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Human height is a polygenic trait, influenced by a large number of genomic loci. In
the pre-genomic era, height prediction was based largely on parental height. More
recent predictions of human height have made great strides by integrating genotypic
data from large biobanks with improved statistical techniques. Nevertheless, recent
studies have not leveraged parental height, an added feature that we hypothesized
would offer complementary predictive value. In this study, we assessed the predictive
power of polygenic risk scores (PRS) combined with the traditional parental height
predictors. Our study analyzed genotypic data and parental height from 1,071 trios
from the United Kingdom Biobank and 444 trios from the Framingham Heart Study.
We explored a series of statistical models to fully evaluate the performance of
several PRS constructed together with parental information and proposed a model
we call PRS++ that includes gender, parental height, and PRSs of parents and
proband. Our estimate of height with an R2 of ∼0.82 is, to our knowledge, the most
accurate estimate yet achieved for predicting human adult height. Without parental
information, the R2 from the best PRS-driven model is ∼0.73. In summary, using
adult height prediction as an example, we demonstrated that traditional predictors
still play important roles and merit integration into the current trends of intensive
PRS approaches.
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INTRODUCTION

The prediction of human height has long been of great interest
to the medical research community and as a model for complex
trait prediction. During the 20th century, much of the adulthood
height prediction has been based on parental information ref.
(Wright and Cheetham, 1999), crudely estimated by doubling
the height attained by age 2 or 18 months, for boys and
girls, respectively. Over the past 20 years, with the emerging
development and application of single nucleotide polymorphism
(SNP) array technology, genetics has been widely explored to
understand the underlying biology and to improve the prediction
of adult height. First, in terms of variance explained and
SNP heritability, three papers demonstrated increasing values:
(Wright and Cheetham, 1999) in 2010, 45% of variance was
explained by ∼300,000 common SNPs ref. (Yang et al., 2010) in
2015, 56% of variance was explained by ∼17 million imputed
variants ref. (Yang et al., 2015); and (Yang et al., 2015) in
2017, 68.5% of SNP heritability based on the United Kingdom
Biobank was estimated in ref. (Ge et al., 2017). Then, in terms
of observed prediction accuracy, the squared correlation between
phenotype and predictor (R2) ranges from 0.17 ref. (Wood et al.,
2014) to 0.19 (0.442) ref. (Yengo et al., 2018) and 0.53 ref.
(Lippert et al., 2017). A large R2 from the Lippert et al. study
could be attributed to two factors: (1) inclusion of gender in
the prediction model; (2) based on a cohort of participants of
diverse ancestry.

A major limitation of the genomics studies above is the
absence of parental height in the prediction model. In this
study, we use trio data from two flagship population cohorts,
the United Kingdom Biobank (UKB) Prospective cohort and the
Framingham Heart Study (FHS), to evaluate the predictive power
of conventional predictors (based on height of parents and gender
of proband) and polygenic risk score (PRS). We aim to identify a
more accurate method for the prediction of height.

MATERIALS AND METHODS

Study Population
The United Kingdom Biobank1 is a large, prospective population-
based cohort study that enrolled approximately 500,000
participants aged 40 to 69 between 2006 and 2010 ref. (Sudlow
et al., 2015). The study has collected a multitude of phenotypic
data from questionnaires, physical and biological measurements,
and electronic health records as well as genome-wide genotype
data. We used the KING software to identify parent–child pairs
ref. (Manichaikul et al., 2010; Bycroft et al., 2018). We excluded
pairs where the parent is less than 18 years older than the child.
We then grouped the pairs into father–child pairs, mother–child
pairs, and mother–father–child trios. Because the predictor PRS
was based on samples of European ancestry, we only included
trios where all members are self-reported white British. In total,
we identified 1,017 trios of European ancestry.

1http://www.ukbiobank.ac.uk

TABLE 1 | Characteristics of study participants.

Cohort Subject N Age Height BMI

UKB Proband-male 418 42.22 (1.8) 178.12 (6.56) 27.61 (4.3)

Proband-female 599 42.48 (18.6) 165.01 (6.01) 25.72 (5.13)

Father 1,017 66.8 (2.05) 174.07 (6.3) 28.14 (3.98)

Mother 1,017 65.34 (2.26) 160.2 (5.82) 27.92 (4.9)

FHS Proband-male 201 36.99 (8.63) 175.43 (6.03) 27.54 (5.01)

Proband-female 243 37.45 (8.65) 162.14 (5.9) 25.94 (5.66)

Father 444 38.33* (8.06) 173.27 (6.55) 24.07 (4.62)

Mother 444 36.25* (7.67) 159.42 (5.84) 23.67 (4.18)

*The parents of FHS trios are in the second generation while the probands are in
the third generation. The age is based on examination date. The examination date
differs significantly between the two generations.

The FHS cohort was used for external validation. The FHS
cohort is a large longitudinal cohort consisting of parents and
children initiated in 1948 to study chronic vascular disease, and
subsequently other phenotypes, in the United States. It is a
multigenerational community-based cohort that includes third-
generation participants ref. (Tsao and Vasan, 2015). We randomly
selected one offspring from each of the family available and
identified 444 independent trios in total. Table 1 summarizes the
characteristics of study participants.

Construction of Height PRS
We used summary statistics of two prominent height GWAS
studies as allelic scoring references to construct the PRS. The first
GWAS reported 697 SNPs in year 2014, denoted as GWAS-2014.
The second GWAS is a meta-analysis between GWAS-2014 and
UKB GWAS that reported 3,290 SNPs, and we denote this as
GWAS-2018 ref. (Yengo et al., 2018). We denote PRS generated
from these two GWAS as PRS.0 (697 SNPs) and PRS.1 (3290
SNPs), respectively. We then applied more liberal thresholds
based on GWAS-2018 to include many more marginal significant
SNPs that are expected to increase the prediction power of PRS
ref. (Purcell et al., 2009; Inouye et al., 2018). We used a widely
accepted P+T approach to pick independent SNPs whose p value
is lower than 1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07, and 1e-
08, and we denoted these PRS as PRS.2, PRS.3, PRS.4, PRS.5,
PRS.6, PRS.7, and PRS.8, accordingly. Given that GWAS-2018
includes some of the ∼3,000 samples used for this study, we ran
another UKB-only height GWAS without these ∼3,000 samples
and meta-analyzed it with the GIANT-2014 results, denoting
this new meta-analysis as GWAS-2018b. We then generated a
new set of PRS.2 to PRS.8 using the GWAS-2018b set as a
reference, but we found that all seven PRS were extremely similar,
with r2 > 0.99, suggesting essentially no complementarity. We
kept the PRS derived from GWAS-2018, since it is publicly
available. We first used PLINK software ref. (Purcell et al., 2007)
to prune the full GWAS summary statistics to pick independent
SNPs, based on a LD reference panel of the 1,000 genome
project phase III. The pruning parameters were: 1 Mb sliding
window and LD r2 of 0.1. We then used the PLINK “–score”
function to calculate a PRS, based on the pruned list of SNPs.
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Both steps were run for each chromosome in parallel. Finally,
we added up all the PRS for each chromosome into a single
genome-wide PRS.

Model Predictors
In this work, we included sex, age, the first 40 genomic principal
components (PC1–PC40, see ref. (Bycroft et al., 2018) as an
example of using first 40 PCs in phenotyping–genomic data
analysis), 9 PRSs (PRS.0, PRS.1, and PRS.2-8), as well as parental
height, parental age, the first 40 PCs of parents, and 9 parental
PRSs as potential predictors. The genomic principal components
were obtained based on the UKB genotyped variants using
a set of 407,219 unrelated, high-quality samples and 147,604
high-quality markers ref. (Tsao and Vasan, 2015). In total,
there were 153 potential predictors that may potentially affect
the value of height. Identification of the most accurate and
parsimonious prediction model is accomplished by the model
selection approaches. In other words, we used a “hypothesis-
free” approach and let the data determine which predictors
should go or stay.

Model Estimation
The model with the highest R2

cv averaged over 50 CV-sets in
the UKB data was chosen as the best prediction model and was
validated using FHS to show the generalizability of the model.
See Appendix for more details on model selection and estimation,
and the code is available on https://github.com/jielab/height.

RESULTS

Table 2 shows the number of pruned SNPs for PRS.2-8, and the
Pearson correlation between height and each PRS. The highest
correction is with PRS.2 (r 0.47).

TABLE 2 | Characteristics of nine polygenic risk scores (PRS).

PRS Selection criteria Number of SNPs Correlation with height (r)

PRS.0 P < 5E-08 (2014) 697 0.34

PRS.1 P < 5E-09 (2018) 3,290 0.38

PRS.2 P < 5E-02 (2018) 30,615 0.47

PRS.3 P < 5E-03 (2018) 18,432 0.45

PRS.4 P < 5E-04 (2018) 12,657 0.44

PRS.5 P < 5E-05 (2018) 9,410 0.43

PRS.6 P < 5E-06 (2018) 7,349 0.42

PRS.7 P < 5E-07 (2018) 5,920 0.41

PRS.8 P < 5E-08 (2018) 4,932 0.41

*All SNPs are independent, either based on the published paper or based on PLINK
pruning methods used in this study. “(2014)” refers to ref. (Wood et al., 2014) and
“(2018)” refers to ref. (Yengo et al., 2018).

The optimal model is as follows,

height = sex + PRS.2 + height.m + PRS.2.m + height.f
+ PRS.2.f + ε

(1)
we call a PRS++model, where height.m and height.f denote the
heights of mother and father, respectively, PRS.2.m and PRS.2.f
denote the PRS of mother and father, respectively, and ε is a
random error term in the model that captures measurement
errors, such as variation of height across different time in
the day. Of note, the average R2

cv of PRS++ over 50-fold
cross-validation in UKB data was ∼0.82, which is higher than
any other study that has been reported to our knowledge. To
quantify the additional benefit of including parental information
in the model, we removed the parental contribution from the
model and observed a decrease in the average of R2

cv from
∼0.82 to ∼0.73, see more comparisons of different models
in Table 3.

The external validation set was built by testing the PRS++
model trained from the United Kingdom biobank data on the
FHS data. The out-of-sample R2 based on the PRS++ model
estimates from the United Kingdom biobank data was 0.7866,
while the one without parental contribution was 0.7070. The
in-sample R2 of PRS++ in FHS data was 0.8113. Such a
difference in R2 was possibly due to the different population
stratifications in two datasets as all participants are self-
reported white British in our UKB data while FHS took place
in the United States. Nonetheless, the inclusion of parental
information increases the accuracy of the height prediction
(see Figure 1 and Table 3).

DISCUSSION

Our study is the first to evaluate the predictive value of adult
height, using all possible variables including parental height,
the proband’s age and sex, genetic principal components, and
millions of individual SNPs. By incorporating parental height,
we were able to examine how “family history” incrementally
improves height prediction beyond traditional factors such
as age and sex and genetic factors such as PCs and even
millions of significantly and marginally associated SNPs. We
demonstrated the power of combining all these together to
reach the most accurate prediction of adult height to our
knowledge yet identified, with an R2 of 0.82. We note that the
parental PRS.2s are included in the proposed PRS++ model.
We speculate that the reason the parental PRSs are effective
with the presence of parental height is that the parental height
is in composite of known and unknown exposures, such as
environmental effects and dining habit, rather than additive
genetic effects.

There are a few limitations of this study. First, the sample
size is small as the United Kingdom Biobank only contained
approximately ∼1,000 informative trios. Second, the structure
of the pedigree is simple. While we only examined height
in trio structure, ideally, it might significantly increase model
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TABLE 3 | The R2 of different models including PRS++.

Model In-sample R2 in UKB R2
cv over 50-fold in UKB In-sample R2 in FHS Out-of-sample R2 in FHS

Sex + PRS.2 0.7034 0.7135 (0.09) 0.7193 0.707

Sex + Parental height 0.7353 0.7517 (0.08) 0.7179 0.7093

Sex + PRS.2 + Parental height 0.7825 0.7890 (0.10) 0.7828 0.7678

Sex + PRS.2 + Parental height + Parental PSR.2s 0.8025 0.8150 (0.05) 0.8113 0.7866

Full Model 0.8317 0.7733 (0.07) 0.8242 –∗

*The full model out-of-sample R2 in FHS is not provided as some of the potential covariates in UKB are not available in FHS data.

FIGURE 1 | Measured vs. predicted heights of probands. Based on 300 randomly selected individuals from the United Kingdom Biobank trio data not included in
predictor training in the PRS++ model (A), the PRS++ model without parental information (B), FHS using the PRS++ model fitted from United Kingdom Biobank
data (C), and FHS using the PRS++ model without parental information fitted from United Kingdom Biobank data (D). The gray lines represent a 95%
prediction interval.

power if we could identify families with data from both parents
and multiple offspring, especially those pedigrees where siblings
have significantly different height. Third, given that height
at childhood is prognostic for height at adulthood ref. (Wit

and Oostdijk, 2011), the model accuracy may be improved
by incorporating height at childhood, but we did not have
access to those data. Other variables to consider for future
study include status of certain diseases and lifestyle factors
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such as nutrition and exercise, or biomarker measurements
such as growth hormone levels. Fourth, some studies adjust the
phenotype for age and gender prior to the prediction analysis
rather than including them as predictors. Their idea is that
phenotype prediction is to see how well a phenotype can be
predicted for people in the same age, gender and ancestral group.
Therefore, the R2 reported in our study would not be directly
comparable to such studies because our study did include age and
gender as predictors.

In order to exclude disease as a confounder to our height
estimates, such as chronic illness, or congenital disorders, we
confirmed that none of the ∼3,000 samples included in our
study have aneuploidy. Of note, the offspring included in the
study cohort aged between 40 and 49, so that the growth would
have been completed while the height loss due to aging would
still be negligible.

In summary, our analyses demonstrated that parental
height contributes to predicting adult height, even after
accounting for a predictive value of >30,000 SNPs. Therefore,
it is crucial for future statistical models to consider
parental phenotypes that may potentially capture the missing
heritability better, for example, Alzheimer’s disease, obesity, and
cardiovascular disease.
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