
ORIGINAL RESEARCH
published: 02 July 2021

doi: 10.3389/fgene.2021.664357

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 664357

Edited by:

Ruriko Yoshida,

Naval Postgraduate School,

United States

Reviewed by:

Jesus Fernandez,

Universitat Politecnica de Catalunya,

Spain

James H. Degnan,

University of New Mexico,

United States

*Correspondence:

Colby Long

clong@wooster.edu

Specialty section:

This article was submitted to

Evolutionary and Population Genetics,

a section of the journal

Frontiers in Genetics

Received: 05 February 2021

Accepted: 26 May 2021

Published: 02 July 2021

Citation:

Long C and Kubatko L (2021)

Hypothesis Testing With Rank

Conditions in Phylogenetics.

Front. Genet. 12:664357.

doi: 10.3389/fgene.2021.664357

Hypothesis Testing With Rank
Conditions in Phylogenetics

Colby Long 1* and Laura Kubatko 2

1Department of Mathematical and Computational Sciences, College of Wooster, Wooster, OH, United States, 2Department

of Statistics and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States

A phylogenetic model of sequence evolution for a set of n taxa is a collection of probability

distributions on the 4n possible site patterns that may be observed in their aligned DNA

sequences. For a four-taxon model, one can arrange the entries of these probability

distributions into three flattening matrices that correspond to the three different unrooted

leaf-labeled four-leaf trees, or quartet trees. The flattening matrix corresponding to the

tree parameter of the model is known to satisfy certain rank conditions. Methods such as

ErikSVD and SVDQuartets take advantage of this observation by applying singular value

decomposition to flattening matrices consisting of empirical data. Each possible quartet

is assigned an “SVD score” based on how close the flattening is to the set of matrices

of the predicted rank. When choosing among possible quartets, the one with the lowest

score is inferred to be the phylogeny of the four taxa under consideration. Since an n-leaf

phylogenetic tree is determined by its quartets, this approach can be generalized to infer

larger phylogenies. In this article, we explore using the SVD score as a test statistic to test

whether phylogenetic data were generated by a particular quartet tree. To do so, we use

several results to approximate the distribution of the SVD score and to give upper bounds

on the p-value of the associated hypothesis tests. We also apply these hypothesis tests

to simulated phylogenetic data and discuss the implications for interpreting SVD scores

in rank-based inference methods.

Keywords: SVDquartets, ErikSVD, flattening matrix, multispecies coalescent, singular value decomposion

1. BACKGROUND ON PHYLOGENETICS AND SVDQUARTETS

Recent technological advances have reduced both the time and the cost required to obtain DNA
sequence data from biological samples. The widespread availability of large-scale data sets has
necessitated the development ofmethods that can efficiently estimate the evolutionary relationships
among the samples as represented by a phylogenetic tree. Because traditional frameworks for
statistical inference, such as the maximum likelihood and Bayesian frameworks, require thorough
searches of tree space in order to provide estimates, they become computationally prohibitive when
the size of the data is large and/or when estimation under a complexmodel, such as themultispecies
coalescent, is desired. Several approaches for estimation that don’t require computation of the
likelihood while still being model-based have recently been proposed (Eriksson, 2005; Chifman
and Kubatko, 2014) and represent promising alternative methods for inferring phylogenies when
the data size is large.

To understand how these approaches work, we begin by defining the probability distribution of
the data arising along a phylogeny. As an example, consider the four-taxon tree shown in Figure 1A,
and define a site pattern i1i2i3i4 as an assignment of states to the tips of the tree, i.e., i1 is the state
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FIGURE 1 | The three possible unrooted tree topologies for four taxa. (A) Tree T1, (B) Tree T2, and (C) Tree T3.

assigned to taxon a, i2 is the state assigned to taxon b, etc. Here
we consider DNA sequence data, so that ij ∈ {A,C,G,T} for
j = 1, 2, 3, 4. For a tree that includes branch lengths together
with a model by which the mutation process occurs along the
tree, let pi1i2i3i4 refer to the probability of observing site pattern
i1i2i3i4 under the chosen model. Note that a total of 44 = 256
site patterns are possible for a four-taxon tree. The collection p
of these 256 site pattern probabilities will be referred to as a site
pattern probability distribution.

This probability distribution can be arranged into a 16 ×
16 matrix, referred to as a flattening, such that the rows of
the matrix correspond to possible states for one pair of sister
taxa in the tree and the columns of the matrix correspond
to possible states for the two remaining taxa. For example,
for tree T1 in Figure 1A, the flattening matrix FT1 (p) is
given by

FT1 (p) =

























[AA] [AC] [AG] [AT] [CA] · · · [TT]

[AA] pAAAA pAAAC pAAAG pAAAT pAACA · · · pAATT
[AC] pACAA pACAC pACAG pACAT pACCA · · · pACTT
[AG] pAGAA pAGAC pAGAG pAGAT pAGCA · · · pAGTT
[AT] pATAA pATAC pATAG pATAT pATCA · · · pATTT
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · · pCATT
· · · · · · · · · · · · · · · · · · · · · · · ·
[TT] pTTAA pTTAC pTTAG pTTAT pTTCA · · · pTTTT

























where, for example, the (5, 3) entry, pCAAG, refers to the
probability that taxon a has nucleotide C, taxa b and c have
nucleotide A, and taxon d has nucleotide G. Note that it is
also possible to construct flattening matrices for the other two
trees in Figure 1, FT2 (p) and FT3 (p), where p is the probability
distribution derived under the assumption that T1 is the
true phylogeny.

Previous work has examined the properties of the flattening
matrices FTb (p), b = 1, 2, 3, under various evolutionary models.
In the case in which DNA sequence data are assumed to have
evolved along a single phylogenetic tree (the gene tree T1),
Allman and Rhodes (2006) showed that FT1 (p) is generically
rank 4, while the matrices FT2 (p) and FT3 (p) are generically
rank 16, under a variety of models for the DNA substitution
process that includes the general time reversible (GTR) model
(Liò and Goldman, 1998). Chifman and the second author (2015)
considered the case in which sequence data arise under the

multispecies coalescent model (Edwards et al., 2016; Kubatko,
2019) from a species tree with topology matching T1 but with
the root placed along the internal branch of the tree so that
the tree satisfies the molecular clock. They showed that in this
case FT1 (p) is generically rank 10, while the other two flattening
matrices generically have rank strictly greater than 10, for the
GTR+I+Ŵ model and all submodels. The authors generalized
this result to the case in which the population size and/or
mutation rate varies for any submodel of the GTR model, thus
establishing a reduced-rank result for species trees under the
multispecies coalescent even in the absence of a molecular clock
(Long and Kubatko, 2019). More recent results have shown that
if p is a generic probability distribution from a network model
of evolution where the network has a tree clade with species a
and b or c and d, then FT1 (p) will be rank 4 (Casanellas and
Fernández-Sánchez, 2020).

These results suggest a method for inferring phylogenetic
trees under a wide range of models. Specifically, the probability
distribution p can be approximated for a given data set using
the observed frequencies of the site patterns, the collection of
which we denote by q̂. For an alignment of length n, the estimated
probability distribution q = q̂/n can then be used to form three
estimated flattening matrices corresponding to the three trees in
Figure 1. A measure of how close each of the estimated flattening
matrices is to the nearest matrix of the relevant rank (e.g., rank 4
when the goal is to infer the gene tree, and rank 10 when the goal
is to infer the species tree) can then be used to infer the four-taxon
tree by picking that for which the corresponding matrix is closest
to the desired rank. For data sets containing more than four taxa,
clusteringmethods or quartet assembly procedures can be used to
obtain an overall estimate of the phylogeny from a set of inferred
quartet relationships. These approaches are implemented in the
ErikSVD software (Eriksson, 2005) in the case of gene trees and in
the SVDQuartets software [part of the PAUP* package (Swofford,
2021)] in the case of species trees. As their names imply, both
methods use singular value decomposition (SVD) to compute
an SVD score, the distance between the flattening matrices and
the appropriate set of reduced-rank matrices. We provide the
rationale for use of the SVD score as well as the details of its
computation in the next section.

While we have described the concept of a flattening matrix
using four-taxon trees, such matrices can be constructed for
larger trees as well. To do this, we consider cutting an internal
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branch of a tree, which splits the taxa at the tips of the tree
into two sets, L1 and L2. The flattening matrix corresponding
to this split of taxa is then constructed by letting the rows
of the 4|L1| × 4|L2| matrix correspond to possible nucleotides
for the taxa in L1 and the columns to possible nucleotides
for the taxa in L2. While reduced rank results analogous to
those described above are known for gene trees (see e.g.,
Allman and Rhodes, 2007), no such results are available for
species trees for more than four taxa. Our focus in the
remainder of this paper will be on four-taxon trees, as these
form the building blocks for inference under a large class
of models.

SVD-based methods have proven remarkably effective (see
e.g., Chifman and Kubatko, 2014; Wascher and Kubatko, 2021)
at accurately inferring the correct quartet tree from model data.
Thus, far, however, they have only been used as a means of
estimating the true quartet topology, rather than as a measure
of confidence that a particular quartet topology is the one that
gave rise to the observed data. Here we explore the question
of whether the magnitude of the SVD score can be used
to assess support in the data for the quartet tree underlying
the flattening matrix from which it has been computed. Such
an assessment has many applications. For example, it could
be used to improve the performance of inference methods
like ErikSVD and SVDQuartets by providing weights for the
quartet trees in proportion to their support in the data in
order to allow downstream analyses to capture more of the
information contained in the quartet data. As a first step in
this direction, in this work we use the SVD score to construct
a hypothesis test of the null hypothesis that the data arose
from a particular quartet tree. If we view a single quartet
tree in isolation, the test we develop is a formal hypothesis
test of whether we may reject this tree. However, we note
that this test cannot be applied simultaneously to the three
SVD scores from a rank-based quartet inference method.
Indeed, this would require developing a test based on the
joint distribution of the SVD scores of the three flattening
matrices. Still, a better understanding of the distribution of
the SVD score will reveal more about why these methods
are so effective and enable some principled decisions for
weighting quartets.

We begin in section 2 by defining the SVD score and
describing what precisely it measures. In section 3.1, we
present results describing the distribution of the SVD score
and in section 3.2 we derive probabilistic bounds on its
magnitude. Our results allow us reject the null hypothesis that
the data arose from a specified quartet tree when the SVD
score exceeds a cut-off based on these bounds. In section 4,
we apply our hypothesis test to data simulated from some
commonly-used phylogenetic models, and obtain estimates of
the number of sites required to reject a discordant quartet,
one that does not agree with the quartet that generated the
data. We also reveal some surprising results about the inner
workings of SVD-based methods that suggest the results should
be interpreted carefully. Finally, in section 5 we discuss the
implications and applications of these results for SVD-based
inference methods.

2. THE SVD SCORE

As described above, the main tool needed to enable inference
of phylogenies from the estimated site pattern probability
distribution q is a measure of the distance of the flattening matrix
corresponding to each of the trees in Figure 1 to the nearest
matrix of the relevant rank, r. To define this measure, consider
a u × v matrix A with (i, j)th entry aij. The Frobenius norm of
matrix A is given by

‖A‖F =

√

√

√

√

u
∑

i=1

v
∑

j=1

a2ij =

√

√

√

√

s
∑

i=1

σ 2
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σs ≥ 0 are the singular values of
A and s = min{u, v}.

The Eckart-Young Theorem (Eckart and Young, 1936) tells us
that the distance from the matrix A to the nearest rank r matrix
under the Frobenius norm is

min
rank(B)=r

‖A− B‖F =

√

√

√

√

s
∑

i=r+1

σ 2
i .

We use this result as the basis for the SVD score for tree
T ∈ {T1,T2,T3} based on the estimated flattening matrix FT(q).
Specifically, the SVD score for tree T and rank r is defined to be

STr (q) =

√

√

√

√

16
∑

i=r+1

σ̂ 2
i (1)

where σ̂i is the i
th singular value of FT(q).

The intuition behind the SVD score is that a u × v matrix of
rank r < s will have σi = 0 for i = r+ 1, r+ 2, · · · , s. Because the
flattening matrices FT(q) are computed based on the estimated
site pattern probability distribution q rather than on the true
probability distribution p, they will all be full rank, even for the
true tree T1. However, the (r + 1)st through sth singular values
are expected to be closer to 0 for the true tree than for the two
alternative trees, and thus small values of the SVD score indicate
better fit of the data to the tree. The algorithms underlying both
ErikSVD and SVDQuartets are based on the selection of the
smallest SVD score from among a set of alternatives in order to
successively build the phylogenetic estimate of the true tree.

One important point to note is that the SVD score gives the
distance to the nearest rank r matrix from among the set of all
rank r matrices, which we denote by FT

r . While this is a useful
measure of the support in the data for a particular phylogeny, as
we demonstrate below, it is not the most appropriate measure
that could be conceived. For example, a more appropriate
measure would be the distance to the nearest rank r matrix that
encodes a probability distribution; an even more appropriate
measure would be the distance to the nearest rank r matrix
that encodes a probability distribution that arises from a specific
model for DNA sequence evolution on a phylogenetic tree.
We call such a model a phylogenetic model and use M to
denote the set of probability distributions in the model. However,
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the computation of distances in these scenarios is non-trivial,
and the development of efficient methods for computing such
distances is an open challenge. Thus, we consider here the
properties of the SVD score in Equation (1) instead, as it can
be rapidly computed even when the sequence length n is large.
In addition, the SVD score gives a lower bound on the other
distances that we mention above, a fact which we use in our
hypothesis tests.

3. HYPOTHESIS TESTING WITH THE SVD
SCORE

The theory above was described using the estimated site pattern
probability distribution q. However, in order to develop the
statistical theory underlying our proposed hypothesis tests, it will
be convenient for us to use instead the observed site pattern
frequency vector q̂ in the SVD score. All of the theory above
remains essentially unchanged. If we have an observed alignment
of length n, then the flattening matrix FT(q̂) = nFT(q) and the
SVD score STr (q̂) = nSTr (q) is the Euclidean distance from the
observed site pattern frequency vector q̂ to the set FT

r of rank r
flattening matrices.

Our goal will be to use the SVD score to test the null
hypothesis that q̂ is a sample from a multinomial distribution
that is contained inside a model M ⊆ FT

r . More specifically,
we will develop a hypothesis test in which the squared
SVD score serves as an upper bound on the test statistic.
In this section, we introduce the test statistic and outline
our approach.

Let X(n,p) be the vector-valued random variable that records
the number of occurrences of i after n draws from the
multinomial distribution p ∈ 1k−1 and define

Y(n,p) =
k
∑

i=1

(X
(n,p)
i − pin)

2.

Thus, Y(n,p) is the squared Euclidean distance between the
expected and observed frequency vector. In the context of
phylogenetics, the observed frequency vector is a vector of site
pattern counts obtained from a DNA sequence alignment of n
sites. In the case we consider, where the phylogenetic model is a
4-state DNA substitution model for four species, k = 256. Given
a site pattern probability distribution p, we may now use Y(n,p) as
a test statistic to test the null hypothesis

H0 : q̂ is a sample distribution obtained by drawing n sites from
p.

The p-value associated with this test is then Pr(Y(n,p) ≥ ‖pn −
q̂‖22), where ‖ · ‖2 is the Euclidean or ℓ2 norm.

For our purposes, we are most interested in the case where we
do not know p explicitly, but instead only know that p belongs
to a phylogenetic model M ⊆ FT

r . In this case, while we do not
know the exact distance between pn and q̂, the SVD score gives
us a lower bound on this distance. That is, STr (q̂) ≤ ‖pn − q̂‖2.

Therefore, in terms of our hypothesis test, we can obtain an upper
bound on the p-value since

Pr(Y(n,p) ≥ ‖pn− q̂‖22) ≤ Pr(Y(n,p) ≥ (STr (q̂))
2).

Thus, if we choose significance level α for our hypothesis
test, then we can safely reject the null hypothesis when
Pr(Y(n,p) ≥ (STr (q̂))

2) < α.
For phylogenetic inference, rather than testing whether our

data were generated by a particular distribution, we are interested
in whether our data were generated by a particular phylogenetic
model,M. Thus, we wish to test the null hypothesis,

H0 : q̂ is a sample distribution obtained by drawing n sites from
some p ∈ M ⊆ FT

r .

Then we may reject the null hypothesis when we are able to reject
that the data are a sample from any distribution in themodel, that
is to say, when

(

max
p∈M

Pr(Y(n,p) ≥ ‖pn− q̂‖22)
)

< α.

By the same reasoning as above, this allows us to reject the null
hypothesis whenever

(

max
p∈M

Pr(Y(n,p) ≥ (STr (q̂))
2)

)

< α,

And of course, since M ⊆ 1k−1, this means we can
reject whenever

(

max
p∈1k−1

Pr(Y(n,p) ≥ (STr (q̂))
2)

)

< α,

where now the maximum is taken over the entire simplex. In
order to leverage this observation, we now require results on the
distribution of Y(n,p).

3.1. The Distribution of Y (n,p)

For sufficiently large n the distribution of X(n,p) is approximated
by the multivariate normal distributionN (np, n6(p)), where

6(p)ij =
{

pi(1− pi) i = j

−pipj i 6= j.

Thus, the random variable X(n,p) − np is approximated by
N (0, n6(p)) (Wasserman, 2010). Since 6(p) is a real symmetric
matrix, we can use the spectral decomposition to write 6(p) =
QT3Q, where 3 is a diagonal matrix of the eigenvalues of 6(p)
andQTQ = I. Moreover, since6(p) is positive semidefinite, all of
its eigenvalues are non-negative real numbers and so wemay take
the square root of 3 and write 6(p)1/2 = QT31/2Q. Although
our primary interest is when p is a probability distribution, we

will assume for the moment that 0 < pi < 1 and
∑k

i=1 pi < 1. In

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 664357

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Long and Kubatko Hypothesis Testing With Rank Conditions

this case,6(p) is invertible (Withers and Nadarajah, 2014) and so
6(p)−1/2 = QT3−1/2Q. Then we may write

Y(n,p) = (X(n,p) − np)T(X(n,p) − np)

= (X(n,p) − np)T6(p)−1/2(QT3Q)6(p)−1/2(X(n,p) − np)

= (Q(6(p)−1/2)(X(n,p) − np))T3

(Q(6(p)−1/2)(X(n,p) − np)).

Thus, Y(n,p) is a quadratic form of the standardized random
variable Q(6(p)−1/2)(X(n,p) − np) ∼ N (0, nI). Letting λ1, . . . , λk
be the eigenvalues of 6(p), the distribution of Y(n,p) is
approximated by

n

k
∑

i=1

λiZi, (2)

where the Zi are independent chi-square random variables with
one degree of freedom. It then follows from standard results on
quadratic forms (Mathai and Provost, 1992) that

E[Y(n,p)] ≈ ntr[3] = ntr[6(p)] = n

k
∑

i=1

pi(1− pi) (3)

and

Var[Y(n,p)] ≈ 2n2tr[32] = 2n2tr(6(p)2). (4)

Although the derivation above required us to assume that the
entries of p sum to <1, these formula are still useful since
for any probability distribution p we can obtain an arbitrarily
close approximation using the vector p′ = (1 − ǫ)p for some
ǫ > 0. In general, such normal approximations may be less
accurate when the entries of p are close to zero. However,
this will not pose any serious issues for our analysis. For one,
this is less problematic in a phylogenetic analysis since the
number of sites, n, is generally quite large. Secondly, our primary
purpose is to gain a better understanding of the meaning of
rank-based scores in phylogenetics. As such, we only use the
approximation in (2) to obtain estimates for the mean and
variance of Y(n,p) and so that we may apply (Mukerjee and Ong,
2015, Theorem 3), which states that a positive linear combination
of independent chi-square random variables has a log-concave
cumulative distribution function. This is a result we need in
order to prove Lemma 3.3. As the next example shows, these
approximations are still quite useful for these purposes.

Example 3.1. Consider the probability distribution
p from the Jukes-Cantor model on the gene tree
((a : 0.5, b : 0.05) : 0.05, (c : 0.5, d : 0.05) : 0.05) (with branch
lengths in units of substitutions per site; see the tree in
Figure 3A). Figure 2 shows the result of sampling Y(n,p) via two
different methods when the number of sites, n, is 25,000.

The “Multinomial” samples are obtained by sampling 25,000
sites from the multinomial distribution p, and then computing

Y(n,p). The “Chi-square” samples are obtained by sampling
from the distribution approximating Y(n,p) that was derived in
Equation (2) above. That is, we take the linear combination of 256
independent samples from a chi-square distribution where the
coefficients are the eigenvalues of 6(p). The densities shown are
the result of 10,000 samples. The densities appear quite similar,
and the table below shows mean, standard deviation, and .95-
quantile for the two samples alongside the theoretical mean and
standard deviation computed from the formula above.

Multinomial Chi-square Theoretical

mean 24068.43 24133.31 24145.84

s.d. 6187.22 6102.42 6183.84

.95-quantile 35395.21 35714.81 –

3.2. Bounds on the Mean and Variance of
Y (n,p)

In order to obtain bounds for the p-values in our hypothesis test,
we require bounds on the mean and variance of the test statistic
Y(n,p). In this section, we obtain these bounds using (3) and (4) as
approximations of the mean and variance of Y(n,p).

Lemma 3.2. For all n and all p ∈ 1k−1, E[Y(n,p)] ≤ n and
Var[Y(n,p)] ≤ n2/2.

Proof: First, we have tr[6(p)] ≤
k
∑

i=1

pi(1− pi) ≤
k
∑

i=1

pi ≤ 1. For

the variance, define the function

V(p) = 2tr(6(p)2) = 2





k
∑

i=1

(p2i − 2p3i )+





k
∑

i=1

p2i





2

 .

In order to prove the lemma, we will maximize V(p) over the
probability simplex. Thus, we will begin by maximizing V(p)
subject to the constraint p1 + . . . + pk = 1 using Lagrange
multipliers. If k = 1, V(p) is always zero, so we assume k ≥ 2.
Now, to find local optima, we seek p ∈ 1k−1 and λ ∈ R

simultaneously satisfying

2p1 − 6p21 + 4(p21 + . . . + p2k)p1 − λ = 0

2p2 − 6p22 + 4(p21 + . . . + p2k)p2 − λ = 0

...

2pk − 6p2k + 4(p21 + . . . + p2k)pk − λ = 0.

If such a p ∈ 1k−1 exists, then for all 1 ≤ i, j ≤ k, we have

2(pi − pj)− 6(p2i − p2j )+ 4(p21 + . . . + p2k)(pi − pj) = 0

⇒ (pi − pj)(2− 6(pi + pj)+ 4(p21 + . . . + p2k)) = 0.
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FIGURE 2 | A comparison of samples from Y (n,p) and the linear combination of chi-squared random variables with a distribution that approximates that of Y (n,p).

Therefore, for each pair 1 ≤ i, j ≤ k, either pi = pj or
(2− 6(pi + pj)+ 4(p21 + . . .+ p2

k
)) = 0. If both of the pairs pi, pj,

and pi, pℓ satisfy the second equation, then pj = pℓ, which implies
that any local optimum can have at most two distinct entries.

First, suppose p has only one distinct entry so that pi = 1/k for

all 1 ≤ i ≤ k. Then V(p) = 2(k− 1)

k2
, which attains its maximum

1/2 when k = 2. Now, suppose p has two distinct real entries q1
and q2 and fixm ∈ {1, . . . , ⌊k/2⌋} such thatmq1+(k−m)q2 = 1.
Then

2+ 4(mq21 + (k−m)q22)− 6(q1 + q2) = 0

⇒ 4m

(

1+ m

k−m

)

q21 −
(

2m

k−m
+ 6

)

q1 +
(

2− 2m

k−m

)

= 0.

⇒ (2mk)q21 + (2m− 3k)q1 + (k−m− 1) = 0.

The last line is a quadratic polynomial in q1, which only has real
solutions when

(2m− 3k)2 − 4(2mk)(k−m− 1) ≥ 0

⇒ −4m(2k+ 1)(k−m)+ 9k2 ≥ 0.

Since (k−m) ≥ k/2, ifm ≥ 3, we have 4m(2k+1)(k−m) > 12k2

and the inequality is not satisfied. Therefore, the inequality can
only be satisfied if m = 1 or m = 2. In the first case, we have
potential local optima where q1 = 1 or q1 = (k − 2)/2k. The

value of V(p) at these points is either 0 or

k4 + 4k3 − 16k− 16

8k2(k− 1)2
.

The latter expression attains a maximum of ≈ 0.43608 when
k = (5+

√
13)/3. Ifm = 2, we require that−7k2+ 24k+ 16 ≥ 0

in order to have a real solution for q1. This implies that k ≤ 4,
and since we assumed m ≤ ⌊k/2⌋, we may assume k = 4. In this
case, there is a potential local optimum where q1 = q2 = 1/4,
and V(p) = 3/8.

We have shown that on the interior of the simplex, every local
maximum value of V(p) is <1/2. In fact, this value is achieved
whenever two coordinates are equal to 1/2 and the other k − 2
are equal to zero. To find the global maximum of V(p) over the
simplex we must also check the boundary. However, the process
of finding the maximum of V(p) over any face of the simplex
amounts to conducting the above analysis for a smaller value of
k. Therefore, for any p ∈ 1k−1, Var[Y(n,p)] ≤ n2/2.

3.3. Bounds on p-Values From the SVD
Score
Using the bounds obtained above, we can now state four bounds
that can be used to give an upper bound on the p-value of our
hypothesis tests.
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3.3.1. A Bound Using Markov’s Inequality
Since Y(n,p) is a non-negative random variable, we can apply
Markov’s inequality which gives us that

Pr(Y(n,p) ≥ λ) ≤ E[Y(n,p)]

λ
,

for any positive constant λ (Ghosh, 2002).
Combined with Lemma 3.2, this implies that for all p,

Pr(Y(n,p) ≥ β) ≤ n

β
. (5)

3.3.2. A Bound Using the Chebyshev Inequality
The one-sided Chebyshev inequality or Cantelli’s inequality
(Ghosh, 2002) guarantees that for any random variable X with
mean µ and standard deviation σ and for any λ ∈ R>0,

Pr(X − µ ≥ λ) ≤ σ 2

λ2 + σ 2
.

By substituting the quantity λ = β − µ, we obtain

Pr(X ≥ β) ≤ σ 2

(β − µ)2 + σ 2
,

which is valid for any random variable X and β > µ. By Lemma
3.2, this implies that for any β > n and any p ∈ 1k−1, we have,

Pr(Y(n,p) ≥ β) ≤ (n2/2)

(β − n)2 + (n2/2)
= 1

2(β/n− 1)2 + 1
. (6)

3.3.3. A Bound Using a Chebyshev-Like Inequality for

Random Variables With Log-Concave CDF
There are various Chebyshev-like inequalities for families
of random variables satisfying certain properties such as
unimodality or symmetry of the probability density function.
In our particular case, we will use an inequality that applies
to random variables with log-concave cumulative distribution
function. For the following, we will use the approximating
distribution (2) for Y(n,p).

Lemma 3.3. The probability that the random variable Y(n,p)

exceeds β > n is less than or equal to ρ, where ρ is the
solution to

1√
2(β/n− 1)

=
√

1+ 2ρ ln(ρ)− ρ2

ρ − ln(ρ)− 1
. (7)

Proof: Since Y(n,p) can be expressed as a positive linear
combination of independent chi-square random variables, it has
a log-concave cumulative distribution function (Mukerjee and
Ong, 2015, Theorem 3). The main theorem in Faridafshin et al.
(2017) states that for any random variable with meanµ, standard
deviation σ , and log-concave cumulative distribution function,

the probability that it exceeds β is less than or equal to ρ, where
ρ is the solution to

σ

β − µ
=
√

1+ 2ρ ln(ρ)− ρ2

ρ − ln(ρ)− 1
.

By the bounds in Lemma 3.2, the left hand side of this equation is
≤1/(

√
2(β/n− 1)) for any p ∈ 1k−1. Since the right hand side is

an increasing function of ρ on [0, 1), the result follows.

3.3.4. A Bound Using the Bretagnolle-Huber-Carol

Inequality
The ℓ1 norm is the vector or matrix norm defined by

‖A‖1 =
∑

i,j

|aij|.

We will now apply the following theorem which can be found in
van der Vaart and Wellner (1996) to bound ‖X(n,p) − np‖1.

Lemma 3.4 (Bretagnolle-Huber-Carol inequality). Let X =
(X1, . . . ,Xk) be a multinomial random vector with probabilities
p = (p1, . . . , pk). Then for any λ > 0 and any sample size n, we
have the bound,

Pr





k
∑

j=1

|Xj − npj| ≥ 2λ
√
n



 ≤ 2k exp(−2λ2).

The bound from the inequality above can also be written as

Pr
(

‖X(n,p) − np‖1 ≥ 2λ
√
n
)

≤ 2k exp(−2λ2),

or alternatively, as

Pr
(

‖X(n,p) − np‖21 ≥ 4λ2n
)

≤ 2k exp(−2λ2).

For any matrix or vector A, ‖A‖2 ≤ ‖A‖1, so Y(n,p) = ‖X(n,p) −
np‖22 ≤ ‖X(n,p) − np‖21 and so we have

Pr
(

Y(n,p) ≥ 4λ2n
)

≤ Pr
(

‖X(n,p) − np‖1 ≥ 2λ
√
n
)

≤ 2k exp(−2λ2).

Substituting λ = √
β/4n, this can be rewritten as,

Pr
(

Y(n,p) ≥ β

)

≤ 2k exp

(−β

2n

)

. (8)
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3.4. Comparison of Derived Bounds
In section 3.3, we derived four upper bounds on Pr(Y(n,p) ≥
(STr (q̂))

2), all of which were independent of p. Thus, as described,
these bounds can be used to obtain an upper bound on

max
p∈1k−1

Pr(Y(n,p) ≥ (STr (q̂))
2).

For a specific significance level, each of these bounds implies
a minimum squared SVD score that will allow us to reject the
null hypothesis. That is, for significance level α, we can reject
the null hypothesis that q̂ is a sample of n draws from some
p ∈ M ⊆ FT

r if

(STr (q̂))
2 ≥

(

1

α

)

n (from (5)),

(STr (q̂))
2 ≥

(

1+
√

1

2

(

1

α
− 1

)

)

n (from (6)),

(STr (q̂))
2 ≥

(

α − ln(α)− 1
√

2(1+ 2α ln(α)− α2)
+ 1

)

n (from (7)),

(STr (q̂))
2 ≥ −2 ln

(

α

2k

)

n (from (8)).

The table below shows the rejection threshold for significance
level α that we get from each of the four derived bounds.
The rejection threshold is the minimum squared SVD score
(divided by n) that is required to reject the null hypothesis.
Since we are interested in methods of quartet inference on 4-
state DNA substitution models, for the Bretagnolle-Huber-Carol
(BHC) inequality, we assume that the number of categories is
k = 256. Notice that for each of the significance levels shown, the
bound utilizing the log-concavity of the cumulative distribution
function of Y(n,p) is best.

bound

α
0.10 0.05 0.01 0.001

Markov 10 20 100 1000

Chebyshev 3.24 4.16 8.07 23.36

Log-concave CDF 2.36 2.73 3.68 5.21

BHC 359.50 360.88 364.10 368.70

4. SIMULATIONS AND RESULTS

4.1. Power of the Hypothesis Tests
We examine the performance of our hypothesis tests by assessing
their power (i.e., the probability that they are able to reject H0

when it is false) under a variety of scenarios using simulation.
Our simulation studies based on gene trees are designed to test
the null hypothesis

H0 : q̂ is a sample distribution obtained by drawing n sites from

some p ∈ M ⊆ F
T2
4 .

In other words, the null hypothesis is that q̂ is a sample from some
phylogenetic model on the quartet tree ac|bd that is contained

in the set of rank 4 ac|bd flattening matrices. The alternative
hypothesis for each of our tests is simply that the data were

not generated by sampling from some p ∈ M ⊆ F
T2
4 . Thus,

one way to assess the power of our tests would be to generate

data by sampling from some p 6∈ F
T2
4 . This could include,

for example, a distribution from one of several phylogenetic
models on a discordant gene tree (ab|cd or ad|bc) for which it
is has been proven that a generic distribution is not contained

in F
T2
4 (Allman and Rhodes, 2006). Or, this could include a

probability distribution from the multispecies coalescent model
on the tree ac|bd. In this case, the flattening matrix would be
expected to be rank 10 rather than rank 4 (Chifman and Kubatko,
2015). Or, we could even sample from any randomly chosen

p 6∈ F
T2
4 . It isn’t even strictly necessary to sample from a

multinomial distribution p. Indeed, we could also generate data
under a model in which the site patterns were not assumed to
be independent and identically distributed. However, we choose
to generate data from phylogenetic models where the gene tree
or network does not display the split ac|bd, as these seem like
the most likely alternative hypotheses that might be encountered
in practice.

In order to assess the power of our tests, we first generate
data along the gene trees in Figures 3A,B. We consider two
models for nucleotide substitution along the trees, the Jukes
and Cantor (1969; JC69) model and the GTR model (Liò and
Goldman, 1998), since these span the range of commonly-used
empirical models with JC69 being the simplest and GTR being
the most complex time-reversible model. In both cases, seq-
gen (Rambaut and Grassly, 1997) is used to simulate data along
the fixed gene trees in Figures 3A,B. For the JC69 model, the
command seq-gen -mHKY is used. For the GTR model, we
randomly select rate parameters and base frequencies for each
replicate. The rate parameters, r1, r2, . . . , r5 are sampled from
the continuous uniform distribution on the interval (0.5, 1.5)
and the base frequency parameters are sampled from a Dirichlet
distribution with parameter (5, 5, 5, 5), leading to a mean of
0.25 for each of the base frequencies πA,πC,πG,πT . The seq-
gen command used is thus seq-gen -mGTR -r 1.0 r1 r2
r3 r4 r5 -f πA πG πC πT . The number of sites is varied
from 20,000 to 500,000 in increments of 5,000. For each
combination of phylogeny, substitution model, and sample size,
we repeat the simulation 100 times and record the number of
sites required to reached 95% power using each of the tests
in section 3.4.

We assess the effect of variation in the branch lengths in
two ways. First, we repeat the simulation above using the tree
in Figure 3C where all 5 branch lengths (i.e., αa,αb,αc,αd, and
αab|cd) are randomly sampled from a uniform distribution on the
interval (0, 0.1). Simulations are carried out using both the JC69
model and the GTR model with randomly generated parameters,
and the number of sites at which the power reaches 95% is
recorded in each case. Second, we fix the lengths of the terminal
branches in the tree in Figure 3C at either 0.05 or 0.1 and vary the
length of the internal branch (αab|cd) when the sample size is fixed
at either 100,000bp or 500,000bp. For each setting, we record the
power of each of the tests developed in section 3.4 and display the
results in Figure 6.
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FIGURE 3 | The trees and network used to simulate gene level phylogenies. (A) Tree A., (B) Tree B., (C) Tree C., and (D) The network N with tree clade ab.

We then carry out a similar study for the network in
Figure 3D, again using the JC69 model and the GTR model with
the randomly-selected parameters specified above. We simulate
data from the network per the model described in Gross and
Long (2018). For this model, a certain portion of the genes are
assumed to come from each of the two gene trees created by
deleting one of the dotted reticulation edges in the network.
For our simulations, half of the data are simulated from each
of the constituent trees. The topology of this network comes
from Casanellas and Fernández-Sánchez (2020), in which it is
also shown that if p is a probability distribution arising from this
network model, then FT1 (p) will be rank four or less. The branch
lengths on the edges of the network were chosen so that each of
the constituent trees satisfies the molecular clock.

Finally, we consider simulating data from the multispecies
coalescent model using the species tree shown in Figure 4. For
the multispecies coalescent model, the flattening matrix of the
true tree is expected to be rank 10 or less (Chifman and Kubatko,
2015), and so we will use the rank 10 SVD scores to test the
null hypothesis

H0 : q̂ is a sample distribution obtained by drawing n sites from

some p ∈ M ⊆ F
T2
10 .

The ms software (Hudson, 2002) is used to simulate gene
trees from the species tree, with the effective population size
parameter θ assumed to be constant throughout the tree

and set to 0.05 (using the -s 0.1 option in seq-gen). To
simulate DNA sequence data along the gene trees generated
by ms, we use both the JC69 model and the GTR model with
randomly-selected parameters as described above. We consider
multilocus data with 100bp per locus and number of loci ranging
from 20 to 5,000 in increments of 5. We record the number
of sites required to achieve 95% power. Technically, when
multiple sites are sampled from the same locus, the multispecies
coalescent data cannot be viewed as independent samples from
a multinomial distribution, which is one of the assumptions
of our hypothesis tests. Still, our simulations indicate that the
tests perform as expected, though the required sample sizes are
relatively large.

Figure 5 shows the sample size at which the tests first attain
95% power, i.e., the sample size at which at least 95 of the
repetitions of the experiment result in an SVD score that is
sufficient to reject H0 at level α = 0.05, for all of the scenarios
considered. Results are shown for the test based on the Markov
bound, the Chebyshev bound, and the log-concave CDF bound;
the BHC bound is not included in the figure as the test based on
this bound typically required more than 500,000 sites in order to
achieve 95% power (in fact, this test often required more than 2
million sites in order to reliably reject H0).

It is clear that the test based on the log-concave CDF bound
is the most powerful, as predicted by theoretical comparison of
the bounds used to derive the test, since it requires the smallest
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FIGURE 4 | The model species tree used for the simulations under the

multispecies coalescent.

number of sites in order to reject H0 across all simulation
conditions examined. The test based on the Chebyshev bound
also performs reasonably well, with required sample sizes just a
bit larger then those required for the log-concave CDF bound.
By contrast, the test based on the Markov bound performs
the worst, often requiring very large sample sizes in order to
reliably reject H0.

Comparing the effect of the nucleotide substitution model,
we see that the required sample sizes are generally slightly
lower for the random GTR model than for the JC69 model.
This might be what one would expect since the JC69 model
is a much simpler model of evolution. In fact, for the four-
taxon model, there are only 15 unique entries in a length 256
probability distribution vector from the JC69 model. Moreover,
it has been shown that after an appropriate change of basis, the
concordant flattening matrix will have a block diagonal structure
where the blocks satisfy certain rank constraints (Casanellas and
Fernández-Sánchez, 2011). Thus, it seems plausible that themany
algebraic relationships among the site pattern probabilities for
the JC69 model would result in smaller SVD scores for even
the discordant flattenings when compared to those for the GTR
model with an equal mutation rate. It is also noteworthy that the
network requires a similar sample size as the trees to achieve 95%
power. We revisit this point later in this section when discussing
how we can attain of rough estimate of the number of sites that
will be required to reject a certain tree or network.

We would also like to assess the power of our tests by
simulating from trees and networks that have an ad|bc split.
For example, we could consider swapping a and c in the trees
and network in Figure 3. However, for Tree B and the network
N, the results will be the same. The reason is that if p is
a distribution belonging to one of these models, then σac(p),
defined by σac(p)i1i2i3i4 = pi3i2i1i4 , belongs to the model on the
tree or network obtained by swapping the leaves labeled by a
and c. Moreover, FT2 (σac(p)) can be obtained from FT2 (p) by
permuting rows. Since permuting the rows of a matrix does not

change the singular values, we will still have ST2r (p) = ST2r (σac(p)).
A similar argument applies when we swap b and d. In addition,
any p belonging to the model from Tree B or N will satisfy
pi1i2i3i4 = pi2i1i3i4 . Consequently, the results will be the same after
any permutation of the leaves that yields a tree or network with
an ab|cd or ad|bc split. This fact also implies that when sampling

from Tree B or N, the expected values of the discordant SVD

scores (ST2r (p) and S
T3
r (p))) are equal.

Since Tree A does not exhibit symmetry between taxa a
and b, the same arguments do not apply, and, we are able
to find probability distributions in the models on Tree A

for which ST24 (p) 6= ST24 (σab(p)) (or equivalently, for which

(ST24 (p) 6= S
T3
4 ((p)). For this reason, we have included Figure 8

in Appendix A which shows the same results using the other

discordant SVD score, S
T3
4 (q̂). This is equivalent to simulating

after relabeling the trees and networks and using the discordant

SVD score ST24 (q̂). As expected, the results are identical for Tree
B and N. They are also identical for Tree C since the branch
lengths for edges a and b were chosen randomly in the original
simulation. The results for Tree A are different, but only very
slightly so. Appendix A also includes results from repeating
our simulation studies for gene trees with a re-scaling of the
entire tree from which the data are simulated using the -s
option in seq-gen (-s 0.5 - Figures 9, 10 in Appendix A; -s 2.0 -
Figures 11, 12 in Appendix A). Again, each pair of figures shows
the results for the two different discordant SVD scores from the
same simulations. Finally, Figure 13 in Appendix A shows that
we also obtain the same results under the multispecies coalescent

model when we use the other discordant SVD score ((S
T3
4 (q̂))2).

Results from the multispecies coalescent simulations are
largely consistent with the results from our other simulation
studies. We now require more sites to reject the discordant
quartets, since the rank 10 SVD scores are smaller than the rank
4 SVD scores we used for gene trees. As in the first case, the test
based on theMarkov bound often requires very large sample sizes
in order to reach 95% power. In contrast to the results for gene
trees, however, all three tests are less powerful for data simulated
under the GTR model, which is consistent with other simulation
studies carried out under the multispecies coalescent (Chifman
and Kubatko, 2014). By the same arguments above for gene trees,
due to the symmetry between taxa c and d in the species tree, the
results will be the same if we relabel the leaves of this species tree
in any way so that it displays either an ab|cd or ad|bc split.

Figure 6 shows the results of the simulation in which the
internal branch in Figure 3C was varied while the terminal
branch lengths were held fixed for either 100,000bp or 500,000bp.
These simulations again demonstrate that the test based on
the log-concave CDF bound is the most powerful, as it allows
rejection of the null hypothesis for shorter internal branch
lengths for both sample sizes than the test based on the
Chebyshev bound. The plots also demonstrate that the power
increases with the sample size, as all tests are able to reject the
null hypothesis at shorter internal branch lengths when the data
consist of 500,000bp.

4.2. Statistical Significance vs. Practical
Utility
The simulation results in the previous section indicate that
large sample sizes may be required in some cases in order to
reliably reject H0. However, SVDQuartets is known to perform
well for samples that are much smaller than those required to
formally reject H0. To examine this issue in more detail, we
simulated data consisting of 50, 100, 150, and 200 genes of length
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FIGURE 5 | Sample sizes required to achieve 95% power (x-axis, in thousands) for various trees and models (y-axis) for the hypothesis tests based on the Markov,

Chebyshev, and log-concave CDF bounds. (A) Gene tree simulations using (S
T2
4 (q̂))2; (B) Coalescent simulations using (S

T2
10(q̂))

2. Lengths of the bars correspond to the

required sample size, and thus shorter bars indicate a more powerful test. The test based on the log-concave CDF bound is clearly the most powerful across the

range of conditions explored. The test based on the BHC bound is omitted because it often required sample sizes in excess of 2 million sites to achieve 95% power.
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FIGURE 6 | Results of the simulation study that varied the length of the internal branch in the tree in Figure 3C. The y-axis shows the power of the tests based on the

Chebyshev bound and on the log-concave CDF bound for varying lengths of the internal branch (x-axis) using (S
T2
4 (q̂))2. The sample size was either 100,00 bp (A) or

500,000 bp (B). The remaining branch lengths were set to either 0.05 or 0.1.

100 bp under the multispecies coalescent model with the JC69
nucleotide substitution model on the species tree in Figure 4

and we recorded the rank 10 SVD score for both the true tree
(T1) and the discordant tree (T2). We only show the score for
one discordant tree, since as argued above, due to the symmetry
in the species tree, for any p in the multispecies coalescent
model on this tree, the two discordant scores will be equal (i.e.,

ST210 (p) = S
T3
10 (p)). The results are shown in Figure 7, where it

is clear that the distribution of SVD scores differs substantially
between the true tree and the discordant tree, even for the
smallest sample size considered (5,000 bp). As the sample size
increases, these distributions separate further. Thus, even though
statistical significance may not be achieved for small sample sizes,
the magnitude of the SVD score may be practically useful for
inferring the true phylogeny.

4.3. Approximation of Number of Sites
Required to Reject
For some of the simpler phylogenetic models, we can obtain
precise formulas in terms of the parameters for the theoretical
site pattern probability distributions in the model. This allows
us to obtain an estimate of the number of sites that would
be required to reject a discordant quartet using the SVD
score for data generated from a specific distribution in
the model. For example, consider the JC69 model for the
gene tree ((a : 0.5, b : 0.05) : 0.05, (c : 0.5, d : 0.05) : 0.05) shown
in Figure 3A. We can compute the theoretical probability
distribution for this model exactly and use this distribution
to obtain the SVD score for the discordant quartet tree T2

in Figure 1. The resulting squared SVD score is 8.749732 ×
10−5. Multiplying a flattening matrix by c will multiply the
squared SVD score of the matrix by c2. Thus, if we draw n
sites from the theoretical distribution, as n goes to infinity we
expect the squared SVD score to converge to approximately
8.749732 × 10−5n2. Thus, using the log-concave CDF bound
with significance level α, we would expect to be able to reject

FIGURE 7 | Rank 10 SVD scores (y-axis) for 100 replicate data sets computed

for the correct tree (T1, red) and a discordant tree (T2, green) with varying

numbers of sites (x-axis). Points were randomly jittered on the x-axis to better

display the distribution of SVD scores within each sample size.

the discordant topology when 8.749732 × 10−5n2 > 2.73n, or
when n is∼31, 200 sites. This rough approximation largely agrees
with our simulations, which is perhaps not surprising, since the
distance to the discordant model is really due to the fact that the
model is misspecified.

We can use similar reasoning to estimate the number of sites
required to reject an incorrect network topology. Consider first
the tree created by removing the reticulation edge of length 0
in the network in Figure 3D. We estimate that it would require
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17,000 sites to reject the discordant quartets for data generated
under the model on this tree. However, for the tree created by
removing the other reticulation edge of the network, we estimate
that it would require approximately 58,300 sites to reject the
discordant quartets. It seems likely that the longer central edge
of the first tree is what makes it easier to reject the discordant
quartets, since when the central edge is length zero, all of the
quartet flattening matrices will be rank 4 or less. For data from
the network, we estimate it would require 28,600 sites to reject
the incorrect networks, which is somewhere between the number
of sites required for each of the constituent trees.

4.4. The SVD Score May Greatly
Underestimate the Distance to a Model
By sampling from a known probability distribution in a
phylogenetic model, we are able to compare the SVD scores we
obtain to the true distance between the expected and observed
site pattern frequencies. Consider again the JC69 model on the
gene tree ((a : 0.5, b : 0.05) : 0.05, (c : 0.5, d : 0.05) : 0.05). When we
sample 5000 sites from this distribution, we observe a rather
strange phenomena. The rounded distance from the observed
to the expected frequency vector is 65.70, while the rounded
SVD scores for the three possible quartet trees are shown in the
following table.

Quartet SVD score

T1 30.54

T2 43.65

T3 50.33

Notice that the distance to the two discordant quartets is
actually less than the true distance between the observed and
expected site pattern frequency vector. The same phenomena
is observed with repeated sampling. This is not necessarily a
general phenomenon and depends on the particular choice of
parameters and number of sites. If we scale the number of sites by
c, we expect the true distance from the observed to the expected
frequency vector to scale by

√
c while we expect the discordant

SVD scores from the sample to scale by c. Consequently, by
the same reasoning as in the previous section, we do not expect
to regularly observe the same phenomenon if we sample more
than around 11,000 sites. Still, this particular example reveals
a fundamental limitation in using an SVD score in isolation
to reject a particular quartet tree. While the relative order of
the SVD scores would lead one to correctly infer that T1 is the
quartet that generated the data, the size of the SVD scores gives
a misleading signal about the true distance to the discordant
models. We revisit this example in the discussion, but it suggests
that the effectiveness of rank-based methods is in the comparison
of SVD scores rather than in the SVD scores themselves.

5. DISCUSSION

While rank-based methods are extremely effective for
phylogenetic inference, our results suggest that the SVD

score cannot be readily interpreted as a hypothesis test. The
approximations that we make for the test statistic lead to tests
that are very conservative in practice and that are prone to
Type II errors. Furthermore, if the tests proposed here were to
be used in practice, the work of Mitchell et al. (2019) suggests
that additional effort may be needed to derive appropriate null
distributions for cases that lie near the boundaries between trees
(i.e., cases for which the branch lengths are very small). In light
of the example discussed in section 4.4, however, it does not
appear that there is any significant room for improvement in a
similar test based on the SVD score, whether or not a correction
for boundary cases is developed. In that example, no similar test
could consistently reject one of the discordant quartets, since this
would require rejecting the null hypothesis when the discordant
SVD score was actually less than the distance between the
observed and the expected frequency from the true distribution.
Thus, it appears the primary limitation in using the SVD score
as a test statistic in phylogenetics is that the SVD score greatly
underestimates the distance from an observation to most of the
commonly used phylogenetic models.

Similarly, it does not appear that there is much room to
improve the bound we obtain in Lemma 3.3. Although one
could possibly obtain better bounds by optimizing the formula
in Lemma 3.3 over the simplex, the following example shows
that this is unlikely to have a significant effect. Consider a
hypothesis test of whether an observed site pattern frequency
vector came from a particular quartet tree T. Let p̃ be the length
256 probability distribution with four entries equal to 1

4 and all
other entries equal to zero. Then

Y(n,p̃) =
4
∑

i=1

(

X
(n,p̃)
i − n

4

)2
.

For large n, if we divide both sides of this expression by n
4 ,

the resulting random variable Z follows a χ2 distribution with
three degrees of freedom. Assuming the chosen significance level
is α = 0.05, then we should consider the 0.95 quantile for
Z ∼ χ2

3 which is ≈ 7.815. Thus, the 0.95 quantile of Y(n,p̃) is
≈ 7.815n/4 = 1.95n. Since p̃ has only four non-zero entries, it
belongs to FT

4 for any quartet T. Therefore, if (STr (q̂))
2 < 1.95n,

we cannot reject the quartet T. Thus, at least for this significance
level, the lowest possible rejection threshold would be 1.95n,
which is not a substantial improvement over our current lowest
threshold of 2.73n. Of course, one could reject that the data
were generated by p̃ using a different test statistic or the actual
distance from the observed data to p̃n. Similarly, one could
construct a less conservative test by specifying a particular model
and finding the maximum p-value over the model. However,
our goal here is to take advantage of the speed and elegance of
the SVD based methods and to construct a test using only the
SVD score.

Though our simulations suggests that the hypothesis tests
we develop are not as powerful as might be desired, this
work is still useful in further developing our understanding
of the SVD score. The fact that the SVD score gives a
lower bound on the distance from an empirical site pattern
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probability distribution to a broad class of phylogenetic models
provides some intuition for the disappointing performance
of these hypothesis tests. Still, it is possible that the results
might be more encouraging on more complex models. As we
noted above, for relatively simple phylogenetic models (e.g.,
the Jukes-Cantor model) there are many algebraic relationships
among the site pattern probabilities which may result in
lower SVD scores for the discordant flattenings compared
to more complex models. This seems to be the case in the
gene tree simulations above, where it is actually more difficult
to reject the discordant trees under the JC69 model than
under the GTR model. Thus, it may be easier to reject the
discordant flattenings when the data are generated according
to other more complicated models of evolution, e.g., the
general Markov Model of sequence evolution (Allman and
Rhodes, 2008). Similarly, while examples like the one in
section 4.4 demonstrate possible unusual behaviors of the SVD
scores, such examples may not necessarily be common across
parameter space.

Even though there are limitations to using the SVD score
as a hypothesis test, our results clearly demonstrate that the
SVD scores encode useful information about which quartet
tree generated an observed data set. Comparing SVD scores
among trees remains a good method for inferring quartet
phylogenies, and thus, of building larger phylogenies under
complex models using procedures such as quartet assembly. In

addition, the tests derived here may yet prove useful in assigning
weights to quartets to provide additional input for quartet
assembly algorithms.
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