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Enhancers are regulatory DNA sequences that could be bound by specific proteins
named transcription factors (TFs). The interactions between enhancers and TFs
regulate specific genes by increasing the target gene expression. Therefore, enhancer
identification and classification have been a critical issue in the enhancer field.
Unfortunately, so far there has been a lack of suitable methods to identify enhancers.
Previous research has mainly focused on the features of the enhancer’s function and
interactions, which ignores the sequence information. As we know, the recurrent neural
network (RNN) and long short-term memory (LSTM) models are currently the most
common methods for processing time series data. LSTM is more suitable than RNN
to address the DNA sequence. In this paper, we take the advantages of LSTM to
build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles
of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract
subsequences by sliding a 3-mer window along the DNA sequence as features. Second,
EBLSTM model is used to identify enhancers from the candidate input sequences. We
use the dataset from the study of Quang H et al. as the benchmarks. The experimental
results from the datasets demonstrate the efficiency of our proposed model.

Keywords: enhancer, identification, classification, recurrent neural network, long short-term memory

INTRODUCTION

Enhancers, as cis-acting DNA sequences, are small pieces of DNA that are surrounded by
specific proteins that often boost the expression of specific genes, and the specific proteins are
always transcription factors (TFs) (Sen and Baltimore, 1986; Krivega and Dean, 2012; Pennacchio
et al., 2013; Liu B. et al., 2016, 2018; Nguyen et al., 2019). In fact, enhancers play a highly
important role in vivo. As we know, enhancers can increase the gene expression by interacting
with TFs. By activating the transcription of genes, one way that enhancers influence target
gene transcription is by bringing enhancers close to target genes by forming chromatin loops,
and the other way is through self-transcription. Either way will bring about increasing of gene
expression (Krivega and Dean, 2012). Moreover, it is well known that enhancers can influence
human health and many human diseases. Recently, researchers have shown that under evolutionary
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constraints, approximately 85% of human DNA corresponds
to non-protein-coding sequences with a significant portion
constituting cis-regulatory elements. It is therefore not surprising
that genetic variations within these regulatory sequences may
lead to phenotypic variations and serve as the etiological basis
of human disease (Shen and Zou, 2020). This indicates that
enhancers might contribute to evolution.

As the amount of histone modifications and other biological
data available on public databases and the development of
bioinformatics, gene expression and gene control have become
increasingly well known (Kleinjan and Lettice, 2008; Liu G.
et al., 2016, 2018; Liu et al., 2017; Wang et al., 2020), and
study about enhancers is a hot spot currently, especially how to
identify enhancers and their strength (Zou et al., 2016; Zacher
et al., 2017; Zhang T. et al., 2020). However, there remain
many challenges to identify enhancers. For example, enhancers
locate in the non-coding regions that occupy 98% of the human
genome. This feature leads to a large search space and increases
the difficulty. It is also a formidable challenge that enhancers
are located 20 kb away from the target genes, or even in
another chromosome, unlike promoters are located somewhere
around the transcription start sites of genes. These features make
identifying the enhancers more difficult (Pennacchio et al., 2013).
As a result, in recent years, a large number of researchers have
turned their attention to this topic. In 2017, Zacher et al. proposed
a hidden Markov model named Genomic State ANotation
(GenoSTAN), which is a new unsupervised genome segmentation
algorithm that overcomes many limitations, such as unrealistic
data distribution assumptions. Although the experience has
shown that chromatin state annotation is more effective in
predicting enhancers than the transcription-based definition,
sensitivity (SN) remains poor (Wang et al., 2020).There are also
other algorithms that can be used for enhancer identification
and classification. Liu et al. built a predictor that has two layers
named “IEnhancer-2L,” which is the first predictor that can
identify enhancers with the strength information. The authors
used pseudo k-tuple nucleotide composition (PseKNC) to encode
the DNA sequences and then made full use of support vector
machine (SVM) to build a classifier (Liu B. et al., 2016). In
2018, a new predictor called “iEnhancer-EL” was proposed by Bin
Liu et al. iEnhancer-EL is formed through k-mer, subsequence
profile, or PseKNC and SVM. Then it obtains the key classifiers
and final predictor for layers 1 and 2 (Liu B. et al., 2018; Nguyen
et al., 2019). This bioinformatics tool is equivalent to an advanced
version of iEnhancer-2L and therefore has better performance
than Enhancer-2L. Last year, Quang H. et al. proposed a
new model called iEnhancer-ECNN that uses both one-hot
encoding and k-mer to encode the sequence and ensembles of
convolutional neural networks as the predictor. In our view, it
has great improvements in many metrics.

In this study, we build a prediction network named iEnhancer-
ensembles of bidirectional long short-term memory (EBLSTM)
to identify enhancers and predict their strengths at the same
time. We use 3-mer to encode the input DNA sequences.
Then we predict enhancers by EBLSTM. Although we only use
DNA sequence information, the experimental results prove the
effectiveness of our method.

MATERIALS AND METHODS

Benchmark Dataset
The dataset used in our study is collected from previous studies
by Liu B. et al. (2016), Liu B. et al. (2018), and Nguyen et al.
(2019) and consists of the chromatin states of nine cell lines,
including H1ES, K562, GM12878, HepG2, HUVEC, HSMM,
NHLF, NHEK, and HMEC (Liu B. et al., 2016). The dataset
is divided into two parts; one part is used to train the model.
We called this dataset as the development set. The other part
is an independent test dataset. As shown in Figure 1A, the
development set consists of 1484 enhancer samples and 1484
negative samples and it is also the layer 1 dataset for enhancer
identification. Moreover, 1484 enhancer samples can be divided
into 742 strong enhancer samples and 742 weak enhancer
samples, and it is the layer 2 dataset for enhancer classification.
As shown in Figure 1B, the independent test set contains 200
enhancer samples (100 strong and 100 weak) and 200 negatives.
At the same time, the dataset can be presented as follows:

Dataset = Dataset+ ∪ Dataset− (1)

Dataset+ = Datasetstrong ∪ Datasetweak (2)

where the Dataset is all the data that we used, Dataset+ means
the positive dataset, which is the enhancers in our study, and
Dataset− means the negative dataset, which is the non-enhancer
dataset in our study. Therefore, these two formulas mean the
Dataset consists of Dataset+ and Dataset−, and Dataset+ consists
of Datasetstrong and Datasetweak.

To display the datasets of this experiment more intuitively,
DNA consensus sequences of enhancers (Figure 2A), non-
enhancers (Figure 2B), strong enhancers (Figure 2C), and weak
enhancers (Figure 2D) are calculated. As Figure 2 shows, the
specific distributions of A, T, C, and G on these four datasets are
different. This means that differences in DNA sequence can be
used to distinguish these four types of sequences.

Every enhancer sample has the same length of 200 bp. In the
process of building the model, the development set will be divided
into five parts, no matter whether in layer 1 or in layer 2, and
each part will be the validation in turn and other four parts will
be the training set.

Sequence Encoding Scheme
In this study, we use the principle of k-mer (Liu et al., 2019; Zou
et al., 2019; Yang et al., 2020; Zhang Z. Y. et al., 2020), which
means dividing the nucleic acid sequence into many shorter
subsequences with length of k to encode the 200-bp enhancer
sequence. As we know, enhancers are a type of DNA sequence
and are composed of two kinds of purines (including adenine and
guanine) and two kinds of pyrimidines (including cytosine and
thymine). Thus, we can encode the obtained sequence of a length
of 200 using k-mer (k = 3) as a sequence with a length of 198 by
the encoding method shown in Figure 3. For example, the DNA
sequence D is shown as follows:

D = {ATCGTATCAG} (3)
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FIGURE 1 | Dataset partition. (A) The partition of the development set. (B) The partition of the independent test set.

FIGURE 2 | DNA sequence logo. (A) The DNA logo of enhancers. (B) The DNA logo of non-enhancers. (C) The DNA logo of strong enhancers. (D) The DNA logo of
weak enhancers.
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FIGURE 3 | Coding flow of 3-mer (taking DNA sequence with the length of 10 bp as an example).

3-Mers are extracted by sliding a 3-mer window along the original
DNA sequence with one step as features. The example sequence
could be cut into eight such short sequences in S1.

S1 = {ATC, TCG, CGT, GTA, TAT, ATC, TCA, CAG} (4)

Then, eight numbers are used to represent eight short sequences
with a strategy that makes each different 3-bp subsequence
corresponds to a different number as shown in Figure 3. The
DNA sequence can be transformed as a number sequence as
follows:

S2 = {6, 27, 45, 52, 17, 6, 24, 35} (5)

Finally, a number sequence of length 8 can be extracted from a 10-
bp DNA sequence. Thus, a sequence of 200 bp in the experiment
is encoded in this way and a sequence of 198 digits is produced.
Using the sequence ATC in S1 as an example, ATC is regarded as
a quaternary three-digit number, A as 0, T as 1, C as 2, and G as
3. Then convert the number in base 3 to base 10. So 64 different
3-mers can be represented by 0–63.

BLSTM Architecture
As Figure 4 shows, a sequence of numbers with the sequence
encoding scheme with the length 198 followed by the body of
the structure is used as input to BLSTM. It is mainly composed
of an embedding layer, a bidirectional LSTM, a dropout layer,
the rectified linear unit (relu), a dropout layer, and sigmoid
activation functions. In the architecture, the main purpose of
embedding term training is to incorporate into the model to
form an end-to-end structure, and the vector trained by the

embedding layer can better adapt to the corresponding tasks
(Kleinjan and Lettice, 2008; Liu G. et al., 2016, 2018; Liu et al.,
2017; Zhang T. et al., 2020). The recurrent neural network (RNN)
is a network of nerves that processes sequential data. Compared
with the ordinary neural network, it can process the sequence
variation data (Zou et al., 2016; Zacher et al., 2017). Long short-
term memory (LSTM) is a special RNN, and it is mainly used to
solve the problem of gradient explosion and disappearance. In
short, LSTM performs better than normal RNN if the sequence
is long (Liu et al., 2019; Zou et al., 2019; Yang et al., 2020; Zhang
Z. Y. et al., 2020). Bidirectional LSTM is equivalent to the LSTM
upgraded version, which means that time sequence data are used
to input history and future data simultaneously. In contrast to
time sequence, two cyclic neural networks are connected to the
same output, and the output layer can obtain historical and future
information at the same time (Bian et al., 2014; Goldberg and
Levy, 2014; Juntao and Zou, unpublished; Tang et al., 2014).
The function of dropout layer is preventing model overfitting. In
addition, after relu and sigmoid layers (Gers et al., 1999; Graves
and Schmidhuber, 2005; Sundermeyer et al., 2012; Zaremba et al.,
2014; Huang et al., 2015; Xingjian et al., 2015; Li and Liu, 2020;
Sherstinsky, 2020), a probability of whether the sequence is an
enhancer or not can be calculated.

Ensemble Model
There are two algorithms in ensemble learning: boosting and
bagging (Li et al., 2020; Lv Z. B. et al., 2020; Sultana et al.,
2020; Zhu et al., 2020). In our experiment, the data from each
experiment are relatively independent and the bagging algorithm
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FIGURE 4 | Architecture of the BLSTM model.

is more suitable. First, the basis learner models are trained
independently by using subsamples. Finally, the strong learner
model is made by different ensemble methods. The testing result
shows that bagging is better than boosting. The entire workflow of
bagging is in perfect agreement with our experimental procedure.
After that, through several experiments, compared with the
voting and median methods, the average method (Figure 5) can
improve most of the metrics in our experiment in the process of
selecting the ensemble method.

In our experiment, the dataset is divided into five parts
according to fivefold cross-validation and each part is used as
the validation set (Cheng et al., 2019; Dao et al., 2020a; Tang
et al., 2020; Zhang D. et al., 2020; Zhao et al., 2020), respectively,
and the remaining four parts are used as the training set for
the experiment. Five different sets of parameters and models
are obtained in these five experiments, and then five sets of
models are used to test and obtain the prediction results. The
final prediction probability value of the five prediction results is
obtained by the average method, and then the prediction results
is obtained by comparing with the threshold value of 0.5.

Measurement
To get the performance of the model, some evaluation metrics
are used, such as accuracy (ACC), SN, specificity (SP), Matthews’s
correlation coefficient (MCC), and area under the ROC curve
(AUC) (Jiang et al., 2013; Cheng, 2019; Liang et al., 2019; Dao
et al., 2020b; Lv H. et al., 2020; Shao and Liu, 2020; Shao et al.,
2020; Su et al., 2020; Lv et al., 2021; Zhang et al., 2021). In the
formulas of these metrics, TP, TN, FP, and FN mean true positive,
true negative, false positive, and false negative, respectively. As
we know, ACC is a description of systematic errors, a measure of
statistical bias, and it always evaluates a model objectively when
the dataset is balanced. SN and SP can support the model more
accurately when the data are not balanced. The ROC curve is
based on a confounding factors matrix, and the abscissa and the
ordinate of the ROC curve are the false positive rate (FPR) and
true positive rate (TPR), respectively, and AUC is the area under
the curve. When comparing the different classification models,

the ROC curve of each model can be drawn to obtain the value of
the AUC, which can be used as an important indicator to evaluate
the quality of a model (Gers et al., 1999; Graves and Schmidhuber,
2005; Sundermeyer et al., 2012; Wei et al., 2014, 2017a,b, 2019;
Zaremba et al., 2014; Jin et al., 2019; Su et al., 2019; Ao et al.,
2020a,b; Li and Liu, 2020; Sherstinsky, 2020; Yu et al., 2020a,b,c).
The higher the AUC value is, the better the model is. The MCC is
used as a measure of the quality of binary classifications and it is
always used in the field of bioinformatics and machine learning.
The reason why it is seen as a balanced measure is that MCC can
take into account TP, TN, FP, and FN and we can get more ACC
results by this way. MCC is a value between+1 and−1.+1 means
a perfect prediction, 0 represents that the method does not work,
and−1 indicates that the prediction was the exact opposite. These
evaluation metrics are calculated from the count of TP, TN, FP,
and FN.

ACC =
TN + TP

TP + FN + TN + FP
(6)

SN =
TP

TP + FN
(7)

SP =
TN

TN + FP
(8)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

RESULTS

Two-Layer Classification Framework
To finish the work in an orderly way, a two-layer classification
framework is proposed, which is composed in two steps:
identifying enhancer and classifying strong enhancer from weak
enhancers. In fact, layers 1 and 2 have the same encoding scheme
and network structure. The only difference between the two
layers is the input dataset. In layer 1, all data are used as the
training set, enhancer set, and non-enhancer set, as part of all
data and considered the positive set and negative set, respectively.
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FIGURE 5 | Workflow of the ensemble model (ensemble method is the averaging method).

In layer 2, only the enhancers are used in the experiment. The
strong enhancer and weak enhancer are used, respectively, as the
positive set and negative set.

Layer 1: Enhancer Identification
As we know, enhancer identification is extremely important in
the field of enhancers. Now it is a hot topic in bioinformatics.
In this study, the process of identification can be regarded as
preparation for next step. To illustrate it, before judging whether
a DNA sequence is a strong enhancer or a weak enhancer, the first
thing is to judge if the sequence is an enhancer or not. If it is an
enhancer, then the model predicts if it is strong or weak. Through
this process, it becomes easier to understand its characteristics.
Compared with layer 2 (enhancer classification), layer 1 will have
higher ACC. For the reason, there are more differences between
enhancer and non-enhancer than strong enhancer and weak
enhancer. The more the difference, the easier it is to distinguish.
In the process of the experiment, all of the datasets (enhancer +
non-enhancer) are divided into five parts. Data division strategy
is shown in Table 1.

Layer 2: Enhancer Classification
The differences between strong enhancers and weak enhancers
are small. Hence, for layer 2, enhancer classification is more
difficult than layer 1. Enhancer’s biological function and
distinguishing the enhancer’s strength are an important
component in understanding its physical and chemical

TABLE 1 | The specific division of the dataset into five parts for identifying
enhancers and non-enhancers.

Part Enhancers Non-enhancers

1 296 296

2 296 296

3 296 296

4 296 296

5 300 300

Total 1484 1484

properties. For layer 2, more effort is paid in to study it.
In this layer, the enhancer dataset (strong + weak) is split
into five parts as layer 1, but the amount of enhancer data is
smaller (Table 2). Compared with layer 1, the layer 2 data are
characterized by smaller differences and smaller quantities.

Comparison of Different Encoding
Schemes
In the second part of our study, we compared the encoding
methods that we introduced the sequence and encoding scheme.
The encoding method adopted in this article is to encode the
letters in the sequence into the numbers by 3-mer. Meanwhile,
several other coding methods have also been tested, such
as 2-mer, one-hot, and encoding by correspondence between
letters and numbers.

k-Mer is obtained by sliding on the DNA sequence with
a step size of 1 bp. In our experiment, take 3-mer (k = 3)
as an example. When k is 3, 198 3-mers can be extracted
from DNA sequence of length 200. Each 3-mer consists of the
three letters taken as a whole, so it is possible to encode the
original letter sequence into a sequence of numbers of length
198 based on the encoding method shown in Figure 3. In
addition, the purpose of k-mer is to enhance the relationship
between adjacent letters so that the model can learn better.
The same is true for 2-mer, except that we end up with
a sequence of 199 digits. Another method is to encode the

TABLE 2 | The specific division of the dataset into five parts for classifying strong
enhancers and weak enhancers.

Part Strong Weak

1 148 148

2 148 148

3 148 148

4 148 148

5 150 150

Total 742 742
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letters directly in the sequence into the corresponding numbers
according to the one-to-one correspondence between letters
and numbers (A->0, T->1, C->2, G->3). One-hot coding, in
fact, means that there are N state registers used to encode N
states. Each state has an independent register bit, and only one
of these register bits is valid. In other words, there can only
be one state. This method ignores the relationship between
adjacent sequences.

As shown in Table 3, one-hot encoding scheme showed poor
effect in every metric. Adjacent sequences are separated in this
process and coding these sequences by one-hot into the EBLSTM
may not be a good idea. The other three methods have a similar
effect by careful observation, and SN of letters to numbers and 3-
mer is equal. But in other metrics, 3-mer is undoubtedly the best
one. Similarly, as shown in Table 4, in the process of enhancer
classification, the difference among different encoding schemes
will be more obvious. It can be seen that 3-mer performs better
than the others for each item; thus, we think 3-mer is a more
suitable encoding method for this experiment.

TABLE 3 | Result of comparison of using different encoding schemes in layer 1
(enhancers identification) under 10 trials.

Encoding scheme ACC AUC SN SP MCC

Letters to numbers 0.753 0.824 0.755 0.750 0.500

One-hot 0.565 0.611 0.494 0.642 0.132

2-Mer 0.758 0.827 0.735 0.762 0.505

3-Mer 0.772 0.835 0.755 0.795 0.534

TABLE 4 | Result of comparison of using different encoding schemes in layer 2
(enhancers classification) under 10 trials.

Encoding scheme ACC AUC SN SP MCC

Letters to numbers 0.640 0.650 0.784 0.512 0.302

One-hot 0.526 0.522 0.438 0.412 0.116

2-Mer 0.645 0.662 0.786 0.498 0.304

3-Mer 0.658 0.688 0.812 0.536 0.324

TABLE 5 | Result of comparison of using different architectures in layer 1
(enhancers identification) under 10 trials.

Architecture type ACC AUC SN SP MCC

Simple RNN 0.721 0.791 0.732 0.760 0.488

Bidirectional RNN 0.745 0.801 0.767 0.751 0.492

Simple LSTM 0.742 0.812 0.802 0.746 0.512

Bidirectional LSTM 0.772 0.835 0.755 0.795 0.534

TABLE 6 | Result of comparison of using different architectures in layer 2
(enhancers classification) under 10 trials.

Architecture type ACC AUC SN SP MCC

Simple RNN 0.617 0.634 0.801 0.591 0.249

Bidirectional RNN 0.628 0.617 0.792 0.612 0.276

Simple LSTM 0.634 0.626 0.770 0.578 0.302

Bidirectional LSTM 0.658 0.688 0.812 0.536 0.324

Comparison of Different Architectures
In this experiment, we tried eight different internal structures,
including simple RNN, bidirectional RNN, simple LSTM, and
bidirectional LSTM, and then, on the basis of the four networks
doubled, respectively, which means that another four structures
are two layers of RNNs, bidirectional RNNs, simple LSTMs, and
bidirectional LSTMs. After this step, a model that has the best
performance would be chosen that with higher metrics than other
seven models. Then the dropout layer is added to produce the
final architecture.

Tables 5, 6 show the different architecture results in layers
1 and 2, respectively. The results are shown from the results
in Table 5. Except for SN, the bidirectional LSTM has better
effect based on the four other evaluation metrics. The reasons
may be that bidirectional LSTM is more complex than the other
three architectures and more features can be captured by it. In
fact, we also do the other four experiments, as mentioned in the
previous paragraph. But increasing the number of layers in this

TABLE 7 | Result of comparison of using different ensemble models in layer 1
(enhancers identification) under 10 trials.

Ensemble method ACC AUC SN SP MCC

Median 0.728 0.788 0.774 0.726 0.498

Voting 0.765 0.762 0.792 0.738 0.517

Averaging 0.772 0.835 0.755 0.795 0.534

TABLE 8 | Result of comparison of using different ensemble models in layer 2
(enhancers classification) under 10 trials.

Ensemble
method

ACC AUC SN SP MCC

Median 0.622 0.664 0.740 0.572 0.310

Voting 0.638 0.644 0.794 0.562 0.311

Averaging 0.658 0.688 0.812 0.536 0.324

TABLE 9 | Result of comparison with existing state-of-the-art methods in layer 1
(enhancers identification).

Method ACC AUC SN SP MCC Source

iEnhancer-2L 0.730 0.806 0.710 0.750 0.460 Liu B. et al., 2016

EnhancerPred 0.740 0.801 0.735 0.745 0.480 Jia and He, 2016

iEnhancer-EL 0.748 0.817 0.710 0.785 0.496 Liu B. et al., 2016;
Liu G. et al., 2018

iEnhancer-ECNN 0.769 0.832 0.785 0.752 0.537 Nguyen et al., 2019

iEnhancer-EBLSTM 0.772 0.835 0.755 0.795 0.534 This study

TABLE 10 | Result of comparison with existing state-of-the-art methods in layer 2
(enhancers classification).

Method ACC AUC SN SP MCC Source

iEnhancer-2L 0.605 0.668 0.470 0.740 0.218 Liu G. et al., 2016

EnhancerPred 0.550 0.579 0.450 0.650 0.102 Jia and He, 2016

iEnhancer-EL 0.610 0.680 0.540 0.680 0.222 Liu G. et al., 2018

iEnhancer-ECNN 0.678 0.748 0.791 0.564 0.368 Nguyen et al., 2019

iEnhancer-EBLSTM 0.658 0.688 0.812 0.536 0.324 This study
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architecture also raises the processing time longer. The efficiency
will be reduced. Therefore, the results of these four experiments
were added to the table. A similar situation occurs in Table 6,
where bidirectional LSTM is also the better choice in many
metrics, except SP. Together, these results provide important
insights into the idea that bidirectional LSTM is the best fit
for the experiment.

Comparison of Different Ensemble
Models
As mentioned in Section “Ensemble Model,” during the
experiment, we tested three ensemble strategies. Each method has
advantages and disadvantages. To explore which kind of strategy
is more suitable for enhancers DNA sequences characteristics
identification, median, voting, and averaging are tested. Set of
indicators across the different methods are assessed. In Table 7,
the voting and averaging methods are significantly better than
the median method, and their performance of the two is very
similar, but AUC and MCC in the averaging method are higher
than those in the voting method, which shows that the predictive
effect and stability of the average method are more advantageous
than those of the voting method. In addition, in Table 8,
the averaging method is still the best of these three ensemble
methods. Combining these two tables to draw a conclusion, the
indicators for the averaging method are better than the other two
methods. The averaging method is the best one, and finally in our
model, this method is applied to achieve ensemble learning.

Comparison With Existing
State-of-the-Art Methods
There are several excellent methods for the prediction of
enhancers, and the well-known methods are iEnhancer-
2L, EnhancerPred, iEnhancer-EL, and iEnhancer-ECNN.
Tables 9, 10 show the results of the comparison with existing
state-of-the-art methods in layers 1 and 2.

As Table 9 shows, compared with the previous three
experimental methods, all the results of the metrics are
significantly improved, especially in AUC and MCC. Moreover,
compared with iEnhancer-ECNN in 2019, in this study, the
results for ACC, AUC, and SP are slightly higher, but the
results for SN and MCC are slightly lower. As seen in
Table 10, iEnhancer-EBLSTM remains a reliable method that
has better performance than iEnhancer-2L, iEnhancer-EL, and
EnhancerPred, especially for SN and MCC; this method has
been greatly improved. From the experimental results, we can
see that both IEnhancer-EBLSTM and IEnhancer-ECNN are
significantly better than the previous methods. I think the reason
lies in the fact that the deep learning model itself has certain
advantages, which can capture features more accurately and learn
more efficiently. The model obtained can have more accurate

parameters, so as to obtain higher results. However, compared
with iEnhancer-ECNN, the data for AUC in our experiment are
lower than the result of them, but the data for SN are higher.
Overall, these results indicate that iEnhancer-EBLSTM performs
best in enhancer identification and classification.

DISCUSSION

In this paper, we proposed the prediction model called
iEnhancer-EBLSTM to identify enhancers and their strengths.
In addition, this model uses the principle of 3-mer to encode
the DNA sequence and EBLSTM to get the predictive result.
The biggest advantage of this method is that it only uses
DNA sequence information and does not rely on other
features such as chromosome status, gene expression data, and
histone modification. This greatly facilitates researchers to use
it. iEnhancer-BLSTM could be used not only for identifying
enhancers but also for distinguishing strong enhancers from weak
enhancers. In the first layer, the predictor can identify whether the
DNA sequence is enhancer or not, and the ACC is 0.772. In the
second layer, the predictor can classify that the enhancer is strong
or weak, and the ACC is 0.658. A lot of work still needs to be done
on the second layer. There is little difference between strong and
weak enhancers. More and more information of DNA sequences,
physical and chemical needs to be mined. The characteristic
information can be recorded more completely, and the various
models can be built based on this information in more detail.
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