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Multilayer networks provide an efficient tool for studying complex systems, and with
current, dramatic development of bioinformatics tools and accumulation of data,
researchers have applied network concepts to all aspects of research problems in the
field of biology. Addressing the combination of multilayer networks and bioinformatics,
through summarizing the applications of multilayer network models in bioinformatics,
this review classifies applications and presents a summary of the latest results. Among
them, we classify the applications of multilayer networks according to the object
of study. Furthermore, because of the systemic nature of biology, we classify the
subjects into several hierarchical categories, such as cells, tissues, organs, and groups,
according to the hierarchical nature of biological composition. On the basis of the
complexity of biological systems, we selected brain research for a detailed explanation.
We describe the application of multilayer networks and chronological networks in
brain research to demonstrate the primary ideas associated with the application of
multilayer networks in biological studies. Finally, we mention a quality assessment
method focusing on multilayer and single-layer networks as an evaluation method
emphasizing network studies.

Keywords: multilayer networks, bioinformatics, brain network structure, biological systems, chronological
networks

INTRODUCTION

In recent years, the formulation of multilayer networks has provided new methods for the study
of multilevel network systems. Many biological systems comprise interconnected units that can
be effectively modeled as networks, which are mathematical structures describing connections
between points (Jing et al., 2019; Liu B. et al., 2020; Shao et al., 2020). Complex network systems
provide powerful research tools and methods for studying biological fields (Kumari and Verma,
2020; Liu X. et al., 2020; Shao and Liu, 2020), from interactions between genes and proteins
(Zhang et al., 2019; Li Z. et al., 2020; Zhai et al., 2020), to the study of tissue and organ functions
(Yang et al., 2020), and even human brain study (Zhang J. et al., 2020). The complexity and
evolutionary nature of biological systems enable the extensive application of multilayer networks
and associated methods. Additionally, ecosystems and evolutionary systems evolve and change
over time, and the corresponding network structures for these systems change correspondingly.
Furthermore, the reasons for all these changes, particularly topological changes in the course of
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network structure change, and the importance of network
feedback in network structure analyses are all topics
worthy of exploration.

A network representation is a simplified description of
a more complex, multifaceted system. A social system can
include different types of interactions of different biological
significance (e.g., cooperation or competition), while standard
network approaches usually ignore these interactions or achieve
integration through analyzing networks with different edge types
separately. In bioinformatics studies using network structures,
the progress of each biological system relies on the amount
of data and/or new discoveries about unknown biological
areas. For example, in the study of transcription-translation
relationships between genes and proteins, genes and proteins
are represented by nodes, and the correspondence between
genes and proteins is represented by links in the network.
Therefore, it is necessary to first understand the characteristics
of each individual gene and protein, and the methods used to
identify these relationships (Lin et al., 2019; Zhang D. et al.,
2021; Zhang Z.Y. et al., 2021; Zulfiqar et al., 2021). Only
then can the most relevant genes and corresponding proteins
for a disease or symptom be identified through clustering or
linkage analyses of the network, which further enables the
investigation of target therapies for symptoms of disease (Zhu
et al., 2018; Iliopoulos et al., 2020). These applications all
rely on the data set and on the biological correspondence of
genes and proteins.

The definition of a multilayer network varies slightly from
one application to another. All edges and nodes in a single
network are homogeneous, but in the real world, there is
heterogeneity in both the objects represented by the nodes and
the connections represented by the edges. Multilayer networks
add additional tagging capabilities to traditional networks. That
is, tagging terms are added to the traditional network, which
can be understood as a composite of simple (single-layer)
networks with different tags for complex networks. This is a
relatively easy way to understand the definition of complex
networks on different systems. Currently, according to different
applications and subjects, multilayer networks can be divided
into the following types:

(1) Multiplex networks: Networks in which the nodes on
different layers are connected by inter-layer edges.

(a) In multi-relational networks, each layer represents a
different type of interaction, i.e., different relationships
are the distinguishing dimension for building a multilayer
network, and the relationships are the tagged labels.

(b) In a temporal network, each layer encodes the same type of
interaction at different time points or time windows. That
is, time series (time windows) are the tagged labels between
layers in a multilayer network.

(2) Interconnected networks: Nodes in different layers do not
necessarily represent the same entities and inter-layer edges
between different types of nodes may exist.

(a) The network of networks consists of subsystems, which
are themselves networks. They are interconnected by
interlayer edges between subsystem nodes.

(b) In a contextual network, each layer is interpreted
to represent a different type of node. For example,
interactions between males in one layer, interactions
between females in another layer, and interactions between
the sexes in a third layer. These interactions are represented
by inter-layer edges.

(c) Spatial networks (also known as geometric networks) can
be connected by ecological networks of the subjects moving
between various locations.

Multilayer networks are currently used in various fields
including physics, chemistry, biology, technology, finance,
and social systems because of their inherent structural and
functional characteristics. In this review, we briefly introduce the
development of multilayer network concepts, techniques, and
applications in bioinformatics by reviewing multilayer network
applications in bioinformatics, and we summarize the outlook
and development of multilayer networks in bioinformatics by
analyzing current research.

MULTILAYER NETWORK APPLICATIONS

The definition and methodology of multilayer network models
in bioinformatics depends on the specific research problem.
Organisms can be classified into different systems under different
levels, and that system usually changes dynamically with time.
Therefore, usually the representation of bioinformatics related
networks varies depending on the specific biological system. In
this review, we classify research topics into different categories
according to the different levels of biological systems. As shown in
Figure 1, multilayer networks in bioinformatics can be classified
into five major categories.

As the understanding of DNA structure and function has
gradually improved (Liu M.L. et al., 2020), understanding the
relationships between genes and proteins, genes and disease,
and disease and drugs has greatly evolved. For example, the
correspondence between genes and disease has been mined
through network structures, where the method utilizes a
joint learning approach using the functional and connectivity
patterns of proteins to predict disease-gene relationships
using human interactome networks. In contrast to other data
structures, interactomes are characterized by a high degree
of incompleteness and lack of explicit negative knowledge,
which makes prediction particularly challenging. To maximize
potential information in the network, a second-order random
walk procedure named random walker (RWˆ2) is applied
in these studies. The random walker is able to learn rich
representations of disease gene (or gene product) characteristics.
This method has successfully compared with the best-known
disease gene prediction systems and other state-of-the-art graph-
based methods.

A large number of candidate disease-causing genes can
be sequenced and checked for variation to help determine
relationships between disease and genes (Zhang Z.M. et al., 2020).
Many different computational methods have been developed to
address this challenge. The observation that genes associated with
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FIGURE 1 | Multilayer network application area framework in bioinformatics.

similar diseases have a higher probability of interaction, many of
these methods rely on the analysis of the topological properties
of biological networks. However, the incomplete and noisy
nature of biological networks is an important challenge. Two-
step framework for disease gene ranking: (1) Construct a reliable
functional connectivity network using sequence information
and machine learning techniques. And (2) rank disease–
gene relationships on the basis of that constructed functional
connectivity network. Unlike other functional connectivity
network-based frameworks that use functional connectivity
networks based on the integration of various low-quality
biological data, protein sequences can be used as comprehensive
data to construct a reliable initial network. Additionally, the
physicochemical properties of amino acids can be used to
supplement hypotheses of protein function. In conclusion, our
assessment of these methods indicates high efficiency and
effectiveness for constructing functional linkage networks for
disease genes (Wang et al., 2008; Jiang et al., 2010, 2013; Cheng
et al., 2018; Zeng et al., 2018).

Gene function can also be determined by collecting biological
data. For example, the Drosophila ovary epidermal cells (ECs)
externally control the maintenance and progeny differentiation
of germ line stem cells (GSC). In this study, the role of
173 EC genes that control GSC maintenance and progeny
differentiation were identified using a Drosophila in vivo systemic
RNAi approach (Zeng et al., 2016; Zou et al., 2016; Wang
et al., 2019). Among the identified genes, 10 and 163 genes
were required by ECs for GSC maintenance and progeny
differentiation, respectively. The genes required for progeny
differentiation were classified into different functional categories,

including transcription, mRNA splicing, protein degradation,
signal transduction, and cytoskeleton regulation (Cao et al.,
2019). In addition, GSC progeny differentiation defects caused by
defective ECs were often associated with BMP signaling elevation,
indicating that preventing BMP signaling is a general functional
feature of the differentiation niche. Finally, EC exon junction
complex (EJC) components were identified as required for EC
maintenance and the prevention of BMP signaling, and thus the
promotion of GSC progeny differentiation. Therefore, this study
identifies the major regulators of the differentiation niche and
provides important insights into the external control of stem cell
progeny differentiation.

Corresponding network structures for different biological data
and specific subjects can also be designed to analyse specific
biological systems (Zeng et al., 2016; Jiang et al., 2017; Liu
et al., 2017). Currently, at the subcellular level, these networks
mainly include gene regulatory networks (Wang et al., 2010; Ding
et al., 2011; Jiang et al., 2014; Cheng et al., 2019; Konda et al.,
2019; Liu L. et al., 2019; Mortezaeefar et al., 2019; Hong et al.,
2020), protein functional networks (Guo et al., 2011, 2013, 2014;
Sikandar et al., 2019; Tao et al., 2020; Liu et al., 2021), metabolic
regulatory networks (Jin et al., 2020), and drug targeting networks
(Wei et al., 2014; Ding et al., 2017, 2019, 2020a,b; Jin Q. et al.,
2019; Jin S. et al., 2019; Srivastava et al., 2019; Zhao et al., 2019;
Zeng et al., 2020).

The study of human brain functional and structural
mechanisms using brain networks is also a hot field. Currently,
research has mainly studied brain function by acquiring the brain
waves of subjects, and the functional partitions of the brain
have been predominantly obtained by functional experiments or
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magneto encephalography. This portion of our review will be
introduced in detail in the next section.

Modern network theory is increasingly applied to
neuroscience to understand neurophysiology and anatomy at
different scales and under experimentally attainable physiological
and pathophysiological conditions. The first attempt was made
at the micro anatomical level of individual neurons. Watts and
Strogatz analyzed the anatomical connections of the nervous
system of Caenorhabditis elegans where neurons represent the
nodes and synaptic or gap connections of a neural network.
Their study revealed a highly clustered and efficient network,
thus representing the first evidence of a real neural system with a
small-world network. Later graph-theoretical approaches focused
on morphological representations or dynamic correlations of the
electrical stimulation activity of neuronal networks.

Network-based analyses have also been useful to address
several questions in ecology and issues in conservation. The
first study was carried out in a contextual network of so-called
species interactions. Food webs are one of the fundamental
issues in ecological studies, and despite the rather high variability
detected in network structure, food webs present a complex
topology similar to other types of real networks and host-parasite
networks. One of the main advantages of these approaches is
the direct assessment of the robustness and sensitivity of a
given ecosystem to species loss or other perturbations. Another
network type widely used in ecology is connected landscape
mapping, where nodes typically represent patches on the
landscape. The resulting spatial networks describe the linkages
between processes and patterns that characterize the landscape,
thus providing an effective way to assess important issues such as
the effects of species dispersal or habitat loss.

Understanding the interactions between different species
in a community and responses to environmental change is
a central goal of ecology. However, defining the network
structure of microbial communities is very challenging because
of associated extremely diverse and unexplored states. Although
recent developments in metagenomic technologies, such as
high-throughput sequencing and functional gene arrays, have
provided revolutionary tools for analyzing microbial community
structure, it is still difficult to study network interactions
in microbial communities based on high-throughput meta
genomic data. A mathematical and bioinformatics framework
for constructing molecular ecological networks (MENs)
based on Random Matrix Theory (RMT) has been proposed.
The remarkable feature of this approach compared with
other network construction methods is that the network is
automatically defined and robust to noise, thus providing a
good solution to several common problems associated with
high throughput.

APPLICATIONS OF MULTILAYER
NETWORKS IN BRAIN RESEARCH

The brain is the control center of most animal activities, and it has
been the goal of many researchers to unravel the mystery of the
brain and simulate the human brain with external devices such as

computers. Before that, the structure and mechanism of the brain
needs to be clarified, and it is costly to study the human brain
because of its complexity. The human brain is a complex system
organized by the structural and functional relationships among
its components (Liu et al., 2018; Song et al., 2018; Liu G. et al.,
2019). Recent experimental advances have led to unprecedented
amounts of data that describe the structure and function of the
brain, and it is now possible to model the brain as a network by
measuring pairwise interactions between its various units. This
modeling can be performed across multiple scales, where network
nodes represent units of the brain, including proteins, neurons,
brain regions, or other measurement units. Recording techniques
such as functional magnetic resonance imaging (fMRI), magneto
encephalography (MEG), and electroencephalography (EEG) are
capable of capturing brain dynamics across time and across
multiple frequency bands.

Recent neuroscience research has also exploited the versatility
of multilayer frameworks to model complex relationships in
neural data. For example, given fMRI and diffusion tensor
imaging (DTI) for a single subject, a multilayer network can be
constructed, with one layer representing the fMRI network and
another layer representing the DTI network. Using the fMRI
data, a functional network can be constructed in which the nodes
represent brain regions and the edges represent the coherence
between regional activities. On the basis of DTI data, a structural
network can be constructed by dividing the brain into regions
and then measuring the strength of physical connections between
these regions. Finally, considering each network as a layer in a
multilayer network, the edges of a brain region in the fMRI layer
can be added to the DTI layer to form a multilayer network.

The brain is an inherently dynamic system, and the
performance of cognition requires dynamic reconfiguration of
a highly evolved network of brain regions, which interact in
complex and transient communications. However, an accurate
description of these reconfiguration processes during human
cognitive function remains elusive (Liu and Jiang, 2016).
Therefore, many studies have used temporal networks to
investigate the dynamic cluster structure of brain networks and
reveal the underlying human brain dynamic changes during
learning. Temporal networks that contain temporal information
have the advantage of retaining the full information of the data
without aggregating connections into individual networks.

When we complete different cognitive vision tasks, we
subdivide the regional time series into time windows of
variable size, and determine the impact of the time window
size on the observed dynamics. Specifically, we applied a
multilayer community detection algorithm to identify temporal
communities, and we computed network flexibility to quantify
the changes in these communities over time. Within our
frequency band of interest, large and small time windows were
associated with the brain network flexibility within a narrow
range, while medium time windows were associated with broad
network flexibility. Using medium time windows of 75–100 s,
we identified brain regions with low flexibility (considered
core regions and observed in visual and attentional areas) and
brain regions with high flexibility (considered peripheral regions
and observed in subcortical and temporal lobe regions) by
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comparison with appropriate control dynamic network models.
In general, this work demonstrates the effect of time window
size on the network dynamics observed during task execution,
providing practical considerations when selecting time windows
in dynamic network analysis. More generally, this work reveals
organizing principles for functional brain connections that are
inaccessible to static network approaches.

The hypothesis that human executive functions arise from
the dynamic interactions of multiple networks has been tested
in previous research (Ding et al., 2019). To corroborate this
research, we investigated a key executive function (FCD), namely
arbitrary visuomotor mapping. MEG and intracranial EEG were
recorded using high gamma activity brain connectivity analysis.
We then generated visuomotor mapping using the dynamic
interactions of three partially overlapping cortico-cortical and
cortico-subcortical functional connectivity (FC) networks. First,
visual and parietal regions were coordinated with sensorimotor
and premotor regions. Second, dorsal fronto parietal circuits
dominated by sensorimotor and associative frontal striatal
networks were incorporated. Finally, bilateral sensory-motor
areas were coordinated with the cortico-cortical hemisphere
between the left fronto parietal network and the visual areas.
Our study argued that these networks reflect the processing
of visual information, the emergence of visuomotor plans, and
the processing of somatosensory responses or action outcomes.
Thus, our study demonstrates that visuomotor integration exists
in the dynamic reconfiguration of multiple cortico-cortical and
cortico-subcortical FC networks. More generally, the approach
demonstrates that optokinetic-related FC is unstable and shows
task performance-related switching dynamics and regional
flexibility on a time scale. In addition, our optokinetic-related FC
has sparse connectivity with a density of 10%. Taken together,
these findings shed light on the relationship between dynamic
network reconfiguration and short-time executive function and
provide a candidate start point for the better understanding of
cognitive structure.

A vast number of multilayer network applications exists in
bioinformatics, but the application of multilayer networks in
any subfield of bioinformatics still relies on the acquisition and
accumulation of bioinformatics data, and brain research is no
exception. Therefore, interdisciplinary collaboration is a very
efficient and necessary option. Brain structure and functionality
are gradually understood, driven by brain data acquisition.
According to these studies, the dynamic modeling of brain
function by combining temporal dimensions is an effective means
of study. Perhaps as research progresses, new data dimensions
will be added (Wang et al., 2018, 2020; Wei et al., 2018a; Ding
et al., 2019; Liu B. et al., 2019; Su et al., 2019b; Dao et al., 2020;
Li J. et al., 2020; Lv et al., 2020).

CONCLUSION AND PERSPECTIVES

Multilayer (complex) networks have been an effective tool for
studying complex problems in recent years and are currently
being used in a variety of fields. As systems biology develops,
multilayer networks are applicable to many aspects and research

areas within the field. Because of dataset availability, these
networks are currently more often applied to genetics and brain
research. However, as research progresses, it should become
easier to unravel structural and functional fogs in biology on one
hand, and on the other hand, research in this area will prove
beneficial to the understanding of biological principles in general
to better serve all people. In view of current research status, our
review has presented the following ideas and prospects:

(1) The development of biology is promoted by the joint
development of various fields, and the application
of multilayer networks in bioinformatics depends
on the accumulation of biological data and the
development of computer-related theories. Therefore,
as an interdisciplinary subject, it needs the collaborative
work of interdisciplinary experts.

(2) Because of the complexity and dynamic change of
biological systems, time-series multilayer networks with
the addition of temporal information will have more
and more applications in the simulation of dynamic
processes in the study of genes, disease, drug discovery,
and brain research.

(3) Exploring the communication mode between tissue cells in
the form of multi-layer network is to study the interaction
(functionality) between structures on the basis of the
network represented by the structure.

In addition to the structural and functional aspects of
multilayer network research, methods to efficiently evaluate
and assess the results of multilayer networks remains an
importan tissue. The evaluation of the algorithmic complexity of
multilayer networks has been proposed to assess if and when the
multilayer representation of a system is qualitatively superior to
classical single-layer aggregation network approaches (Wei et al.,
2017a,b,c, 2018b, 2019; Su et al., 2019a, 2020a,b; Wang D. et al.,
2021; Wang H. et al., 2021; Zhao et al., 2017).
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