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The Pan-Cancer Atlas consists of original sequencing data from various sources,

provides the opportunity to perform systematic studies on the commonalities and

differences between diverse cancers. The analysis for the pan-cancer dataset could help

researchers to identify the key factors that could trigger cancer. In this paper, we present

a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set

of genes that can differentiate all tumor types accurately. First, the Mutual Information

(MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then,

the gene data was further converted to 2D images. Next, the DenseNet model was

adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify

the key genes. Extensive experimental results on the public RNA-seq data sets with

33 different tumor types show that our method outperforms the other state-of-the-art

classification methods. Moreover, gene analysis further demonstrated that the genes

selected by our method were related to the corresponding tumor types.

Keywords: pan-cancer, cancer classification, DenseNet, guided grad-CAM algorithm, RNA-seq data

1. INTRODUCTION

Cancer, known as the “the king of the diseases,” is a serious threat to human health. In 2020,
1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States
(Siegel et al., 2020). Cancer accurate prediction in the early stage is a challenging subject that has
drawn worldwide concern due to the high morbidity and mortality of cancer (Kourou et al., 2015).
However, the existing medical equipment and clinical symptoms are not sensitive to the changes at
the molecular level, and it is difficult to make early diagnosis for potential patients. Some potential
patients cancer may be advanced when they are first diagnosed (Sakri et al., 2018), resulting in
increased mortality from cancer. If cancer can be detected early and treated appropriately, the
survival time of patients will be greatly increased. Therefore, identifying a set of genes that can
characterize the type and stage of cancer is the key to effective treatment. These genes may serve
as biomarkers to efficiently diagnose diseases and accurately classify cancer types. Furthermore,
since The Cancer Genome Atlas (TCGA) project was launched, TCGA project has so far generated
a pan-cancer atlas of 33 types of cancer. Therefore, extensive studies about pan-cancer have been
researched, among which pan-cancer classification is an important perspective.
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In recent years, advances in sequencing technology have led to
a significant decrease in the cost of accumulating biological data.
A large amount of biological data laid an important foundation
for researchers to identify some key cancer biomarkers and
enable accurate cancer classification prediction in the early stage.
However, the tough challenges also come from the characteristics
of these data (i.e., high dimensionality, severely limited samples
and containing a large portion of irrelevant genes), which hinders
the rapid and accurate cancer classification and prediction (Saeys
et al., 2007). In order to solve this problem, feature selection
techniques can be applied to analyze the possible cancer-causing
genes from massive cancer gene data. The feature selection aims
to represent high-dimensional data with fewer features while
improves the prediction accuracy of classification models. In
general, feature selection can be categorized into two types: filter
methods, wrapper methods (Huang et al., 2007). Usually, filter
methods have much less computational complexity compared
with othermethods. Some filtermethods, such asMI, IG (Martín-
Valdivia et al., 2008), Relief (Urbanowicz et al., 2018), have been
applied to data analysis for gene expression data well.

However, most traditional tumor classification studies only
focus on the same tumor type, the heterogeneity among different
tumor types is usually neglected (Lawrence et al., 2013; Lyu and
Haque, 2018). Tumor heterogeneity is reflected in the obvious
differences between different tumor cells at the molecular level
of genomic, transcriptomic, proteome and so on. Therefore,
in order to understand and capture the commonalities and
differences between diverse cancers, TCGA later launched the
Pan-Cancer analysis project (Weinstein et al., 2013). Pan-cancer
analysis is a study that integrates multiple tumor types. In
recent years, the research and analysis of pan-cancer have been
increasing gradually, and people hope to find the genes related
to tumors so as to accurately predict the type of cancer. It
has been suggested that specifications of therapies according
to tumor types differentiated may maximize the efficacy of the
patients (Golub et al., 1999; Alizadeh et al., 2000; Van’t Veer
et al., 2002). At present, there have been many studies (Kourou
et al., 2015; Li et al., 2017) using machine learning (ML)
algorithms to analyze pan-cancer data sets and demonstrate its
effectiveness in cancer classification and prediction. For example,
Li et al. proposed a GA/KNN method to classify 9,096 samples
from 31 different tumor types and obtained a set of genes
that could correctly classify 90% of the samples. Deep learning
has made unprecedented breakthroughs in various classification
tasks recently and has been widely applied due to its excellent
classification performance. A strength of deep learning is its
ability to learn end to end, automatically discovering multiple
levels of representation to achieve a prediction task (Wainberg
et al., 2018).

In the study, a deep learning approach, MI_DenseNetCAM
was proposed to classify 33 different types of tumors based
on high-dimensional RNA-Seq gene expression data. Then,
the Guided grad-CAM algorithm was used to identify the
key genes that played an important role in the classification
process. We evaluated the method with performance metrics
such as recall, precision and F1 score, and the results
demonstrate that the proposed method takes full advantage

of the information in the pan-cancer data sets and achieved
an overall test accuracy of 96.81%. Compared with the
existing methods, our proposed method provides superior
performance in the classification accuracy of 33 tumor types.
The main contributions of this paper can be summarized
as follows:

• For the noise and redundancy of the pan-cancer data
sets, the Min-Max normalization and MI was adopted to
preprocess the data, which can screen out the highly correlated
genes to improve the performance of the classification
model. Moreover, we evaluated the impact of different data
preprocessing strategies on the classification performance.

• For the pan-cancer data set, the DenseNet model was
utilized as a classifier to classify and predict tumor types.
Compared with other classifiers, the DenseNet model achieved
better performance whilst requiring fewer parameters and
computation cost.

• Extensive experiments and analyses have been carried out
on the pan-cancer data set in terms of evaluation indicators,
and the experimental results demonstrate that our proposed
method is very promising. Some of the genes identified by our
method have already been verified.

The remainder of this paper is organized as follows: In
section 2, we review related works. In section 3, the detailed
implementation of the proposed pan-cancer classification
method is elaborated. We described the experimental results and
analysis in section 4. Finally, we summarize the paper and discuss
the future works in section 5.

2. RELATED WORK

The goal of the pan-cancer analysis was to assemble data from
the separate disease projects to build a data set spanning multiple
tumor types (Weinstein et al., 2013). Through the analysis
and interpretation of these data to find the commonalities and
differences across various tumor types. At present, manymachine
learning and deep learning methods have been applied to the
analysis of pan-cancer data. Next, we conduct a review of the
latest studies in the field of pan-cancer analysis.

Hsu and Si (2018) focused on using machine learning (ML)
to build a reliable classification model which can recognize
33 types of cancer patients. They applied five ML algorithms,
namely decision tree (DT), k nearest neighbor (kNN), linear
support vector machine (linear SVM), polynomial support vector
machine (ploy SVM), and artificial neural network (ANN) to
analyze the data set of pan-cancer. The results show that linear
SVM with a 95.8% accuracy rate is the best classifier among the
five classification algorithms.

Kang et al. (2019) proposed a newmethod for the classification
of multiple tumor types by using relaxed Lasso selection feature
subsets and an improved support vector machine (GenSVM)
as the classifier. GenSVM is a general multiclass support
vector machine, which compared with the other three classifiers
(KNN, L1logreg, L2logreg) on the four multi-class datasets, the
experimental results showed that GenSVM has better generality,
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flexibility and achieve higher classification accuracy with fewer
features in multi-classification problems.

Li et al. (2017) undertook the development of a pan-cancer
atlas to recognize 9,096 TCGA tumor samples representing 31
tumor types. They applied k-nearest neighbors (KNN) to classify
31 different types of tumor, and embedded genetic algorithm
to improve the accuracy of the KNN classifier. This method
achieved an accuracy of 90% across 31 tumor types.

In recent years, the deep learning (DL) method was also used
to classify and identify cancer types. In paper (Danaee et al.,
2017) the author used a stacked auto-encoder first to extract high-
level features from the expression values and then input these
features into a single layer ANN network to decide whether the
sample is a tumor or not. The accuracy of using such a method
reached 94%. However, as to the multi-classification problem,
because this method has more complicated network structure
and parameter setting, in order to save time cost, the author only
conducted the experiments on breast cancer.

Khalifa et al. (2020) introduced a novel optimized deep
learning approach based on binary particle swarm optimization
with decision tree (BPSO-DT) and CNN to classify different types
of tumor. The results showed that the proposed method achieved
an overall testing accuracy of 96.6%. However, they classified
only five different tumor types (KIRC, BRCA, LUSC, LUAD, and
UCEC), and did not analyze all the pan-cancer data sets.

Lyu and Haque (2018) designed a newmethod that embedded
the high dimensional RNA-Seq data into 2-D images and used a
CNN to make classification of the 33 tumor types. This method
achieved 95.59% accuracy for all 33 tumor types. However,
the method proposed by Lyu et al. failed to achieve good
classification performance on tumor datasets with small samples,
which increases the risk of overfitting.

3. MATERIALS AND METHODS

In this section, a novel framework for the classification of pan-
cancer, referred to MI DenseNetCAM has been proposed. First,
we preprocess the original data set, and then embed the data
into a 2-D image. Then, we train a DenseNet model with
the generated images. Next, the trained model and Guided
Grad-Cam algorithm are applied to generate the heat map.
Furthermore, some important genes can be obtained. The
workflow of the proposed method is shown in Figure 1A.

3.1. Datasets
We conducted experiments to evaluate the proposed method
on the RNA-seq data sets of 33 types of cancers. RNA-seq, also
known as transcriptomic sequencing, can accurately analyze gene
expression differences and gene structure variations, and reveal
specific biological processes and molecular mechanisms in the
process of disease occurrence. Therefore, we use the normalized-
level3 RNA-seq gene expression data to construct our experiment
dataset. The datasets are available for download from http://gdac.
broadinstitute.org/. These data sets, which contain 33 different
tumor types. The data for each type of tumor is high-dimensional,
with 20,531 columns. Table 3 gives a detailed description of the
number of samples and genes in these datasets.

3.2. Data Preprocessing
Firstly, data from 33 different tumor types are collected and
integrated, and then the genes in the data set are compared with
the annotation files (downloaded from NCBI), so as to screen
out the genes that did not exist in the annotation files. About
1,000 genes were not found in the annotation file, therefore,
these 1,000 genes and corresponding expression levels need to be
removed from the data set. Secondly, genes are ordered based on
the chromosome number because adjacent genes are more likely
to interact with each other. Thirdly, the data set is normalized
by Min-Max normalization, which scales the data to a small
interval, thus leads to get the solution quickly. The Min-Max
normalization is defined by Equation (1).

y =
X − Xmin

Xmax − Xmin
(1)

Where X represents a column of data in the pan-cancer data set,
Xmin and Xmax represent the minimum and maximum values in
a column of data.

After normalization of gene data, we further adopted Mutual
Information (MI) to calculate the correlation between the gene
and the label to decide whether to select the gene. MI is a
feature ranking approach based on information entropy (Kraskov
et al., 2004; Martín-Valdivia et al., 2008). In the domain of
feature selection, Sharmin et al. (2019) used MI as a metric to
measure the degree of correlation between features and category
labels. The more mutual information between the two, the more
important this feature is. The mutual information between two
random variables X and Y is as follows:

I(X,Y) =
∑

x,y

P(x, y)log
P(x, y)

P(x)P(y)
(2)

Where, P(x,y) represents the joint probabilistic mass function,
P(x) and P(y) represent edge probability density functions. The
closer the relationship between X and Y is, the greater the value
of I(X, Y) will be. If the two variables are independent, the value
of I(X, Y) is 0.

When mutual information is applied to feature selection, then
random variable X represents the feature and random variable Y
represents the label, the value of I(X, Y) represents the correlation
between the ith feature and the label. The greater the value, the
greater the correlation between the feature and the label, and vice
versa. Therefore, we can sort features in terms of the information
entropy by MI method and select important features.

After mutual information, the number of genes was further
reduced to N. Through the subsequent experiment of different N
values, N is set to 3,600. Then, convert the data corresponding
to the selected important features into an image format. The
data from each sample are successively put into each pixel of the
image in order to reconstruct the data from a 1-D array into a
2-D image. In other words, the array with the shape of 3600*1 is
turned into a two-dimensional image with the shape of 60*60,
and the data needs to be normalized to [0,255]. The result of
this step is to generate images that correspond to the samples in
the dataset. The resulting 2-D images will be used to train the
DenseNet model.
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FIGURE 1 | The workflow of MI_DenseNetCAM. (A) Cancer classification and prediction through MI and deep learning combined analysis from pan-cancer datasets.

(B) Principle diagram of the Guided Grad-Cam algorithm.

FIGURE 2 | The structure of the DenseNet.
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3.3. Model Training
Deep neural models based on Convolutional Neural Network
(CNN) have enabled unprecedented breakthroughs in a
variety of image classification tasks, some famous architectures
such as Resnet (He et al., 2016a) and inception (Szegedy
et al., 2015) have excellent performance. In the Imagenet
(Deng et al., 2009) challenge, CNN achieved a significant
classification accuracy margin over classical machine learning
methods. However, with the increase of layers, the traditional
neural network will encounter a series of problems, such as
gradient vanishing, feature reuse decreasing, parameter number
increasing significantly, longer training time and classification
accuracy decreasing (He et al., 2016b). In order to solve these
problems, Huang et al. proposed a new method, DenseNet
(Huang et al., 2017), which is a convolutional neural network
with dense connections. Dense Net connects all layers directly
to each other to ensure the maximum information flow between
each layer in the network, in other words, the input of any next
layer in the network is the superposition of the output of all
previous layers. In this way, each layer can access the gradient
directly from the loss function and the original input signal,
yielding models that are easy to train and highly parameter
efficient. Further, the dense connections have a regularizing
effect, which reduces the risk of overfitting for small sample
training tasks (Huang et al., 2017). The structure of the DenseNet
is as shown in Figure 2.

The DenseNet model consists of four Dense Blocks, and each
Dense Block is composed of batch normalization layer (BN) +
ReLU + 1 × 1 convolutional layer (Conv 1×1) + BN + ReLU +
Conv 3 × 3. The layers between two adjacent blocks are referred
to as transition layers, which are composed of BN + ReLU + Conv
1× 1 +Average Pooling 2× 2. Pooling denotes the global average
pool and Linear denotes the fully connected layer.

The optimizer plays an extremely significant role in deep
learning training. It is used to update the weight parameters in
the training process, which is related to whether the training can
converge quickly and achieve high accuracy. In this paper, we use
the Adamoptimization algorithm. Comparedwith the traditional
stochastic gradient descent algorithm, the advantage of the Adam
algorithm is that it can design independent adaptive learning
rates for different parameters, so as to obtain a higher training
effect. For the classification task, cross entropy is generally used
as the loss function. Moreover, In order to get a better training
effect and ensure the robustness of the classification, make full
use of the generated 2-D images and obtain reliable and stable
models, we use 10-fold cross validation to evaluate the quality of
the model during the training of DenseNet.

3.4. Screen Out Important Genes
After the DenseNet model is trained, the important genes can
be obtained through two stages. First, the Guided Grad-Cam
algorithm can be applied to generate heat maps, it can locate
the regions related to categories in the image, indicating why
the convolutional neural network is classified in this way. Then,
match the high-intensity pixels in the heat map with the gene
names in the original data set to obtain the important genes that
contribute more to the classification.

The Guided Grad-Cam algorithm provides a technique for
visual interpretation of how the convolutional neural network
model makes decisions. The detailed procedure for generating
heat map through the Guided Grad-Cam algorithm is as follows.

• Step1 Obtain Gradient maps
First, the Guided backpropagation algorithm is used to
calculate the gradient of the convolutional layer’s feature value
relative to the input layer, so as to obtain the feature gradient
maps.

• Step2 Obtain Activation maps
After feature extraction of the original image through the
convolutional layer and the pooling layer, the convolutional
neural network output a set of feature maps. A pixel in the
feature map corresponds to a region in the original image.
If the product of pixel value and weight in the feature map
is >0, CNN believes that this region in the original image
has features related to categories. The Guided Grad-Cam
algorithm calculates the average gradient of each feature map
relative to the classification probability to obtain a set of
weights. After calculating the weights of all the feature maps,
the weighted sum with the feature maps can be used to obtain
the activation maps. Finally, the activation maps are processed
using the ReLU activation function, retaining only the features
of the activation maps that are useful for the category. If
you do not add the ReLU activation function, you will bring
in pixels belonging to other categories, which will affect the
interpretation.

• Step3 Obtain Heat maps
Superposition the gradientmaps and activationmaps to obtain
the heat map for visualization of the convolutional neural
network. The heat map shows the extent to which the pixel
at the corresponding position in the original image affects
the classification result. The overall structure of the Guided
Grad-Cam algorithm is shown in Figure 1B.

Based on the DenseNet model and the Guided Grad-Cam
algorithm, we can obtain heat maps with high resolution and
category discriminability for displaying the importance of genes.
Since the Guided Grad-Cam algorithm generates a heat map for
each input image, in order to avoid the influence of noise on the
experimental results, we averaged all the heat maps. In addition,
the intensity of the pixel value in the heat map represents the
influence of the pixel at the corresponding position in the original
image on the classification result, so the gene corresponding to
the position with the largest pixel value in the heat map is an
important feature. In other words, the higher the pixel value
and the higher the intensity in the heat map, the greater the
contribution of these pixels to the final classification, that is their
existence affects the classification most. So, important genes can
be realized by looking for points with high pixel intensity in the
heat map. The specific methods to achieve the following.

When the gene expression data is converted into 2D images,
the corresponding expression values of each gene are sequentially
mapped to the pixels in the images, as shown in Figure 1A. In
order to screen out the important genes, firstly, we can convert
the pixel value in the heat map into a 1D array based on their
original order. Then, find out the index corresponding to the
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maximum pixel value, the corresponding gene name can be
found from the original data according to the index value.

4. EXPERIMENTS AND RESULTS

In order to verify the performance of our method, we
compared it with the other four state-of-the-art methods, namely
MI KNN, Relaxed Lasso and generalized multi-class support
vector machine (rL-GenSVM) (Kang et al., 2019), Variance CNN
(Var CNN) (Lyu and Haque, 2018) and ExtraTrees-SVM (ET-
SVM) (Hsu and Si, 2018). These methods can realize multiple
classification and feature selection of tumors, and have achieved
a good classification effect in biomedical data. Our experiment
consists of two parts. Firstly, we conducted an experiment on the
classification performance of the model to verify that our method
could achieve better classification effect in 33 different tumor
types. Then, we evaluated the corresponding classification errors
of 5 methods when selecting different gene numbers, indicating
that our method can obtain a better subset of features. All
experiments were executed on a computer server with Windows
7 operating system, Intel Core(TM) i7-10700 CPU (2.9 GHz),
32 GB RAM, 8 GB Nvidia GeForce RTX 2080 SUPER, using
Python language.

4.1. Evaluation Metrics
Since pan-cancer classification is a multi-classification problem,
we use accuracy to measure the performance. At the same
time, to evaluate the performance of the proposed architecture,
more performance measures need to be investigated in this
research. There are also precision, recall and F1Score (Goutte
and Gaussier, 2005) to measure performance in a classification
problem. The evaluation indicator is defined as follows.

Accuracy: the ratio of the number of samples correctly
classified by the classifier to the total number of samples for a
given test data set. The calculation formula is shown below.

Acc =
TP + TN

TP + FP + FN + TN
(3)

Precision: It represents how many of the samples predicted to be
positive are correct. The calculation formula is shown below.

P =
TP

TP + FP
(4)

Recall rate: This is howmuch of the positive sample was predicted
correctly. The calculation formula is shown below.

R =
TP

TP + FN
(5)

F1-Score: The harmonic mean of the precision rate and recall
rate. It is a combination of precision rate and recall rate. The
calculation formula is shown below.

F1Score =
2PR

P + R
(6)

This research uses the 10-fold cross-validation to calculate
accuracy, precision, recall and F1Score.

TABLE 1 | Parameter settings.

Algorithm Parameter

MI DenseNetCAM learning_rate = 0.0001, num_epochs=200,

batch_size = 32, growth_rate = 16,

compression_factor = 0.5, image_dimension = 60

MI KNN n_neighbors = 5

Var CNN learning_rate = 0.0001, num_epochs = 200,

batch_size = 500

rL-GenSVM phi = 1/3, p = 1, kernel = “rbf,” epsilon = 1e-3,

lambda = 1e-9, gama = 1e-8, kappa = 2

ET-SVM C = 0.004, kernel = “linear,”

decision_function_shape = “ovo,” gama = 1

TABLE 2 | The experimental results of five methods.

Method Accuracy Precision Recall F1-Score

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

MI KNN 92.61% 92.46% 92.61% 92.40%

Var CNN 95.59% 95.54% 95.59% 95.43%

rL-GenSVM 87.29% 87.73% 87.29% 86.91%

ET-SVM 90.73% 90.22% 90.73% 89.99%

4.2. Parameters Settings
In this section, the parameter values of all methods are given
in Table 1. For Var CNN, rL-GenSVM and ET-SVM, we chose
parameter values according to relevant literature (Hsu and Si,
2018; Lyu and Haque, 2018; Kang et al., 2019). For the proposed
method, the values of growth rate and compression factor are set
to 16, 0.5, respectively, which has been analyzed and evaluated in
previous studies (Huang et al., 2017). Based on our experimental
analysis, the value of image dimension is set to 60. Similar
to Var CNN, we take the same value for learning rate and
num epochs.

4.3. Comparison With Other Methods
In this section, we compare the average accuracy, precision, recall
and F1-score of MI KNN, Var CNN, rL-GenSVM and ET-SVM
algorithm. The overall classification results of these methods on
33 tumor types are shown in Table 2.

It can be seen from Table 2, in terms of accuracy, precision,
recall and f1-score, the proposed method MI DenseNetCAM
performs best on the pan-cancer datasets. At the same time, a
comparison of accuracy as to each class is shown inTable 3. From
the previous two experiments, we can see that DenseNet has
higher accuracy when using the same preprocessing algorithm.
Then, we compared the method with that in the literature (Lyu
and Haque, 2018), which makes a similar contribution to our
study. Although the overall classification result is only 1.22%
higher thanVar CNN algorithm, in terms of the specific accuracy
of each class, our method performs better. Especially in ACC,
CESC, CHOL, ESCA, MESO and PAAD datasets. Meanwhile,
compared with Var CNN algorithm, our method also has better
performance in small sample datasets. The accuracy of our
method is 100, 75, and 99% respectively for dataset ACC, CHOL
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TABLE 3 | Benchmark datasets.

Tumor type Cohort Instances MI Dense NetCAM MI KNN Var CNN rL-GenSVM ET-SVM

Adrenocortical carcinoma ACC 79 1 0.95 0.95 0.63 0.92

Bladder urothelial carcinoma BLCA 408 0.98 0.87 0.97 0.53 0.78

Breast invasive carcinoma BRCA 1093 0.99 0.99 0.99 0.92 0.99

Cervical and endocervical cancers CESC 304 0.95 0.88 0.93 0.65 0.86

Cholangiocarcinoma CHOL 36 0.75 0.58 0.56 0.40 0

Colon adenocarcinoma COAD 457 0.95 0.99 0.95 0.82 0.98

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 48 1 1 1 1 1

Esophageal carcinoma ESCA 184 0.85 0.69 0.77 0.50 0.45

Glioblastoma multiforme GBM 160 0.95 0.92 0.94 0.83 0.81

Head and Neck squamous cell carcinoma HNSC 520 0.99 0.95 0.98 0.96 0.94

Kidney Chromophobe KICH 66 0.89 0.75 0.87 0.80 0.64

Kidney renal clear cell carcinoma KIRC 533 0.94 0.93 0.95 0.89 0.95

Kidney renal papillary cell carcinoma KIRP 290 0.94 0.86 0.93 0.82 0.83

Acute Myeloid Leukemia LAML 179 1 1 1 1 1

Brain Lower Grade Glioma LGG 516 1 0.95 0.98 0.96 0.98

Liver hepatocellular carcinoma LIHC 371 0.97 0.96 0.97 0.91 0.96

Lung adenocarcinoma LUAD 515 0.95 0.91 0.95 0.91 0.96

Lung squamous cell carcinoma LUSC 501 0.93 0.85 0.91 0.84 0.82

Mesothelioma MESO 87 0.99 0.95 0.94 0.89 0.62

Ovarian serous cystadenocarcinoma OV 304 1 0.98 0.99 1 1

Pancreatic adenocarcinoma PAAD 178 1 0.97 0.97 0.95 0.64

Pheochromocytoma and Paraganglioma PCPG 179 1 0.99 1 0.95 0.96

Prostate adenocarcinoma PRAD 497 0.99 1 1 0.96 0.99

Rectum adenocarcinoma READ 166 0 0 0.35 0 0

Sarcoma SARC 259 0.98 0.95 0.97 0.74 0.98

Skin Cutaneous Melanoma SKCM 469 0.98 0.97 0.98 1 0.96

Stomach adenocarcinoma STAD 415 0.96 0.90 0.96 0.93 0.98

Testicular Germ Cell Tumors TGCT 150 1 0.99 0.99 1 0.83

Thyroid carcinoma THCA 501 1 1 1 1 0.99

Thymoma THYM 120 1 0.98 0.99 1 0.91

Uterine Corpus Endometrial Carcinoma UCEC 545 0.95 0.92 0.96 0.95 0.78

Uterine Carcinosarcoma UCS 57 0.83 0.72 0.81 0.83 0

Uveal Melanoma UVM 80 1 1 0.99 1 1

and MESO, and the results are higher than the accuracy obtained
by Var CNN. whose accuracy is 95, 56, and 94% respectively.
Since the Guided Grad-CAM algorithm generates heat maps
based on the prediction results of each class, the higher the
precision in each class, the more likely it is to use heat maps
to obtain the optimal subset of features. Moreover, our method
requires fewer parameters and uses parameters more efficiently,
which can be reflected in the size of the model. our model
only uses 13.9 M parameters to achieve an accuracy of 96.81%,
while the model of Var CNN uses 295 M parameters to achieve
an accuracy of 95.59%. To achieve a similar level of accuracy,
our method only requires around 1/21 of the parameters of
Var CNN. Finally, we compared some of themethods introduced
in the related work, and the results show that our method also
shows superior performance.

Next, we further evaluated the performance of our proposed
method. First, we conducted experiments on theDenseNetmodel

without any preprocessing. In terms of Accuracy, Precision,
Recall and F1-Score, the DenseNet model without preprocessing
can achieve 93.90, 94.03, 93.90, and 93.89% respectively. Then, we
evaluated the effects of different preprocess strategies (Variance,
Chi2, F-Test, MI) on the classification performance. The
experimental results are shown in Table 4. It can be seen from
Table 4 that preprocessing based on ML can further improve
the accuracy of the classifier. Meanwhile, compared with other
methods, MI has better performance on all indicators.

4.4. The Impact of Classifiers on
Performance
To further evaluate the impact of different classifiers on the
performance of our method, four classifiers, namely KNN, CNN,
SVM and DenseNet, are selected to conduct experiments on
the pan-cancer data set. The experimental results are shown
in Table 5. Compared with the other three classifiers, the
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TABLE 4 | The performance evaluation results of different preprocess strategies.

Method Accuracy Precision Recall F1-Score

Var DenseNet 94.46% 94.62% 94.46% 94.37%

Chi2 DenseNet 95.42% 95.54% 95.42% 95.40%

FTest DenseNet 95.03% 95.20% 95.03% 95.01%

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

TABLE 5 | The performance evaluation results of four different classifiers.

Classifiers Accuracy Precision Recall F1-Score

MI KNN 92.61% 92.46% 92.61% 92.40%

MI CNN 94.30% 94.37% 94.30% 94.28%

MI SVM 91.53% 91.67% 91.53% 90.97%

MI DenseNetCAM 96.81% 96.89% 96.81% 96.85%

TABLE 6 | The performance evaluation results of different image dimensions.

Dimensions Accuracy Precision Recall F1-Score

30 * 30 93.60% 93.54% 93.60% 93.46%

50 * 50 95.03% 94.82% 95.03% 94.85%

60 * 60 96.81% 96.89% 96.81% 96.85%

70 * 70 95.22% 95.41% 95.22% 95.23%

90 * 90 94.17% 94.18% 94.17% 94.07%

110 * 110 92.93% 93.18% 92.93% 92.81%

130 * 130 93.41% 93.88% 93.41% 93.34%

DenseNet model shows better performance in terms of different
evaluation indicators.

4.5. The Impact of Image Dimensions on
Performance
To further evaluate the impact of image dimension on the
performance of the proposed method, in this section, various
image dimensions are adopted to conduct experiments. The
experimental results are shown in Table 6. As can be seen from
Table 6, MI DenseNetCAM achieves the best performance when
the image dimension is set to 60.

4.6. Evaluate Important Genes
However, discovering some key genes quickly will reduce the
workload of following biological experiments, and help the rapid
disease diagnosis. As a result, it is meaningful to obtain small gene
sets with high classification accuracy. For the issue, we further
evaluated the classification performance for all methods based
on small scale genes ranges from 20 to 200. The experimental
results are shown in Figure 3. The results show that the proposed
MI DenseNetCAM is superior to other methods. It can achieve
83.24% accuracy only using 20 genes.

As can be seen from Figure 3, in terms of classification
accuracy, MI_DenseNetCAM has the best effect, which is
obviously superior to the other four methods, while the rL-
GenSVMmethod has the worst effect, with the accuracy can only

be up to 86%. For the other three methods of MI KNN, ET-SVM
and Var CNN, although their performance is unsatisfactory in
the case of a small number of genes, their accuracy is improved
with the increase of the number of genes. Compared with the
other four methods, MI DenseNetCAM usually requires fewer
genes under the condition of the same precision. For example,
with the highest accuracy of 86% of rL-GenSVM as the baseline,
we compared the number of genes needed to achieve this
accuracy with other methods. MI DenseNetCAM only requires
25 genes to achieve this accuracy, while ET-SVM requires 70
genes, Var CNN requires 85 genes, and MI KNN requires the
most. It requires 130 genes. In addition, from Figure 3, it is
obvious that MI DenseNetCAM can obtain higher prediction
accuracy than the other fourmethods when dealing with the same
number of genes. Therefore, both in terms of the number of genes
and accuracy, our method can achieve better performance.

4.7. Gene Analysis
In this section, we conduct further analysis and verify the selected
genes by the proposed method. These genes selected by our
proposed method are lists in Table 7.

We selected 40 genes for further analysis, because it can be
seen from Figure 3 that the accuracy of 40 genes was already
very high, and the accuracy did not improve significantly with
the increase of the number of genes. Next, the KEGG pathway
analysis results for 40 genes are obtained using the David website
(https://david.ncifcrf.gov/), trying to find out if significantly
enriched pathways are related to the tumor. Pathway analyses
showed those genes were significantly enriched in 31 KEGG
pathways [Log10(P) <−2 or P <0.01], which mainly involved
in complement activation, cell projection, cellular response,
cellular activities such as adhesion, migration, differentiation,
proliferation, and apoptosis (Table 8). Some of these pathways
are already involved in cancer development. For example,
hsa04610 might contribute to the progression of bladder cancer
(Liu et al., 2020). The hsa05133 pathway is related to the hsa04610
pathway, so it also promotes bladder cancer formation. In the
hsa04611 pathway, cancer cells migrate to the vasculature and
interact with platelets, causing inflammation and promoting
mesothelioma growth (Jurasz et al., 2004; Sekido, 2013). The
hsa04512 pathway interaction is involved in six critical cancer
hallmarks (Pickup et al., 2014). So, the related genes in these
pathways can then be viewed as tumor specific biomarkers.

For other genes that are not significantly enriched in the
pathway, we can retrieve these genes from theGeneCard database
(www.genecards.org/). GeneCard is a searchable, comprehensive
and public database containing genetic analysis data that
provides concise information on all known and predicted human
genes in the genome, proteome, transcription, genetics and
function. GeneCard is a comprehensive database of human genes.
So the easiest way to see a summary of a gene is to use GeneCard.

As to COAD(Colon adenocarcinoma), LGALS4 is associated
with the colon. LGALS4 is a Protein Coding gene, the expression
of this gene is restricted to the small intestine, colon, and
rectum, and it is under-expressed in colorectal cancer. In the
paper (Kim et al., 2013), the authors have demonstrated that
LGALS4 is predominantly expressed in the luminal epithelia of
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FIGURE 3 | The Classification accuracy of different gene numbers.

the gastrointestinal tract, and its loss of expression plays a key
role in colorectal tumorigenesis.

As to GBM(Glioblastoma multiforme), It is a primary brain
tumor that develops from astroglial cells. The gene GFAP selected
by our method is a protein-coding gene. This gene encodes one
of the major intermediate filament proteins of mature astrocytes.
It is used as a marker to distinguish astrocytes from other glial
cells during development. In the paper (Heiland et al., 2019),
the authors demonstrated that tumor associated glial cells are
widespread in GBM. In the paper (Tichy et al., 2016), the authors
demonstrated that the GFAP gene was over-expression in GBM
and that GFAP could be considered as a biomarker of astrocytic
pathology in neurological diseases.

As to LUSC(Lung squamous cell carcinoma), The gene
SFTPA2 selected by our method is a protein-coding gene. This
gene is one of several genes encoding pulmonary-surfactant
associated proteins (SFTPA) located on chromosome 10.
Mutations in this gene and a highly similar gene located nearby,
which affect the highly conserved carbohydrate recognition
domain, are associated with idiopathic pulmonary fibrosis. In the
paper (Peng et al., 2015), the authors demonstrated that SFTPA2
encodes surfactant protein A that plays a vital role in maintaining
normal lung function and has been implicated in various lung
diseases, which can accurately distinguished lung cancer from
other cancer samples.

As to OV(Ovarian serous cystadenocarcinoma), A product of
the MUC1 gene of the genes selected by our method has been
used as a marker for different cancers. MUC1 is a Protein Coding
gene. In the paper (Hu et al., 2006), the authors demonstrated
that MUC1 overexpresses in the majority of ovarian carcinomas
and contributes to the metastasis process, promotes tumor
formation and metastasis. It plays a role in contributing to
ovarian tumor growth.

TABLE 7 | Selected genes.

Number of genes The name of the gene

40 GSTA1, C4A, COL3A1, PABPC1,

COL1A1, KRT13, S100A6, SERPINA1,

FGA, MUC2, COL1A2, APOE, KRT5,

MALAT1, GFAP, TUBA1A, KRT14, KLK1,

ATP1A1, RGS5, SPP1, CLU, S100A9, TF,

APOC1, MUC1, ADAM6, SFTPA2, BCAM,

TTR, CHGA, SCG2, FASN, PDLIM5,

LGALS4, CA2, MYH11, SILV, PGC, TG

As to STAD(Stomach adenocarcinoma), The gene PGC
selected by our method is a protein-coding gene. The protein
encoded by this gene is a digestive enzyme produced in
the stomach, Polymorphisms in this gene are associated with
susceptibility to gastric cancers. In the paper (Shen et al., 2017),
the authors demonstrated that PGC is a comparatively ideal
negative marker of gastric cancer.

As to TCHA(Thyroid carcinoma), The S100A6 gene selected
by our method is a protein-coding gene. In the paper (Sofiadis
et al., 2010), the authors demonstrated that the expression
patterns of S100A6 in thyroid carcinoma are unique compared
with those of other carcinomas, and over-expression in thyroid
carcinoma. S100A6 gene can be used as a biomarker of
Thyroid carcinoma.

In order to more visually show the expression of genes in
different tumor samples, we can use heat maps to understand
the distribution of data or the differential expression of genes.
In the heat map, the gradient color is used to represent the
change of values. The data value size can be visually represented
by the defined color depth. In addition, each column represents
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TABLE 8 | The KEGG pathway analysis.

KEGG Pathways Description P-Value Genes

hsa04610 Complement and coagulation cascades 9.50E-09 C3,CLU,C4A,FGA,SERPINA1

hsa05133 Pertussis 6.40E-07 C3,CALML3,SFTPA2,C4A

hsa04974 Protein digestion and absorption 1.22E-06 COL3A1,COL1A2,ATP1A1,COL1A1

hsa05146 Amoebiasis 1.50E-06 COL3A1,MUC2,COL1A2,COL1A1

hsa04611 Platelet activation 4.19E-06 COL3A1,COL1A2,FGA,COL1A1

hsa04918 Thyroid hormone synthesis 3.80E-05 TG,ATP1A1,TTR

hsa04971 Gastric acid secretion 3.95E-05 CALML3,CA2,ATP1A1

hsa04933 AGE-RAGE signaling pathway in diabetic complications 9.05E-05 COL3A1,COL1A2,COL1A1

hsa04926 Relaxin signaling pathway 1.93E-04 COL3A1,COL1A2,COL1A1

hsa04964 Proximal tubule bicarbonate reclamation 2.02E-04 CA2,ATP1A1

hsa04915 Estrogen signaling pathway 2.29E-04 CALML3,KRT14,KRT13

hsa04145 Phagosome 3.02E-04 C3,TUBA1A,SFTPA2

hsa04979 Cholesterol metabolism 8.78E-04 APOE,APOC1

hsa04961 Endocrine and other factor-regulated calcium reabsorption 8.78E-04 KLK1,ATP1A1

hsa04978 Mineral absorption 9.82E-04 TF,ATP1A1

hsa05150 Staphylococcus aureus infection 1.58E-03 C3,C4A

hsa04976 Bile secretion 1.77E-03 CA2,ATP1A1

hsa04512 ECM-receptor interaction 2.49E-03 COL1A2,COL1A1

hsa04970 Salivary secretion 2.71E-03 CALML3,ATP1A1

hsa04972 Pancreatic secretion 3.20E-03 CA2,ATP1A1

hsa04925 Aldosterone synthesis and secretion 3.20E-03 CALML3,ATP1A1

hsa04916 Melanogenesis 3.39E-03 CALML3,TYRP1

hsa04270 Vascular smooth muscle contraction 5.65E-03 CALML3,MYH11

hsa05322 Systemic lupus erythematosus 5.73E-03 C3,C4A

hsa04910 Insulin signaling pathway 6.07E-03 CALML3,FASN

hsa05418 Fluid shear stress and atherosclerosis 6.24E-03 CALML3,GSTA1

hsa01100 Metabolic pathways 6.77E-03 TYRP1,BCAM,FASN,GSTA1,CA2

hsa04261 Adrenergic signaling in cardiomyocytes 7.12E-03 CALML3,ATP1A1

hsa04022 cGMP-PKG signaling pathway 8.84E-03 CALML3,ATP1A1

hsa04530 Tight junction 9.14E-03 MYH11,TUBA1A

hsa05010 Alzheimer disease 9.24E-03 CALML3,APOE

the expression of each gene in different samples, and each row
represents the expression of all genes in each sample. A heat map
representation of the relative expression levels of the top 40 genes
across all tumor samples is shown in Figure 4.

From Figure 4, we were able to look at the level of expression
of each gene in all tumor types. The use of heat maps is
more indicative of the relationship between genes and samples.
For example, the gene of GFAP was highly expressed in LGG
and GBM and low in all other tumors. The gene of LGALS4
was moderately expressed in COAD and READ and low in all
other tumors. The heat map visually shows that these genes are
differential expression in different tumor samples, which also
demonstrates the effectiveness of our proposed method. It is
feasible to identify biomarkers with our proposed method.

These results indicate that the genes selected by our
method are closely related to the corresponding tumor
types, and therefore we can use these selected genes as
biomarkers to distinguish different tumors. For the rest of
the genes (PABPC1, KRT5, MALAT1, RGS5, SPP1, S100A9,

ADAM6, CHGA, SCG2, PDLIM5, SILV), they were neither
significantly enriched in the pathway nor found to be
tumor-related in GeneCard. The role of these genes in
tumor development is unclear, so, pending further study by
biological researchers.

5. CONCLUSIONS AND FUTURE WORKS

In recent years, with the rapid development of the new generation
of gene sequencing technology, the generated bioinformatics
data such as gene, protein and metabolism are generally high-
dimensional and complex. There are a lot of important data
closely related to life and health in these data. However, due
to the high data dimension, it is impossible to analyze all the
data. Feature selection technology can effectively screen high-
dimensional data, reduce the workload of data analysis by
reducing dimensions, find disease-related markers to achieve
early and accurate diagnosis.
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FIGURE 4 | The heat map of the top 40 genes across all tumor samples.

In this paper, we have designed a novel approach to
classify different types of cancer, whilst it can be used to find
biomarkers associated with tumors. We identified biomarkers
that were significantly associated with the pan-cancer studies
by innovatively combining the traditional machine learning
model and deep learning. The presented results and the
performance metrics performed in this research showed that
the proposed approach achieved an overall testing accuracy
of 96.81%. Moreover, the results of our experiment also
demonstrated that the genes selected by our method were
related to the corresponding tumor types by means of KEGG
pathway analysis and gene query, some of these genes have
been used as clinical markers. These biomarkers can be used
to quickly identify the type of tumor, so as to detect and
treat the tumor in advance and improve the cure rate of
the tumor.

The methods presented in this paper are not limited to RNA-
Seq data, but also applicable to other types of data. However, the

method in this paper still needs improvement. For example, the
preprocessing strategy of our method includes not only the filter
approach, but also the wrapper approach. So, one of the potential
future works is applying a new preprocessing strategy to verify
and extend this approach. In conclusion, a novel approach for
the classification of pan-cancer has been proposed in this paper,
which can accurately predict the type of tumor and find tumor-
related biomarkers from high-dimensional biological datasets,
have broad application prospects and great scientific research
prospects, and is of great significance to human development.
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