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The unprecedented rise of high-throughput sequencing and assay technologies has 
provided a detailed insight into the non-coding sequences and their potential role as gene 
expression regulators. These regulatory non-coding sequences are also referred to as 
cis-regulatory elements (CREs). Genetic variants occurring within CREs have been shown 
to be associated with altered gene expression and phenotypic changes. Such variants 
are known to occur spontaneously and ultimately get fixed, due to selection and genetic 
drift, in natural populations and, in some cases, pave the way for speciation. Hence, the 
study of genetic variation at CREs has improved our overall understanding of the processes 
of local adaptation and evolution. Recent advances in high-throughput sequencing and 
better annotations of CREs have enabled the evaluation of the impact of such variation 
on gene expression, phenotypic alteration and fitness. Here, we review recent research 
on the evolution of CREs and concentrate on studies that have investigated genetic 
variation occurring in these regulatory sequences within the context of population genetics.

Keywords: regulatory evolution, natural variation, functional non-coding elements, population genomics, 
selection, tests for selection

INTRODUCTION

The initial human genome sequencing project revealed that the proportion of the total genome 
translated into proteins is ~1.5% (International Human Genome Sequencing Consortium, 2001), 
while the remaining portion (~98.5%) consists of non-coding DNA. This larger proportion of 
non-coding DNA is a hallmark of the genomes of higher organisms (Li and Liu, 2019). 
Evaluating the impact of genetic variation at the coding level is facilitated by a large number 
of annotated gene models and the simplicity of the genetic code for protein-coding DNA 
sequences. However, similar studies at the functional non-coding level have suffered from the 
comparatively sparse annotation as well as the complex and multifarious nature of the regulatory 
code. In this context, a vigorous debate unfolded as to the amount of functional information 
carried by the non-coding genome and eventually led to the broad acceptance that while 
essential, non-coding functional elements amount to a modest proportion of the total non-coding 
DNA (Doolittle, 2013; Graur et  al., 2013; Rands et  al., 2014; Huang et  al., 2017).

In the last decade, advances in sequencing and assay technologies have contributed to 
the annotation of a large number of functional non-coding elements. For example, the 
ENCODE and modENCODE consortia (The modENCODE Consortium et  al., 2011; 
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The ENCODE Project Consortium, 2012) used chromatin 
immunoprecipitation using sequencing (ChIP-seq) and 
ChIP-on-chip assays to gather a comprehensive catalog of binding 
sites for a large number of Transcription Factors (TFs) in human, 
Drosophila melanogaster, and Caenorhabditis elegans based on 
genome-wide binding affinity profiles. The availability of such 
annotation data, along with genomic variation data, has enabled 
the exploration of non-coding regions for diversity-based signatures 
of functional constraint. On the other hand, variants occurring 
in these regions have also contributed to adaptive evolution (Zhen 
and Andolfatto, 2012). Hence, analyzing the patterns of constraint 
and variation in CREs contributes to our understanding of between-
species phenotypic differences and the process of adaptation.

In this review, we  introduce common approaches used to 
identify regulatory regions. Following this, we  will list some 
of the statistical tools that are used to infer the action of 
negative and positive selection on non-coding functional regions. 
Finally, we list studies that presented analyses of selective forces 
acting at the level of non-coding genomic elements. We  have 
sorted these studies into two sections, the first containing 
studies that highlight the action of negative (purifying) selection, 
while the other containing studies that highlight the action 
of positive selection on non-coding elements (Pollard et  al., 
2006; Prabhakar et  al., 2006; Gittelman et  al., 2015).

ANNOTATING NON-CODING ELEMENTS 
BASED ON THEIR BIOCHEMICAL 
SIGNATURES

Gene expression regulation is in part controlled by functional 
non-coding genomic elements. Annotating such elements is 
important to quantify their exposure to natural selection. Such 
elements can now be  identified based on their biochemical 
signatures using high-throughput techniques. One of the methods 
to identify potential regulatory elements is DNase-seq. It allows 
the identification of regions in the genome at which the 
chromosome has lost its condensed structure and is therefore 
susceptible to interactions with available TFs and cleavage by 
the DNase I nuclease. Such loci are termed DNase I hypersensitive 
sites (DHSs) and are localized by sequencing the DNA fragments 
cleaved by the nuclease and mapping them to the reference 
genome (Sullivan et al., 2015). Another method to assess genome-
wide chromatin accessibility is the assay of transposase accessible 
chromatin using sequencing (ATAC-seq), which is considered 
faster and more sensitive compared to DNase-seq (Buenrostro 
et al., 2016). Although loci identified by DNase-seq and ATAC-seq 
have been shown to be  enriched in TF binding sites (TFBS; 
Calviello et al., 2019), these methods do not provide information 
about the nature of interacting TFs. On the other hand, ChIP-seq 
can be  used to identify binding sites for a specific TF. In this 
method, the TF of interest is allowed to bind to its putative 
binding sites before the DNA is sheared by sonication. TF-DNA 
bound complexes are then extracted using a TF-specific antibody 
and DNA is dissociated from the TF and finally sequenced and 
aligned to the reference genome to identify enriched regions 
(ChIP-seq peaks; Park, 2009).

ANNOTATING NON-CODING ELEMENTS 
USING EVOLUTIONARY CONSTRAINT

The availability of whole-genome sequence data from multiple 
species has enabled the detection of non-coding genomic regions 
with extreme sequence conservation at various phylogenetic 
levels. Conservation at these regions is generally thought to 
be  caused by the presence of functional non-coding elements 
exposed to similar levels of negative selection across a set of 
species (Sandelin et  al., 2004; De La Calle-Mustienes et  al., 
2005; Pennacchio et  al., 2006). Comparative genomic analysis 
of conserved elements is therefore an efficient approach to 
detect non-coding elements involved in the regulation of 
developmental pathways that are common to many higher 
organisms. Here we  list studies that have attempted to identify 
such conserved elements using different sets of species.

Visel et al. (2007) used a combination of comparative genome 
analyses coupled with experimental validations to identify tissue-
specific human enhancers. Conserved non-coding elements 
(CNEs) were identified based on conservation across large 
evolutionary distances (i.e., non-mammalian vertebrates) and 
tissue-specificity was established using transgenic mice 
experiments. Additionally, they also identified ultra-conserved 
elements (UCNEs), defined as being at least 200  bp long and 
sharing 100% sequence identity between human, mouse, and 
rat genomes. This dataset is accessible through the VISTA 
Enhancer Browser,1 which is actively maintained and currently 
contains 3,148 in vivo tested elements. Woolfe et  al. (2007) 
identified CNEs through multiple pairwise alignments of Fugu 
(pufferfish) and four mammalian genomes (human, mouse, rat, 
and dog), where CNEs are defined as sequences with 65% 
identity and are at least 40  bp long. They highlighted the 
association of the identified CNEs with known developmental 
genes. Lee et  al. (2007) determined CNEs that are associated 
with Transcription Factors in vertebrate genomes, where CNEs 
from human to mouse were defined as sharing at least 70% 
identity and being at least 100  bp long, while CNEs from 
human to Fugu had to share at least 65% identity and being 
at least 50  bp long. The relaxed criteria for human and Fugu 
genome comparison account for the larger evolutionary distance 
separating the two species. In addition to this, varying proportions 
(ranging from 0.63 to 10.45%) of human-Fugu CNEs were also 
identified to be overlapping with regions that are experimentally 
verified TFBS for various genes, indicating the potential role 
of CNEs in regulating transcription. Persampieri et  al. (2008) 
described ~73,000 CNEs with at least 50% sequence identity 
between humans and zebrafish and with a length of at least 
50  bp. This collection is accessible through the cne-Viewer.2 
Engström et al. (2008) determined highly conserved non-coding 
elements (HCNEs) across multiple metazoan species using 
pairwise whole-genome alignments. The threshold of sequence 
identity used to define an HCNE for each pair of species ranged 
from 70 to 100%. This dataset is accessible through the 

1 https://enhancer.lbl.gov/
2 http://bioinformatics.bc.edu/chuanglab/cneViewer/
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ANCORA  database.3 Dimitrieva and Bucher (2013) highlighted 
UCNEs by comparing the whole genome sequences of human 
and chicken, where every UCNE was required to have at least 
95% sequence identity and a minimal length of 200  bp. In 
addition to UCNEs, they also highlight ultra-conserved genomic 
regulatory blocks (UGRBs), which are clusters of UCNEs that 
show conserved synteny across different vertebrates. They also 
annotated a subset of their UCNEs as being putative regulatory 
elements for developmental genes. This collection of UCNEs 
and UGRBs is available through the UCNEbase website.4 
Lomonaco et al. (2014) also determined ultra-conserved elements, 
where every element had to have 100% sequence identity across 
human, mouse, and rat, in addition to a minimal length of 
200  bp.5 Dousse et  al. (2016) identified CNEs across five clades 
of vertebrates, where every CNE was identified using the software 
phastCons (Siepel  et  al.,  2005). This collection of CNEs is 
available in the CEGA database.6 Polychronopoulos et al. (2017) 
have compiled a list with all publicly available CNE datasets.

METHODS FOR DETECTING SELECTION

Inferring the action of selective pressure on the non-coding 
elements (NCEs) has been one of the central challenges for 
selection-based studies. One of the major limitations for such 
studies has been sparse annotation data for regulatory regions. 
Coding elements in the genome tend to be  well-annotated, 
however the same is not true for the non-coding elements. 
However, this has been partly overcome due to advances in 
sequencing technologies, like RNA-seq, ChIP-seq, DNase-seq, 
etc. Comparative genomics studies have used these biochemical 
signatures to make an informed guess of the potentially functional 
NCEs. Various metrics have been introduced to detect selective 
pressures acting on genomic sequences and the fitness 
consequences of new mutations by using available regulatory 
annotation. phastCons (Siepel et al., 2005) uses multiple sequence 
alignment information to identify evolutionarily conserved 
elements by employing a phylogenetic hidden Markov model. 
INSIGHT (Arbiza et al., 2013) detects the influence of selection 
on TFBS (ChIP-peaks) based on polymorphism and divergence 
data; resembling the MacDonald Kreitman (MK) test, named 
after John H McDonald and Martin Kretiman, who first tested 
their approach on the Adh locus in D. melanogaster (McDonald 
and Kreitman, 1991). The starting point of the MK test is a 
contingency  table summarizing the number of polymorphic 
(intra-specific) and divergent (inter-specific) variants separately 
for non-synonymous and synonymous sites. Variants that strongly 
enhance adaptation tend to fix rapidly in the population and 
hence contribute less to the polymorphism (within species 
variation) compared to divergence (between species variation). 
The MK framework has been used to estimate the proportion 
of adaptive substitutions that are driven by positive selection 

3 http://ancora.genereg.net
4 https://ccg.epfl.ch/UCNEbase/
5 http://ucbase.unimore.it
6 http://cega.ezlab.org

within the population of species, a parameter denoted α. One of 
the key shortcomings of this approach is its sensitivity to the 
presence of slightly deleterious mutations, which can severely 
bias its estimates (Haller and Messer, 2017). However, INSIGHT 
overcomes this by using a probabilistic model that explicitly 
accounts for the presence of weak negative selection. Key 
quantities estimated by INSIGHT are the proportion of selected 
sites and the number of adaptive substitutions and weakly 
deleterious variants. fitCons (Gulko et  al., 2015) clusters 
unannotated sequences based on their epigenetic markers and 
uses ρ metric (probability of a nucleotide within a functional 
non-coding element to be  under selection) inferred from 
INSIGHT to estimate the probability of a new mutation having 
a potential fitness effect. LINSIGHT (Huang et  al., 2017) 
employs neural networks to make an overall estimate of ρ 
for different genomic features. Here, ρ gives an estimate of 
which feature is most predictive of fitness for any given 
positional mutation in the genome. LASSIE (Huang and Siepel, 
2019) accumulates information on all point-specific mutations 
within non-coding regions and estimates the selection coefficient 
of every mutation using a maximum likelihood algorithm. 
One of the central drawbacks of fitCons is that the clustering 
algorithm is dependent on the epigenomic and annotation 
signatures and is independent of the evolutionary properties. 
fitCons2 (Gulko and Siepel, 2019) addresses this by finding 
clusters of sites that are distinct in evolutionary and epigenomic 
properties. Kircher et  al. (2014) developed a metric, C-score, 
which predicts the deleterious effect of a new  mutation and 
is comparable across different sites (non-synonymous, 
synonymous, regulatory, etc.; Racimo and Schraiber, 2014). 
Finally, a widely used metric to identify elements under 
selection is the GERP score (Davydov et  al., 2010). This 
score reflects the decrease of substitutions in an inter-species 
sequence alignment compared to the neutral expectation. Liu 
and Robinson-Rechavi (2020) proposed a new method to 
infer the action of selective forces on TFBSs. This method 
employs Support-Vector Machines, a machine learning 
approach, to infer the changes in the binding affinity of the 
TFBS due to variants and does not necessitate a prior definition 
of “neutral sites.” Here, variants that aid in adaptation would 
be  expected to improve the binding affinity model of the 
TFBS and will be  consequently maintained under 
positive selection.

POPULATION GENOMICS ANALYSES OF 
PURIFYING SELECTION AT NON-CODING  
FUNCTIONAL ELEMENTS

Deleterious mutations are usually associated with some 
detrimental effect on the fitness of the species. These mutations 
are usually subjected to the force of purifying selection and 
are either lost or are maintained in lower frequency within 
the population of species. Given their low frequency, they 
usually do not contribute to the between-species diversity. Here, 
we  document various studies that have highlighted the action 
of purifying selection in various species.
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Torgerson et  al. (2009) analyzed the genetic variation at 
Conserved non-coding sequences (CNCs) using sequencing 
data from 35 human samples (20 European Americans and 
15 African Americans). CNCs are non-coding sequences that 
are conserved within a population of species/within a group 
species. Certain functional studies interpret conservation as a 
proxy for functionality, hence use conserved elements as potential 
candidates in their study. For this study, CNCs are defined as 
non-coding sequences that are conserved in both the human 
and mouse genome (with at least 70% sequence identity and 
a minimal length of 100  bp). They report a higher proportion 
of rare derived alleles in CNCs as compared to synonymous 
and intergenic sites, indicating the presence of slightly deleterious 
alleles in CNCs consistent with functional activity. In addition 
to interpreting summary statistics of genetic variation data, 
they also reported negative estimates of the population scaled 
selection coefficient (γ = 2Ns) for CNCs in the flanking regions 
of genes. These observations indicate that the CNCs are under 
a comparatively higher influence of selective constraints as 
compared to the intergenic and synonymous sites. Mu et  al. 
(2011) used genomic variation data from the 1000 genomes 
project to analyze patterns of polymorphism on various aspects 
of TF-binding sites. They found that ChIP-seq peaks harbored 
an excess of low-frequency SNPs and structural variants (SVs) 
as compared to motifs not bound by TFs. Using chimpanzees 
as the outgroup for the divergence study, they also showed 
that TF-bound motifs had lower SNP divergence as compared 
to unbound motifs. In a typical ChIP-seq analysis, post 
precipitation and sequencing, the reads are mapped to the 
reference genome, and the areas with the highest coverage are 
identified as ChIP-seq peaks. These peaks typically contain a 
consensus binding motif for the protein of interest. The Site 
Frequency Spectra for polymorphic sites and structural variants 
showed a significant excess of rare alleles in TF-bound motifs 
as compared to the broader peak regions. This study also 
showed that regions associated with TF-binding activity are 
under higher purifying selection compared to non-functional 
regions, and that intensity of this selection increases with 
proximity to coding regions of genes. Vernot et  al. (2012) 
measured nucleotide diversity in DNA binding motifs from 
732 TFs that overlapped with DNase I  peaks from 138 cell 
and tissue types, using whole-genome sequencing data of 53 
human individuals from five populations available in the 
Complete Genomics database.7 They showed that while diversity 
varies by over seven-fold across binding motifs (from 2.67 × 10−4 
to 2.0 × 10−3), 60% of binding motifs have lower mean diversity 
than fourfold degenerate sites, consistent with exposure to 
purifying selection and hence functional constraint. Their results 
also highlighted an important heterogeneity in diversity levels 
between binding motifs, with HOX-, POU-, and FOX-domain 
factors, which are enriched in controllers of development and 
cell differentiation, displaying particularly low diversity. Diversity 
measured in DNase I peaks was significantly lower when peaks 
were shared by multiple cell types. Similar results were obtained 
for Saccharomyces cerevisiae by Connelly et  al. (2013), who 

7 https://www.completegenomics.com/public-data/

quantified the strength of purifying selection acting on binding 
motifs using genetic variation in 37 strains by employing the 
metric Neutrality Index (NI; Rand and Kann, 1996). Out of 
the 133 binding motifs in their study, 63 had a value of NI 
larger than the one obtained for non-synonymous sites indicating 
a marked exposure of binding motifs to purifying selection. 
In this study, the authors also used the NI to measure selective 
constraint at individual intergenic regions. In plants, Haudry 
et  al. (2013) used the whole genome sequence information 
from nine Brassicaceae species to compare selective constraints 
acting on CNCs and four-fold degenerate sites using phastCons 
and the folded Site Frequency Spectrum (SFS). SFS is a summary 
statistic, used extensively in population genetics, which 
summarizes the distribution of allele frequencies within a 
population of species. A folded SFS uses the minor allele 
frequency, i.e., the allele that is the least frequent, to construct 
the SFS. 90,000 CNCs were identified using phastCons analyses 
on a phylogeny of nine Brassicaceae, representing around 3.8% 
of the non-coding regions analyzed in this study. In addition 
to this, they used the population-level data on two of the 
nine species, namely A. thaliana and C. grandiflora, to check 
for a similar signal of conservation within populations. They 
highlighted that for the population of both species, CNCs 
displayed an excess of low-frequency minor alleles and lower 
nucleotide diversity as compared to four-fold degenerate sites, 
consistent with the action of purifying selection, although this 
signal was weaker than for the highly conserved zero-fold 
degenerate sites. De Silva et  al. (2014) analyzed patterns of 
variation at CNCs from CONDOR, a database of developmentally 
associated CNEs across vertebrates (Woolfe et  al., 2007), and 
obtained multiple alignments for seven vertebrate species (Homo 
sapiens, Macaca mulatta, Mus musculus, Gallus gallus, Xenopus 
tropicalis, Danio rerio, and Takifugu rubripes). They categorized 
CNCs into two different classes: non-variable regions (NVRs) 
which are invariant across all species and restricted variable 
regions (RVRs) which have at least one variable site across 
all species (excluding humans). When comparing the SFS of 
CNCs with synonymous regions (negative control), they observed 
that CNCs have an excess of rare derived alleles indicating 
CNCs to be  under purifying selection. More specifically, they 
observed that NVRs have a stronger signal of purifying selection 
compared to RVRs suggesting that the increased substitution 
rate observed at RVRs in humans is due to relaxed constraint 
and not adaptation. They also infer that NVRs harbor a larger 
proportion of detrimental sites (32%) as compared to that of 
non-synonymous sites (21%), indicating NVRs to be  at a 
comparatively higher level of purifying selection as compared 
to non-synonymous regions. Naidoo et al. (2018) used genome-
wide polymorphism data from several human populations 
(Drmanac et  al., 2010; Schlebusch et  al., 2012; The 1000 
Genomes Project Consortium, 2015) and non-coding annotation 
from the ENCODE project (The ENCODE Project Consortium, 
2012). They calculated nucleotide diversity and Tajima’s D as 
a statistical measure of constraints acting on different classes 
of genome sequences. Tajima’s D is a summary statistic that 
compares the average number of pairwise differences with the 
average number of segregating sites within a population. Negative 
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values of Tajima’s D indicate an excess of rare alleles and can 
be  used to identify regions where genetic variants segregate at 
lower frequencies than at neutral loci, a signal consistent with 
the action of negative selection. They observed coding regions 
to experience the highest level of purifying selection, closely 
followed by promoters and untranslated regions (UTRs), while 
enhancers were the least constrained. This study highlights that 
on average, regulatory elements in proximity to the coding regions 
displayed stronger purifying selection as compared to distal ones.

To summarize, the level of constraints acting on CNCs 
seems to be  intermediate when compared with other coding 
and non-coding sequences. Overall, CNCs are reported to 
be  under higher constraints when compared with synonymous 
sites and other intergenic regions, and under lower constraints 
when compared with non-synonymous sites. Such observations 
could indicate that CNCs are composed of different combinations 
of binding affinity and non-binding affinity motifs. Hence, the 
intermediate levels of constraints cannot be  directly translated 
to an overall intermediate level of selection intensities.

POPULATION GENOMIC ANALYSES OF 
POSITIVE SELECTION AT NON-CODING 
FUNCTIONAL ELEMENTS

Beneficial mutations represent a small fraction of all naturally 
occurring mutations, but they are important for adaptation to 
varying environmental conditions. Given their positive 
contribution to fitness, such mutations tend to rapidly increase 
in frequency, and eventually fix, within populations and species. 
When the number of beneficial mutations responsible for a 
new adaptive phenotype is small, their rapid increase in frequency 
generates a characteristic signature in polymorphism data 
referred to as a selective sweep (Cutter and Payseur, 2013). 
Several studies have documented selective sweeps in non-coding 
regions and demonstrated how the beneficial allele modified 
the expression of the target gene.

Schlenke and Begun (2004) studied the within-species diversity 
in North-American and African populations of Drosophila 
simulans in the 2R chromosome, a freely recombining region 
of the genome. The levels of heterozygosity in the 100  kb 
region under study were reported to be  significantly reduced 
specifically in the North-American population; potentially 
indicating a recent selective sweep. In this genomic region, 
they identified a fixed insertion of a transposon in the 5' end 
of the Cyp6g1 gene in the American population, correlated with 
increased transcript abundance, and which had been previously 
associated with insecticide resistance in D.  melanogaster. 
Chan  et  al. (2010) studied the loss of pelvis phenotype in 
certain pelvic-reduced stickleback fish populations by performing 
F1 crosses between pelvic-complete and pelvic-reduced fishes 
in an experimental setting. They highlighted the loss of an 
enhancer, Pel, for the Pitx1 gene (expressed in hindlimbs of 
many vertebrates) in pelvic-reduced fishes to be  the driver for 
the loss of the pelvis. They showed that the heterozygosity at 
the Pel enhancer is significantly less in the pelvic-reduced 

compared to pelvic-complete populations, could not be explained 
solely by population size bottlenecks, and is therefore consistent 
with the expected signature of a selective sweep. LCT, the 
gene coding for the lactase enzyme, is a well-described example 
for recent selective sweeps in humans (Enattah et  al., 2002; 
Bersaglieri et  al., 2004; Tishkoff et  al., 2007). The geographical 
distribution of the persistence of this enzyme into adulthood 
is shown to be  associated with dairy farming (Enattah et  al., 
2002), hence the ability to digest lactose during adulthood 
varies in different populations. This lactase persistence has been 
proposed to be  regulated by cis-acting elements (Wang et  al., 
1995). Enattah et  al. (2002) highlighted two alleles, that are 
located within the intronic regions of the MCM6 gene, in the 
Northern European population that are associated with lactase 
persistence into adulthood. Bersaglieri et  al. (2004) further 
highlighted the high between-population differences in the 
frequency of these persistence markers.

Generally, beneficial mutations are rare compared to 
deleterious mutations, and detecting them is difficult for 
multiple reasons: confounding demographic parameters can 
leave similar signatures in the genome, the selective sweep 
may be  too old and the beneficial allele fixed within the 
population or, in the case of a polygenic adaptation model, 
the signal for individual loci under positive selection is too 
weak to be detected (Barghi et al., 2020). Hence, highlighting 
the effect of positive selection on a single locus is  
challenging. In addition to this, the effects of underlying 
background selection are important influencing factors in 
studies highlighting genome-wide scans of positive selection  
(see Charlesworth and Jensen, 2021). Some population 
genomics studies tried to overcome this problem by aggregating 
the signal carried by genetic variation over multiple loci.

Kudaravalli et al. (2009) tested whether SNPs with a significant 
association with gene expression (eQTLs) are frequent targets 
of selection in humans. For this, they analyzed HapMap 
(International  HapMap Consortium, 2003) genomes from three 
different human populations: Asian, Central European, and 
Yoruban together with gene expression data from lymphoblastoid 
cells obtained for all 210 unrelated HapMap individuals. To 
detect the signature of recent or ongoing positive selection on 
eQTLs they used the iHS (integrated haplotype score; Voight 
et  al., 2006), a powerful approach to detect selection when 
the beneficial mutation has not been fixed and is segregating 
at a frequency between 50 and 85%. Their results showed that 
SNPs surrounded by signatures of positive selection were more 
likely to be  eQTLs compared to random SNPs, leading to the 
suggestion that selection on transcript levels is an important 
aspect of human adaptation. More broadly, this study also 
showed how logistic regression models can serve as an appropriate 
statistical approach to test for associations between signals of 
positive selection and molecular phenotypes. Haddrill et  al. 
(2008) analyzed polymorphism and divergence at 67 coding 
and non-coding elements in D. simulans (n = 20). They observed 
excess of low-frequency alleles in the SFS for introns, 5' UTRs, 
and 3' UTRs, indicative of selective constraints in those 
non-coding regions. Based on a MacDonald-Kreitman (MK) 
analysis, they also reported that the proportion of adaptive 
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substitution, α, for 5' UTRs and 3' UTRs is comparable with 
non-synonymous sites in this species. This study highlights 
that UTRs in D. simulans have been under both positive as 
well as negative selection.

Torgerson et  al. (2009) analyzed genetic variation at CNCs 
using resequencing data from 35 human samples (20 European-
Americans and 15 African Americans) using the chimpanzee 
genome as the outgroup. In this study, CNCs were defined as 
non-coding sequences conserved in human and mouse. They 
discretized genomic data into GO functional categories to identify 
GO categories that are significantly associated with selection 
in CNCs. For this purpose, they use a modified version of the 
MK test, mkprf (Bustamante et al., 2002), which infers population 
scaled selection coefficient at individual loci  (γ). In African-
Americans, three categories associated with positive selection 
in CNCs were regulation of cellular processes, protein 
modification, and cell cycle, while categories associated with 
negative selection were cytosol, ribosome, extracellular region, 
and carrier activity [with false discovery rate (FDR) < 25%]. 
In European-Americans, the categories associated with positive 
selection were calcium ion binding, organelle organization and 
biogenesis, cell cycle, and behavior (with FDR < 25%), while 
categories associated with negative selection were proteinaceous 
extracellular matrix and extracellular space (with FDR < 20%). 
By analyzing selection pressures acting on genomic data grouped 
into the functional categories, this study highlights population-
specific functional categories that are more likely to be  targets 
of selective forces. He et  al. (2011) analyzed TFBS in  
D. melanogaster and D. simulans for 30 TFs from REDfly (Rivera 
et al., 2019), a curated collection of known insect cis-regulatory 
modules. Using a Position Weight Matrix scoring approach, 
they predicted the effect of each SNP on TFBS binding affinity 
and measured the frequencies of TFBS-modifying alleles. The 
unfolded SFS of affinity-decreasing mutations is skewed towards 
low frequency derived alleles suggesting that negative selection 
acts to maintain existing TFBS. Furthermore, the results of 
MacDonald-Kreitman analyses on both affinity increasing and 
decreasing mutations indicated that positive selection enabled 
gains and losses of TFBS in both species. Vernot et  al. (2012), 
in addition to evaluating the selective constraint acting on DHSs 
(see the previous section), used the same dataset to conduct 
a genome-wide scan for signatures of positive selection at the 
level of regulatory regions. For this, they used the LSBL metric 
(Shriver et  al., 2004) to identify DNase I  peak with significant 
allele frequency differences across human populations compared 
to the genomic background. DHS peaks falling in the top  1% 
of the genome-wide distribution of LSBL values were considered 
potential targets of positive selection and genes located within 
50 kb of those candidate DHS peaks were tested for enrichment 
of KEGG pathways.8 Impressively, among the 15 enriched 
pathways, the authors identified the melanogenesis pathways 
in the European population only, suggesting that in addition 
to already described coding-variants, regulatory changes 
contribute, as well, to the evolution of adaptive pigmentation 
phenotypes in this population. Interestingly, the authors also 

8 https://www.genome.jp/kegg/pathway.html

show that the proportion of highly differentiated DHS differs 
across the four cell types surveyed in their study.

Arbiza et  al. (2013) analyzed polymorphism and divergence 
data at binding sites with ChIP-seq peaks from the ENCODE 
project using genomic data from 54 unrelated human individuals 
and three primate genomes. Based on their new probabilistic 
implementation of the MK framework (INSIGHT), they estimate 
the proportion of selected sites in binding sites within ChIP 
peaks to be  0.33 (vs. 0.80 for second codon positions). They 
also identify a large variation in the proportion of selected 
sites across TFs that is largely explained by differences in the 
information content of the associated binding models. Binding 
sites also carried a significant signal of positive selection, such 
that 1 out of 8,300 nucleotides in TFBS was estimated to have 
been fixed through positive selection and 1 out of 20 recently 
fixed alleles are adaptive substitutions. Among all TF analyzed 
in this study, binding sites for the Zinc finger TF GATA2 
and  GATA3 displayed the largest number of adaptive 
substitutions  (312). Huang et al. (2017) studied cell and tissue-
specific constraints acting on enhancers. They obtained a 
comprehensive enhancer annotation list in humans from a 
study by Andersson et  al. (2014). They introduced LINSIGHT, 
a method to estimate the fitness consequence of mutation in 
non-coding regions. They showed that enhancers in tissues 
associated with sensory perception, the immune system, and 
the male reproductive system have low LINSIGHT scores, 
suggesting that these enhancers are under low constraints and 
could potentially be  under positive selection. They also point 
out that enhancers active in tissues associated with the female 
reproductive system are under higher constraints as compared 
to tissues associated with the male reproductive system. Along 
with the introduction of LINSIGHT, this study highlighted 
that the fitness consequence of mutations in enhancers is 
dependent on many aspects, including cell and tissue specificity, 
and constraints acting on the promoters of the target gene.

DISCUSSION

Concerning purifying selection, polymorphism- and divergence-
based studies highlighted in this review (to exemplify  — 
Torgerson et  al., 2009; De Silva et  al., 2014) demonstrate that 
certain non-coding elements in the genome seem to be  under 
constraint, indicating the action of purifying selection. 
Interestingly, De Silva et  al. (2014) pointed out that highly 
conserved CNCs across various vertebrates appear to be under 
higher levels of constraints as compared to non-synonymous 
sites. DNA binding motifs within corresponding ChIP-seq peaks, 
one of the most precise annotations of functional non-coding 
elements across various species, have been shown to be  under 
higher levels of purifying selection as compared to fourfold 
degenerate sites in humans (Vernot et  al., 2012), and, as 
compared to non-synonymous sites in yeast (Connelly et  al., 
2013). However, overall, functional non-coding classes show 
varying patterns of purifying selection which is intermediate 
to synonymous and non-synonymous sites (Haddrill et  al., 
2008; Torgerson et  al., 2009). Often regulatory modules have 
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been highlighted to be  under higher constraints as compared 
to other non-annotated and non-coding regions, as an example 
TFBS motifs are under higher constraints as compared to 
unbound motifs (Mu et  al., 2011). Finally, the intensity of 
these constraints seems to be  higher for elements that are in 
the proximity of the coding regions as compared to the distal 
elements (Mu  et  al.,  2011; Naidoo et  al., 2018).

Demonstrating the effect of positive selection on individual 
loci is challenging, hence several studies took the approach of 
pooling loci-based common non-coding functional annotation 
and compared the aggregated signal to a neutral reference class. 
For example, Torgerson et  al. (2009) and Vernot et  al. (2012) 
clustered regulatory regions associated with genes based on 
their functional GO terms and biological pathways that they 
participate in, respectively, for various human populations. Here, 
Vernot et  al. (2012) highlighted that the pigmentation pathway 
seems to constitute genes whose regulatory elements could have 
potentially been targeted by positive selection in the European 
population, suggesting that regulatory changes could 
be  responsible for adaptive phenotypic changes. Huang et  al. 
(2017) employ their method LINSIGHT to aggregate signals 
of selection from different tissue types in humans. In some 
cases, regulatory elements could be under the influence of both 
positive as well as negative selection, where negative selection 
maintains regulatory elements and positive selection is responsible 
for their gain and loss within species as has been pointed out 
in the studies by Haddrill et  al. (2008) and He et  al. (2011). 
Additionally, in some cases, variations in CREs have also been 
proposed to be  paving way for speciation. To exemplify, Mack 
and Nachman (2017) highlighted that the accumulation of 
variations within CREs could be linked to post-zygotic isolation 
which eventually leads to a reduction in inter-species gene flow 
and, potentially, speciation. Post-zygotic isolation is one of the 
mechanisms of reproductive isolation where the inter-species 
hybrid is either inviable or sterile, thus leading to an increase 
in the inter-species differences. Along similar lines, in a speciation 
study on Mus musculus domesticus and Mus musculus musculus, 
Mack et  al. (2016) highlighted the potential role of the 
accumulation of changes within regulatory elements in speciation.

CHALLENGES AND PITFALLS

With the advent of whole-genome sequencing and assay 
technologies, the availability of genomic data has grown 
exponentially. However, one of the central questions remains 
open, which is — What proportion of the genome is “functional”? 
In the case of non-coding elements, many studies have highlighted 
the approach of linking conservation to functionality, however, 
this could potentially dilute the signature of natural selection 
(Arbiza et al., 2013). To make this search more precise, a proposed 
alternative has been to exclusively consider non-coding sequences 
that display some biochemical signatures. Many comparative 
genomics studies use these biochemical signatures as starting 
points to detect patterns of constraints on elements (displaying 
the signatures) as compared to putative neutral elements and 
infer functionality and forces of selection in action. Here, constraints 

and the presence of a biochemical signature, both, act as a proxy 
for functionality. Along similar lines, in the case of humans, 
some studies have hypothesized the proportion of functional 
sites in the genome to be  around 4–8% (Ward and Kellis, 2012; 
Rands et  al., 2014), these estimates are based on the proportion 
of sites that are under constraint. However, changes in the 
non-constraint regions could also have functional consequences 
(Ludwig et  al., 2000; Dermitzakis and Clark, 2002). Estimating 
the proportion of genetic variants, within CREs, that contribute 
to adaptive evolution is challenging, mainly due to a lack of a 
robust model of neutral versus adaptive evolution, specifically 
for regulatory regions (Liu and Robinson-Rechavi, 2020).

As compared to coding regions, functional studies are 
challenging within NCEs due to sparse annotation data. This 
has been partially overcome with biochemical assays and large-
scale annotation projects like ENCODE (humans; The ENCODE 
Project Consortium, 2012) and modENCODE (D. melanogaster; 
The modENCODE Consortium et  al., 2011). However, these 
assays generally highlight biochemically active regions, which 
is not a direct indication of functionality (Doolittle, 2013; Graur 
et  al., 2013; Huang et  al., 2017). This advocates for the need 
for refined functional annotations of the non-coding elements. 
One of the other challenges in functional studies has been to 
choose appropriate neutral sites, which are sites indifferent to 
variations. Comparing such sites against “test” sites aid in 
elucidating the signal of selective forces. However, as highlighted 
by Casillas et  al. (2007), the choice of the genomic class used 
as neutral reference can lead to under-or over-estimations of 
the action of selective forces on “test” sites. In addition to 
selecting neutral regions, the neutral forces associated with 
the demographic history of the populations should also 
be  factored in to make an informed estimate of the action of 
selective forces (Zhen and Andolfatto, 2012).

Such methods usually aggregate the signal of selection over 
multiple loci, as the signal from a single locus is sparse, 
estimating the marginal contribution of individual loci is difficult 
(Andolfatto, 2005). To exemplify, in the case of local adaptation, 
a certain group of loci that contribute to adaptation will 
be  under the action of positive selection and evolve rapidly 
as compared to the other non-functional sequences. Methods 
attempting to detect selective pressure will highlight these loci. 
To aid in interpretation, some studies (Haygood et  al., 2007; 
Torgerson et  al., 2009) use Gene Ontology (GO) identifiers 
to highlight biological categories, and consequently the 
participating genes, which are likely subject to selection. However, 
as highlighted by Galtier and Duret (2007), one of the explanations 
for rapidly evolving elements, besides the action of selection, 
could also be  other factors, such as biased gene conversion, 
making the inference of selection challenging.

Effective partitioning of the regulatory elements is one of 
the central challenges for performing functional studies of the 
non-coding elements. He et  al. (2011) highlight an interesting 
approach of partitioning the regulatory regions into affinity 
increasing and affinity decreasing sites, similar to synonymous 
and non-synonymous sites in the coding regions. However, 
such partitioning is only possible for regulatory elements that 
have a well-characterized binding model. The new sequencing 
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methods and the rapid rise in sequencing data will help to 
fine-tune the NCE annotation and establish TF-specific binding 
models. In addition to this, low-affinity binding sites in NCEs 
have been reported to play a key role in regulatory robustness 
by enabling the regulatory elements to harbor multiple binding 
sites (Crocker et  al., 2015; Hajheidari et  al., 2019). However, 
reliable detection of such elements through ChIP-seq experiments 
has been challenging due to their sparse signal, making them 
difficult to distinguish from the genomic background noise 
(Crocker et  al., 2015). Enabling reliable detection of such 
elements will be  one of the major challenges for future 
developments in assay technologies and bioinformatics pipelines.
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