
fgene-12-667300 July 13, 2021 Time: 16:49 # 1

ORIGINAL RESEARCH
published: 19 July 2021

doi: 10.3389/fgene.2021.667300

Edited by:
Ruidong Xiang,

The University of Melbourne, Australia

Reviewed by:
Christian Maltecca,

North Carolina State University,
United States

Renata Veroneze,
Universidade Federal de Viçosa, Brazil

*Correspondence:
Grum Gebreyesus

grum.gebreyesus@qgg.au.dk

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal

Frontiers in Genetics

Received: 12 February 2021
Accepted: 23 June 2021
Published: 19 July 2021

Citation:
Gebreyesus G, Lund MS,

Sahana G and Su G (2021)
Reliabilities of Genomic Prediction

for Young Stock Survival Traits Using
54K SNP Chip Augmented With

Additional Single-Nucleotide
Polymorphisms Selected From

Imputed Whole-Genome Sequencing
Data. Front. Genet. 12:667300.

doi: 10.3389/fgene.2021.667300

Reliabilities of Genomic Prediction
for Young Stock Survival Traits Using
54K SNP Chip Augmented With
Additional Single-Nucleotide
Polymorphisms Selected From
Imputed Whole-Genome Sequencing
Data
Grum Gebreyesus* , Mogens Sandø Lund, Goutam Sahana and Guosheng Su

Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark

This study investigated effects of integrating single-nucleotide polymorphisms (SNPs)
selected based on previous genome-wide association studies (GWASs), from imputed
whole-genome sequencing (WGS) data, in the conventional 54K chip on genomic
prediction reliability of young stock survival (YSS) traits in dairy cattle. The WGS SNPs
included two groups of SNP sets that were selected based on GWAS in the Danish
Holstein for YSS index (YSS_SNPs, n = 98) and SNPs chosen as peaks of quantitative
trait loci for the traits of Nordic total merit index in Denmark–Finland–Sweden dairy
cattle populations (DFS_SNPs, n = 1,541). Additionally, the study also investigated the
possibility of improving genomic prediction reliability for survival traits by modeling the
SNPs within recessive lethal haplotypes (LET_SNP, n = 130) detected from the 54K chip
in the Nordic Holstein. De-regressed proofs (DRPs) were obtained from 6,558 Danish
Holstein bulls genotyped with either 54K chip or customized LD chip that includes SNPs
in the standard LD chip and some of the selected WGS SNPs. The chip data were
subsequently imputed to 54K SNP together with the selected WGS SNPs. Genomic
best linear unbiased prediction (GBLUP) models were implemented to predict breeding
values through either pooling the 54K and selected WGS SNPs together as one genetic
component (a one-component model) or considering 54K SNPs and selected WGS
SNPs as two separate genetic components (a two-component model). Across all the
traits, inclusion of each of the selected WGS SNP sets led to negligible improvements
in prediction accuracies (0.17 percentage points on average) compared to prediction
using only 54K. Similarly, marginal improvement in prediction reliability was obtained
when all the selected WGS SNPs were included (0.22 percentage points). No further
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improvement in prediction reliability was observed when considering random regression
on genotype code of recessive lethal alleles in the model including both groups of the
WGS SNPs. Additionally, there was no difference in prediction reliability from integrating
the selected WGS SNP sets through the two-component model compared to the
one-component GBLUP.

Keywords: young stock survival, genomic prediction, GWAS, whole-genome sequencing, recessive lethal alleles

INTRODUCTION

Young stock mortality represents a major economic loss for
dairy farmers due, for instance, to fewer heifers available for
replacement in the production system, fewer male calves for
slaughter, higher veterinarian cost, and cost related to disposal
of dead calf. In the Nordic countries, annual total loss due
to dairy calf mortality (including stillbirth) is estimated to be
approximately €70 million (Østerårs et al., 2007). In addition,
young stock mortality poses a large animal welfare issue and
threatens the public perceptions of the dairy industry.

Part of the variation in young stock mortality is genetic
with reported heritability estimates ranging from 0.00 to 0.08
(e.g., Hansen et al., 2003; Fuerst-Waltl and Sørensen, 2010;
Henderson et al., 2011). In the Nordic countries, young stock
survival (YSS) in calves is included in the Nordic total merit
(NTM) index (NAV).1 A challenge in the genetic evaluation
for YSS traits is the low heritability leading to low prediction
accuracies. Theoretically, there are possibilities to improve
the reliability of genomic prediction models by incorporating
causative variants (if known) or markers highly correlated with
them (de Los Campos et al., 2013).

Genome-wide association studies (GWASs) based on
sequence data have shown high power to identify putative
causative variants and strong signals of association for
various economic traits in cattle (Daetwyler et al., 2014;
Sahana et al., 2014; Wu et al., 2017). Studies have shown that
genomic prediction models incorporating single-nucleotide
polymorphisms (SNPs) selected from whole-genome sequencing
(WGS) data based on such GWASs lead to improved accuracy
of prediction of breeding values for some traits. Brøndum et al.
(2015) added quantitative trait loci (QTLs) from GWAS to
genomic prediction models and achieved up to 5 percentage
point increase in accuracy for milk production traits. Similarly,
Liu et al. (2019) reported gains in prediction reliability for milk
production traits in the Danish Jersey by integrating selected
WGS variants with the 54K SNP chip. A GWAS by Wu et al.
(2017) using WGS data reported interesting genomic regions
across the Bos taurus autosome (BTA) significantly associated
with the YSS index trait in the NTM index. Incorporating such
WGS variants from GWASs might enable improvement of
genomic prediction reliability for YSS traits. Additionally, the
genetic underpinnings of young stock and calf mortality can be
partly polygenic and partly due to deleterious effects of recessive
lethal alleles (Gebreyesus et al., 2020). Several studies have
reported haplotypes with harmful recessive effects on fertility

1www.nordicebv.info

and responsible for early embryonic lethality and stillbirth in
various cattle breeds (e.g., VanRaden et al., 2011; Sahana et al.,
2016; Hoff et al., 2017; Wu et al., 2019), which might have an
important predictive ability for breeding values for YSS traits.

We hypothesize in this study that incorporation of WGS
variants selected based on previous GWASs and variants within
previously reported deleterious haplotypes might improve the
reliability of genomic prediction for YSS traits. The objective
of this study was therefore to investigate effects of integrating
SNPs selected, based on previous studies, from imputed WGS
data in the conventional 54K chip on genomic prediction of YSS
traits in the Nordic Holstein cattle. Additionally, we also assessed
the possibility of improving genomic prediction reliability for
survival traits by considering in the prediction model the effect
of SNPs located within recessive lethal haplotypes previously
reported in the Nordic Holstein.

MATERIALS AND METHODS

Ethics Approval Statement
All procedures to collect the DNA samples followed the
protocols approved by the National Guidelines for Animal
Experimentation and the Danish Animal Experimental Ethics
Committee, and hence, no specific permission was required.

Animals and Genotypes
A total of 6,558 Nordic Holstein bulls were genotyped
with the Illumina Bovine SNP50 chip (54K, Illumina, Inc.).
A reference population of 129,000 Holstein cows and bulls
was also available for the imputation that were genotyped
mostly with the EuroGenomics customized chip (Boichard et al.,
2018) that included SNPs in the standard Illumina Bovine
LD chip together with SNPs identified as causal mutation,
functional annotation, or association with economic traits. The
EuroGenomics customized chip that started with the standard
LD chip (Boichard et al., 2018) is updated every year with
selected variants and currently includes 70K SNPs including
most of the variants in the conventional 54K chip along with
additional selected SNPs. A total of 1,754 selected WGS SNPs,
selected by GWAS in Denmark–Finland–Sweden dairy cattle
populations (DFS_SNPs), are included in the EuroGenomics
chip. The DFS_SNPs were peaks of QTL detected from imputed
WGS data for 16 index traits included in the NTM index,
which includes the YSS index. The selection of the DFS SNPs
was undertaken within each breed according to p-values of
a single-marker regression model while considering functional
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annotations and linkage disequilibrium between SNPs (Brøndum
et al., 2015). Before the imputation, 54K genotypes were subjected
to quality control using the minor allele frequency (MAF)
threshold of 0.05. Bulls genotyped with 54K and the custom chips
were imputed to 54K + DFS using FImpute software (Sargolzaei
et al., 2014). Additionally, another set of WGS SNPs (147 SNPs)
were selected from GWAS by Wu et al. (2017) for survival
index (YSS_SNPs). The genotypes of these SNPs for the bulls
in this study were imputed using the 1,000 bull genome data as
reference and using the Minimac3 v.2.0.1 software (Das et al.,
2016). The SNP-wise imputation accuracy was measured as the
Pearson correlation between observed and imputed genotypes
(coded as 0, 1, or 2) and the proportion of correctly imputed
genotypes to all imputed genotypes (i.e., concordance). Only
SNPs with both correlation and concordance higher than 0.80
were used in genomic prediction. Ultimately, 39,803 SNPs in
the 54K chip, 1,541 DFS_SNPs, and 98 YSS_SNPs were kept for
genomic prediction, with 22 SNPs overlapped between DFS and
YSS_SNPs. The average imputation accuracy for SNPs used in
genomic prediction was 0.977 for standard LD chip to 54K, 0.980
for DFS_SNPs, and 0.923 for YSS_SNPs, while concordance was
0.960 for standard LD chip to 54K, 0.962 for DFS_SNPs, and
0.955 for YSS_SNPs.

Of the 39,803 SNPs in the 54K chip used for the genomic
prediction, 130 SNPs (LET_SNP) were within recessive lethal
haplotypes reported by Wu et al. (2019) in the Nordic Holstein.
The study of Wu et al. (2019) reported a total of 11 haplotypes of
which nine were completely homozygous-deficient while two had
significantly lower homozygotes observed than expected.

Phenotypes
The traits included in the analyses were four different definitions
of YSS (sub-traits) and an index trait (YSS index) derived from
these four sub-traits. The sub-traits were as follows:

i) Bull period 1 (BP1): Bull calf survival day in the period 1–
30 days;

ii) Bull period 2 (BP2): Bull calf survival day in the period 31–
183 days;

iii) Heifer period 1 (HP1): Heifer calf survival day in the period
1–30 days;

iv) Heifer period 2 (HP2): Heifer calf survival day in the
period 31–458 days.

Calf death and survival during each period were recorded as 0
and 1, respectively. Calves slaughtered, exported, or with missing
records were recorded as missing. The YSS index was calculated
by combining the estimated breeding values (EBVs) for the sub-
traits, i.e., BP1, BP2, HP1, and HP2, by the Nordic Cattle Genetic
Evaluation center (NAV, Denmark), which were weighted by their
relative economic values and standardized in terms of mean and
standard deviation (Pedersen et al., 2015).

De-regressed proof (DRP) derived from official EBV was
used as the pseudo phenotype in the genomic prediction. The
official EBVs were calculated using linear models by the Nordic
Cattle Genetic Evaluation center as described in NAV (Nordic
Cattle Genetic Evaluation) (2017). DRPs were derived using

the official EBVs based on the standard method described in
Jairath et al. (1998) and implemented using the mix99 program
(Strandén, 2015).

The reliability of DRP was calculated as:

r2
DRPi =

EDCi

EDCi + λ
′

(1)

where λ = 4−h2

h2 . The EDCi was the effective daughter
contribution of ith bull, and h2 was the heritability for each trait
as used in the official Nordic Cattle Genetic Evaluation (Pedersen
et al., 2015). The heritability estimates and mean DRP reliability
for each trait are given in Table 1, and histogram plots showing
reliability distributions are presented in Figure 1.

Statistical Analysis
Implemented prediction models included linear mixed model
using pedigree-based best linear unbiased prediction (PBLUP)-
or genomic best linear unbiased prediction (GBLUP)-based
relationships. Different scenarios were investigated to study the
effect of adding selected WGS SNPs and modeling recessive lethal
SNPs on prediction reliability. These include:

(i) Only using 54K;
(ii) 54K plus YSS_SNPs (54K+ YSS);

(iii) 54K plus DFS_SNPs (54K+ DFS);
(iv) 54K plus YSS_SNPs and DFS_SNPs (54K+ YSS+ DFS);
(v) Reduced 54K (minus SNPs in recessive lethal haplotypes),

plus YSS_SNPs and DFS_SNPS, and the model considered
random regression on genotype code of LET_SNPs
(54K∗ + YSS+ DFS+ LET).

In addition, two approaches of integrating the selected
SNPs were assessed. Accordingly, one-component model
pooling the selected WGS SNPs together with the 54K
SNPs as one genetic component and two-component model
considering 54K SNPs and selected WGS SNPs as two separate
genetic components were implemented and compared for
prediction accuracy.

The PBLUP model fitted was:

y = 1µ+ Za+ e (2)

where y is the vector of DRPs; 1 is the vector of ones;
µ is the overall mean; a is the vector of additive genetic

TABLE 1 | Heritability estimates and mean reliability of DRPs used in the genomic
prediction of the young stock survival traits.

Trait h2* Mean DRP reliability

YSS Index 0.014 0.698

BP1 0.007 0.611

BP2 0.027 0.742

HP1 0.009 0.626

HP2 0.011 0.737

*Heritability estimates used in the official Nordic evaluations (Pedersen et al., 2015).
BP1, Bull period 1; BP2, Bull period 2; DRP, de-regressed proof; HP1, Heifer period
1; HP2, Heifer period 2; YSS, young stock survival.
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FIGURE 1 | Histogram plots showing distributions of the de-regressed proof (DRP) reliabilities for the different traits.

effects; Z is the incidence matrix relating a to phenotypes;
and e is the vector of random residuals. It was assumed that
a ∼ N

(
0,Aσ2

a
)

and e ∼ N
(
0,Dσ2

e
)
. The A was the additive

relationship matrix constructed from the pedigree that traced
genotyped animals five generations back and included a total of
16,763 animals. The D is a diagonal matrix with elements di =
1−r2

DRPi
r2
DRPi

for each bull i to account for heterogeneous residual

variances due to differences in reliability of DRPs (r2
DRPi)

calculated as in Eq. 1.
The following one-component GBLUP models were fitted:

y = 1µ+ Zg+ e (3)

where g is the additive genetic effect with g ∼ N
(
0,Gσ2

a
)
, where

G is the genomic relationship matrix (GRM) constructed using
SNPs described in the different scenarios of adding WGS SNPs
(YSS, DFS, or YSS + DFS) on the conventional 54K, while the
remaining terms of the model are as described in model 2.

Additionally, a one-component GBLUP model considering
random regression on the genotype code of the recessive lethal
SNPs was implemented:

y = 1µ+Mb+ Zg∗ + e (4)

where M is a matrix of genotype code (0, 1, or 2) for recessive
lethal SNPs with dimension of 6,558 (number of individuals)
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by 130 (number of recessive lethal SNPs), b is the vector of
random regression coefficients on genotype code of recessive
lethal SNPs (n = 130), and g∗ is the random additive genetic effect
based on GRM constructed using all SNPs (54K + YSS + DFS)
excluding SNPs within recessive lethal haplotypes. The random
regression coefficient b is assumed to be normally distributed:b ∼
N

(
0,Iσ2

b
)
, where I is an identity matrix and σ2

b is the variance
of the regression coefficient estimates. In addition to the one-
component models, genomic breeding values were also predicted
using a two-component GBLUP model that accounted for the
difference between effects of the 54K SNPs and effects of selected
WGS SNPs. The two-component model for the 54K and WGS
data was:

y = 1µ+ Zg54K + ZgWGS + e (5)

Additionally, a two-component model considering random
regression on the genotype code of the recessive lethal SNPs was
implemented:

y = 1µ+Mb+ Zg54K∗ + ZgWGS + e (6)

where M and b are as described in model 4, g54K∗ is the
additive genetic effect based on GRM constructed with 54K SNPs
excluding the SNPs within recessive lethal haplotypes, gWGS is
the random genetic effect based on GRM constructed WGS SNPs
(either DFS or YSS GWAS SNPs, or both, depending on the
considered scenario).

An additional three-component GBLUP model was run to
estimate the proportion of genomic variance explained by the
SNP sets, i.e., 54K, YSS_SNPs, and DFS_SNPs by extending
model 5 as follows:

y = 1µ+ Zg54K + ZgYSS + ZgDFS + e (7)

The proportion of the genomic variance explained by each SNP
set of the three-component GBLUP model was then computed as:

%varSNPseti =
σ2
SNPseti
σ2
total

× 100, (8)

where σ2
SNPseti was the additive genetic variance estimated based

on the GRM corresponding to each SNP set (54K, DFS, and YSS),
and σ2

total was the total genomic variance computed as:

σ2
total = σ2

54K + σ2
YSS + σ2

DFS (9)

All GRMs used for the different scenarios were calculated
using the first method presented by VanRaden (2008), and SNP
allele frequencies for building GRMs were calculated directly
from the SNP data.

All models were implemented using the DMU software
(Madsen and Jensen, 2013).

Computation of Prediction Reliabilities
The studies of Wu et al. (2017, 2019) used part of the current
dataset (bulls born on or before the year 2009) to detect the WGS
markers for YSS and the recessive lethal haplotypes, respectively.
Therefore, the validation set in the current study consisted of only

bulls born after the year 2010 (n = 1,312), and the rest was used
as the training population (n = 5,246).

Reliability of genomic prediction was computed as the squared
correlation between estimated breeding values (GEBVs) and DRP
divided by the average reliability of DRP for the bulls in the
validation population. For the two-component GBLUP models,
the total GEBV for each individual was computed by summing
together the breeding values from the two components. Bias of
prediction was measured as the regression coefficient of DRP
on the estimated breeding values for the bulls in the validation
population. Reliability and bias were then compared among
different models.

For the model considering random regression on genotype
codes of recessive lethal alleles, effects of the recessive lethal
alleles from the random regression coefficients were added to the
GEBVs to calculate the correlation with DRP and subsequently
compute the reliability.

In addition, model fit for the different models was assessed and
compared using the Akaike information criteria (AIC; Akaike,
1974).

RESULTS

Proportion of the Genetic Variance
Explained by the Different
Single-Nucleotide Polymorphism Sets
Figure 2 presents the percentages of total genomic variance
explained by the different SNP sets, i.e., 54K SNPs, YSS_SNPs,
and DFS_SNPs, in the different YSS sub-traits and the
index trait. In general, at least 80% of the total genetic
variance in all the traits is explained by the SNPs in the
standard 54K chip. On average, the YSS_SNPs explained 6%
of the genetic variation, while the DFS_SNPs explained 11%.
Across the traits, the proportion of total genetic variance
explained by YSS_SNPs (4.2%) and DFS_SNPs (9.5%) was
lowest for BP2, which was 5% and 10.2% for YSS_SNPs and
DFS_SNPs, respectively.

Genomic Prediction Reliabilities and Bias
Table 2 presents genomic prediction accuracies using PBLUP
and the GBLUP models that use different SNP sets. In general,
across all scenarios, prediction reliability was lowest in the YSS
index trait compared to the four sub-traits used to calculate
the index trait. Among the sub-traits, prediction accuracies
were higher for bull and heifer period 1 (BP1 and HP1)
compared to the traits in period 2 (BP2 and HP2). For
all the traits, the various GBLUP models resulted in higher
prediction accuracies compared to the PBLUP model. An average
gain in reliability of 16 percentage points was obtained using
relationships derived from the 54K SNPs compared to using
relationships derived from pedigree.

Comparison among the GBLUP models using different SNP
sets in one- or two-component models indicates no or only
marginal improvements in prediction accuracies compared to
using only the 54K data. On average over the five traits, the
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FIGURE 2 | Percentages of the total genetic variance explained by the different single-nucleotide polymorphism (SNP) sets (54K, YSS_SNPs, and DFS_SNPs) in the
different traits.

TABLE 2 | Genomic prediction accuracies from PBLUP and GBLUP models.

Trait PBLUP GBLUP one-component GBLUP two-component

54K 54K + YSS 54K + DFS 54K + YSS +
DFS

54K* + YSS +
DFS + LET

54K + YSS 54K + DFS 54K + YSS
+ DFS

54K* + YSS +
DFS + LET

YSS Index 0.100 0.272 0.274 0.275 0.276 0.276 0.278 0.269 0.271 0.271

BP1 0.236 0.376 0.378 0.379 0.381 0.381 0.388 0.373 0.375 0.375

BP2 0.180 0.332 0.332 0.333 0.334 0.334 0.333 0.330 0.331 0.332

HP1 0.267 0.404 0.406 0.404 0.404 0.404 0.413 0.391 0.393 0.393

HP2 0.140 0.308 0.308 0.307 0.308 0.308 0.309 0.302 0.303 0.303

54K + YSS = Conventional 54K SNPs plus SNPs from GWAS on YSS (YSS_SNPs).
54K + DFS = Conventional 54K SNPs plus SNPs from GWAS on all traits in Nordic total merit index (DFS_SNPs).
54K + YSS + DFS = Conventional 54K SNPs plus YSS_SNPs and DFS_SNPs.
54K* + YSS + DFS + LET = Reduced 54K (minus SNPs in recessive lethal haplotypes), plus YSS_SNPs (YSS) and DFS_SNPs and the model considered random
regression on genotype code of SNPs in recessive lethal haplotypes (LET_SNPs).
BP1, Bull period 1; BP2, Bull period 2; GBLUP, genomic best linear unbiased prediction; GWAS, genome-wide association study; HP1, Heifer period 1; HP2, Heifer period
2; PBLUP, pedigree-based best linear unbiased prediction; SNP, single-nucleotide polymorphism; YSS, young stock survival.

improvement in prediction reliability obtained from adding
the YSS_SNPs in the one-component model compared to
prediction using only the 54K markers was 0.12 percentage
points. Similar results were obtained when the 54K marker set
was augmented with DFS_SNPs in the one-component model.
Fitting both the YSS_SNP sets and DFS_SNPs together with
the 54K markers in the one-component model resulted in an
average gain in reliability of 0.22 percentage points compared to
the prediction using only 54K markers. Additional consideration
of random regression on genotype code of recessive lethal
alleles in this model did not result in further improvement
of prediction reliability. Among the two-component GBLUP
models, addition of the YSS_SNPs resulted in an average
improvement of 0.58 percentage points compared to the
prediction with only 54K SNPs. Addition of the rest of SNP
sets (DFS, DFS + YSS) using the two-component GBLUP

resulted in slightly lower prediction reliability compared to the
model using only 54K.

Table 3 presents the bias in predicting the breeding values
across the different models. Regression coefficients were generally
close to 1.00 across the different models. Between the different
traits, regression coefficient for BP1 and HP1 were generally
lower compared to BP2 and HP2 as well as the YSS index trait.
For these traits (BP1 and HP1), the one-component GBLUP
resulted in slightly less bias compared to the two-component
GBLUP model. In addition, model fit for the different scenarios
assessed with the AIC is presented in Table 4. Generally, the
GBLUP models had lower AIC values compared to the PBLUP
models across all the traits. Hence, the GBLUP models tend
to have better fit to the data compared to the PBLUP models,
which is in agreement with the overall performance of the two
models in prediction accuracy. Among the different GBLUP
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TABLE 3 | Regression coefficientsa of DRP on prediction.

Trait PBLUP GBLUP one-component GBLUP two-component

54K 54K + YSS 54K + DFS 54K + YSS +
DFS

54K* + YSS +
DFS + LET

54K + YSS 54K + DFS 54K + YSS +
DFS

54K* + YSS +
DFS + LET

YSS Index 0.976 1.027 1.026 1.027 1.026 1.022 1.003 1.005 1.000 0.998

BP1 0.976 0.892 0.893 0.891 0.891 0.888 0.891 0.866 0.865 0.863

BP2 1.046 0.953 0.954 0.954 0.955 0.952 0.955 0.954 0.954 0.952

HP1 0.968 0.886 0.887 0.885 0.885 0.883 0.884 0.864 0.863 0.862

HP2 1.045 0.968 0.969 0.967 0.967 0.964 0.965 0.963 0.963 0.960

aStandard errors of regression coefficients across the scenarios = (0.059–0.092).
54K + YSS = Conventional 54K SNPs plus SNPs from GWAS on young stock survival (YSS_SNPs).
54K + DFS = Conventional 54K SNPs plus SNPs from GWAS on all traits in Nordic total merit index (DFS_SNPs).
54K + YSS + DFS = Conventional 54K SNPs plus YSS_SNPs and DFS_SNPs.
54K* + YSS + DFS + LET = Reduced 54K (minus SNPs in recessive lethal haplotypes), plus YSS_SNPs (YSS) and DFS_SNPs and the model considered random
regression on genotype code of SNPs in recessive lethal haplotypes (LET_SNPs).
BP1, Bull period 1; BP2, Bull period 2; DRP, de-regressed proof; GBLUP, genomic best linear unbiased prediction; GWAS, genome-wide association study; HP1, Heifer
period 1; HP2, Heifer period 2; PBLUP, pedigree-based best linear unbiased prediction; SNP, single-nucleotide polymorphism; YSS, young stock survival.

TABLE 4 | Akaike information criteria (AIC) for the different models implemented.a

Trait PBLUP GBLUP one-component GBLUP two-component

54K 54K + YSS 54K + DFS 54K + YSS +
DFS

54K* + YSS +
DFS + LET

54K + YSS 54K + DFS 54K + YSS +
DFS

54K* + YSS +
DFS + LET

YSS Index −26.99 −45.18 −45.17 −45.16 −45.16 −45.13 −45.12 −45.14 −45.12 −45.10

BP1 −27.65 −39.86 −39.85 −39.84 −39.84 −39.82 −39.81 −39.82 −39.81 −39.79

BP2 −22.16 −44.98 −44.97 −44.96 −44.96 −44.93 −44.94 −44.95 −44.94 −44.91

HP1 −26.26 −40.75 −40.74 −40.73 −40.72 −40.70 −40.70 −40.70 −40.69 −40.67

HP2 −24.00 −44.96 −44.95 −44.94 −44.94 −44.91 −44.92 −44.93 −44.92 −44.89

ax103.
54K + YSS = Conventional 54K SNPs plus SNPs from GWAS on young stock survival (YSS_SNPs).
54K + DFS = Conventional 54K SNPs plus SNPs from GWAS on all traits in Nordic total merit index (DFS_SNPs).
54K + YSS + DFS = Conventional 54K SNPs plus YSS_SNPs and DFS_SNPs.
54K* + YSS + DFS + LET = Reduced 54K (minus SNPs in recessive lethal haplotypes), plus YSS_SNPs (YSS) and DFS_SNPs and the model considered random
regression on genotype code of SNPs in recessive lethal haplotypes (LET_SNPs).
BP1, Bull period 1; BP2, Bull period 2; GBLUP, genomic best linear unbiased prediction; GWAS, genome-wide association study; HP1, Heifer period 1; HP2, Heifer period
2; PBLUP, pedigree-based best linear unbiased prediction; SNP, single-nucleotide polymorphism; YSS, young stock survival.

models, the AIC values computed for the different scenarios were
quite comparable.

DISCUSSION

Genomic Prediction Accuracies for
Young Stock Survival Traits
In general, prediction accuracies for the YSS index trait and
the sub-traits were low in our study across scenarios. Our
findings are however, in line with reported prediction accuracies
in the literature for calf and YSS traits defined in various
periods. In a previous study, genomic prediction accuracies
ranging between 0.15 and 0.30 were reported for maternal
calf survival in different parities for the Canadian Holstein
(Abo-Ismail et al., 2017).

Accurate genomic prediction of survival traits in cattle is
difficult (van der Heide et al., 2020), as the traits are affected by a
combination of environmental factors such as farm management

as well as non-additive genetic effects such as recessive lethal gene
effects (Gebreyesus et al., 2020).

Across the studied YSS traits, relatively higher prediction
accuracies were observed for BP1 and HP1 compared to the
YSS index trait and the other two sub-traits. Although the
heritability estimates (Table 1) for all the traits studied here
are among the lowest of the dairy cattle traits (Pedersen
et al., 2015), heritability for BP1 and HP1 was even lower
compared to the other sub-traits and the index trait. Similarly,
DRP reliabilities were slightly lower for BP1 and HP1.
Therefore, the slightly higher prediction reliability for BP1
and HP1 was contrary to our expectations. DRP reliability
is the function of number of records used to estimate the
EBVs and heritability of the traits. Across the studied traits,
heritability is quite low and differences in heritability between
the traits are small. Therefore, the slight differences in average
DRP reliabilities between the studied traits might be due to
differences in numbers of observations used to predict the
EBVs of the bulls for different traits in the official Nordic
cattle evaluations.
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Benefits of Incorporation of Selected
Variants on Genomic Prediction
Reliability
In our study, integration of additional selected WGS SNPs and
recessive lethal haplotypes resulted in negligible improvement
in genomic prediction reliability for YSS index and the four
sub-traits. Previous studies reported some gains in genomic
prediction accuracies from additional variants selected from
WGS data using GWAS, functional annotation, and pathway
analysis, depending on the trait and population studied [e.g.,
Brøndum et al. (2015), van den Berg et al. (2016), Liu et al.
(2019)]. Gains in genomic prediction reliability from integration
of additional selected WGS SNPs partly depend on the genetic
architecture of the traits and consequently the proportion
of variation explained by the selected SNPs (Hayes et al.,
2010). In the literature, while additional WGS SNPs improved
genomic prediction accuracies for some traits, often marginal
improvement is reported for others. Liu et al. (2019) for instance
reported increases in prediction accuracies for milk production
traits in the Danish Jersey from addition of selected WGS
SNPs but lack of improvement in prediction reliability for
fertility and only marginal improvement for mastitis. Brøndum
et al. (2015) reported increases in prediction reliability of up
to 5 percentage points for milk production traits in Nordic
Holstein and Red populations, while improvement of reliability
was negligible for fertility. Similar results were reported in the
study of Veerkamp et al. (2016) where genomic prediction with
the addition of a selected set of WGS variants for protein
yield (PY), somatic cell score (SCS), and interval from first to
last insemination led to negligible improvement in prediction
reliability. In the current study, neither of the SNP sets, i.e.,
DFS_SNPs and YSS_SNPs, led to improvement in prediction
reliability of the YSS traits. The DFS_SNPs explained on average
11% of the genomic variance for the studied traits compared
to an average of 6% explained by the YSS_SNPs. However,
the higher proportion of genomic variance explained by the
DFS SNPs in contrast to the YSS SNPs could be merely due
to the difference in the number of SNPs in the two sets. The
DFS SNPs were selected based on relevance to multiple traits
including production, disease, and calving traits. Moreover, the
NTM index, which is based on several traits that include the
YSS trait, was considered in the selection of the DFS SNPs
(Brøndum et al., 2015). However, the main emphasis, in terms
of weights, was placed on milk production traits compared
to fitness traits such as fertility, mastitis, and other disease
traits, as well as the NTM index. On the other hand, the
YSS_SNPs reported by Wu et al. (2017) were selected based
on GWAS for YSS index specifically; therefore, improvements
in prediction reliability were to be expected compared to the
DFS SNPs. However, the YSS_SNPs included only 98 SNPs
that might make it difficult to explain a sizable proportion
of the genetic variation for polygenic traits such as YSS
(Wu et al., 2017).

Additionally, the effects of selected variants might be
somehow underestimated in this study due to the use DRPs as
response variable rather than raw phenotypes for the survival

traits. This might specially be of relevant impact to the models
that include the effect of recessive lethal alleles rather than those
incorporating the selected WGS SNPs, as these were selected
based on GWASs using DRPs as response variable (Brøndum
et al., 2015; Wu et al., 2017).

One-Component vs. Two-Component
Genomic Best Linear Unbiased
Prediction Models
It has also been shown that the effect of integrating selected
variants on the reliability of genomic prediction might depend
on whether or not the effects of these variants have been
weighted appropriately in the models (Raymond et al., 2018).
In the traditional GBLUP model, the contribution of genetic
markers to the genomic relationship is the same. In this
context, Sørensen et al. (2014) suggested an extension of the
GBLUP model to allow differentiation among the markers
through a genomic feature BLUP (GFBLUP) approach. In
GFBLUP, variants are categorized according to biological
information, such as chromosomes, genes, or biological
pathways, so that the random genetic effect in the GBLUP
model can have more than one component. Implementation
of such an approach to integrate selected variants has shown
improvement in genomic prediction reliability compared
to integrating them using the traditional one-component
GBLUP approach. Gebreyesus et al. (2019) reported substantial
increases in genomic prediction reliability in different Holstein
cattle populations for milk fatty acid composition traits by
incorporating selected variants through the three-component
GBLUP model compared to pooling all variants in one GRM.
Similar improvements using the two-component GBLUP
model were reported in pigs (Sarup et al., 2016; Song et al.,
2019).

Contrary to these previous findings, there was no
difference in prediction reliability from integrating the
selected WGS SNP sets through the two-component model
compared to the one-component GBLUP in our study.
Multiple-component GBLUP model involves simultaneous
estimation of more parameters in addition to those estimated
in a one-component model. Thus, gains from multiple-
component GBLUP, vis-à-vis one-component, can only be
expected if addition of information from the additional
component(s) is substantial enough to offset the extra
uncertainty due to more parameters to be estimated in the
multiple-component analysis.

CONCLUSION

In this study, we hypothesize that incorporation of WGS variants
selected based on GWAS and variants within recessive lethal
haplotypes might improve the reliability of genomic prediction
for YSS traits. We tested our hypothesis using one- or two-
component GBLUP models. Contrary to our hypothesis, the
results showed negligible improvements by incorporation of
such variants in genomic prediction accuracies for the YSS
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index trait and the four sub-traits. The results highlight the
difficulty in genetic evaluation for polygenic traits with very
low heritability such as the YSS traits and the need for further
studies to explore additional information including the genomic
information beyond SNP variants to improve the prediction
reliability for these traits.
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