabolite–disease associations.

There are three factors that contribute to the ideal predictive
performance of LGBMMDA. Our method makes the following
contributions for uncovering metabolite–disease associations:
Firstly, the data of the metabolite–pathway associations are
selected as metabolite functional similarities, which is a novel
way to calculate similarities between metabolites. Secondly, three
features are extracted by different angles, which keeps the
diversity of features and contributes to a reliable performance.
Thirdly, our method utilizes the reliable classifier of LightGBM,
which ensures an effectively predictive accuracy.

However, there are several limitations in our prediction
model. On the one hand, many parameters of GBM need to be
adjusted. In this work, parameter adjustment is only carried out
by some experiments. In future work, some algorithms might be
used to adjust those parameters. On the other hand, more useful
methods for calculating relevant similarities could be beneficial
to enhancing the performance of our model. In the future, more
biologically relevant information is expected to be available,
which can be used to refine the similarities.
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