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N6-methyladenosine (m6A) RNA methylation regulators play an important role in the
occurrence and development of tumors. Here, we aimed to identify the potential roles
of m6A RNA methylation regulators in immune infiltrates of ovarian cancer. We obtained
two distinct m6A patterns (m6Acluster.A and m6Acluster.B) based on the expression
levels of all 21 m6A RNA methylation regulators from The Cancer Genome Atlas (TCGA)
database using a consensus clustering algorithm. Differential analysis of m6Acluster.A
and m6Acluster.B identified 196 m6A-related genes. We further validated the m6A
regulation mechanism based on the 196 m6A-related genes using another consensus
clustering algorithm. Considering individual differences, principal component analysis
algorithms were used to calculate an m6A score for each sample in order to quantify the
m6A patterns. A low m6A score was associated with immune activation and enhanced
response to immune checkpoint inhibitors, whereas a high m6A score was associated
with tumor progression. Finally, we successfully verified the correlation between m6A
regulators and immune microenvironment in OC using our microarray analysis data.
In summary, m6A regulators play non-negligible roles in immune infiltrates of ovarian
cancer. Our investigation of m6A patterns may help to guide future immunotherapy
strategies for advanced ovarian cancer.

Keywords: m6A RNA methylation regulators, immune cell infiltrates, immune checkpoint inhibitors, consensus
clustering algorithm, ovarian cancer

INTRODUCTION

Ovarian cancer is the deadliest gynecological malignancy because of its insidious onset and lack
of effective early detection indicators (Siegel et al., 2018; Yang et al., 2020). The current standard
treatment regimen involves ovarian tumor cell reduction plus platinum-based chemotherapy.
However, most patients experience relapse within 12–24 months and die due to chemotherapy
resistance (Chen et al., 2018; Maas et al., 2020). Therefore, it is critical to explore the pathogenesis
of ovarian cancer and identify novel treatment strategies.

Methylation of the adenosine base at the N6 position, termed N6-methyladenosine (m6A), is an
important epigenetic modification that requires the collective participation of multiple regulatory
proteins (Hong, 2018). Regulators of m6A, the most abundant form of RNA modification, play
significant roles in RNA processing, transportation, localization, translation, and degradation
(Zhao et al., 2018). Numerous lines of evidence suggest that m6A regulators are involved in
cell death, proliferation, immunomodulation, drug resistance, invasion, and tumor metastasis
(Liu et al., 2020; Xu et al., 2020; Xue et al., 2020). Jiang et al. (2020) reported that the RNA
demethylase ALKBH5 promotes the development of ovarian cancer in a simulated tumor
microenvironment through stimulation of the nuclear factor-κB pathway. YTHDF2, an m6A
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mRNA reader inhibited by miR-145, plays a role in the
proliferation, migration, and apoptosis of ovarian cancer cells (Li
et al., 2020). YTHDF1 can upregulate the expression of TRIM29
to promote cisplatin resistance in ovarian cancer (Hao et al.,
2021). However, there has been no comprehensive analysis of
the relationship between m6A regulators and immune infiltrates
of ovarian cancer.

Recent studies have shown that the tumor microenvironment
(TME) is a key factor in tumor growth, metastasis, and regulation
of the tumor immune response (Ngwa et al., 2019). Tumor
immunotherapy implements the principle of immunology to
reactivate and enhance the body’s anti-tumor immune response
in specific ways, for example by using the immune system
to eliminate tumor cells in order to suppress tumor growth.
Immune checkpoint molecules, including CTLA-4, PD-1, TIM-
3, LAG3, and TIGIT, are co-inhibitory molecules expressed on
the surface of T cells that negatively regulate T cell signaling
pathways and play an important role in inhibiting the anti-
tumor immune activation of T cells (Velcheti and Schalper, 2016).
Several immune checkpoint inhibitors (ICIs), such as Nivolumab,
Pembrolizumab, Atezolizumab, Avelumab, and Durvalumab,
have been approved by the United States. Food and Drug
Administration for the treatment of advanced melanoma, non-
small cell lung cancer, kidney cancer, stomach cancer, and
liver cancer (Wang et al., 2019). However, there is limited
experimental evidence to suggest that ovarian cancer benefits
from ICIs used as single agents or in combination.

In this study, we aimed to comprehensively analyze the
relationship between m6A regulators and immune infiltrates of
ovarian cancer. The findings of this study may help to guide
future therapeutic strategies for advanced ovarian cancer.

MATERIALS AND METHODS

Data Acquisition
The transcriptome profiling datasets of 379 ovarian cancer
samples, single-nucleotide variations of 436 ovarian cancer
samples, and corresponding clinical information were
downloaded from TCGA database1. The 21 m6A regulators
included 8 writers (METTL3, ZC3H13, METTL14, RBM15B,
CBLL1, WTAP, RBM15, and KIAA1429), 2 erasers (FTO and
ALKBH5), and 11 readers (YTHDC1, YTHDC2, ELAVL1,
YTHDF1, LRPPRC, YTHDF2, FMR1, YTHDF3, HNRNPC,
HNRNPA2B1, and IGF2BP1) (Zhang et al., 2020).

Specimen Collection
A total of 60 ovarian cancer samples were collected at
ShengJing Hospital of China Medical University (Shenyang,
China) from August 2019 to February 2021. The inclusion
criteria for patients with ovarian cancer were: (1) High-grade
serous ovarian cancer diagnosed by postoperative pathology;
(2) Absence of chemotherapy, radiotherapy, immunotherapy,
and other treatments before surgery; (3) No history of other
tumors or ovary-related diseases. This study was approved

1https://portal.gdc.cancer.gov/

by the ethics committee of the ShengJing Hospital of China
Medical University, and informed consent was obtained from
all patients. Then, mRNA expression microarray for the 60
ovarian cancer samples was performed in Kangcheng Biological
(Shanghai, China) for validation analysis. The chip used
Arraystar Human mRNA Microarray V4.0 (Arraystar, Rockville,
MD, United States). The GeneSpring GX software V12.1 software
(Agilent Technologies, Palo Alto, CA, United States) was used for
quantile standardization of the original data.

Consensus Clustering of the 21 m6A
Regulators
We selected the gene expression data of the 21 m6A regulators
from the transcriptome profiling datasets in order to identify
distinct m6A patterns using a consensus clustering algorithm.
The “ConsensusClusterPlus” package in R software (The R
Foundation, Vienna, Austria) was used, and 1,000 repetitions
were performed to ensure the stability of the classification
(Wilkerson and Hayes, 2010).

Consensus Clustering of the
m6A-Related Genes
Differentially expressed genes between distinct m6A patterns
were screened using the “limma” package in R. The genes with
P < 0.01 and | log2 fold change≥ 2| were considered significantly
different in expression and categorized as m6A-related genes
(Ritchie et al., 2015). Next, a consensus clustering algorithm was
used to identify distinct m6A gene patterns based on the m6A-
related genes, and 1,000 repetitions were performed to ensure the
stability of the classification.

Gene Ontology Functional Enrichment
Analysis
Gene ontology (GO) analysis is a common method for annotating
genes that can be used to identify gene enrichment in the
biological process, cellular component, and molecular function
categories. Along with the GO database, the enrichment function
of m6A-related genes was analyzed and visualized using the
“clusterProfiler” package in R. A significant enrichment with a
statistically significant difference was determined based on the
following conditions: a false discovery rate < 0.05 and adjusted
P < 0.05 (Pomaznoy et al., 2018; Vinterhalter et al., 2020).

Calculation of the m6A Score for Each
Sample
Considering the individual differences, principal component
analysis (PCA) algorithms were used to calculate an m6A score
for each sample in order to quantify the m6A patterns. The
PCA algorithm focuses on the largest set of highly related
(or unrelated) gene blocks in the set and down-weights the
contributions of those genes that are not tracked with other set
members. According to a previous study (Zhang et al., 2020), we
first distinguished the m6A gene patterns using PCA. Next, the
m6A score was calculated according to the following formula:
m6A score = 6 (PC1i + PC2i), where PC1 represents principal

Frontiers in Genetics | www.frontiersin.org 2 July 2021 | Volume 12 | Article 671179

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671179 July 1, 2021 Time: 16:4 # 3

Gu and Bi m6A Regulators in Ovarian Cancer

FIGURE 1 | Landscape of the 21 RNA N6-methyladenosine (m6A) regulators in ovarian cancer from The Cancer Genome Atlas (TCGA) database. (A) The mutation
characteristics of the 21 m6A regulators in 436 samples from TCGA-OV dataset. (B) The correlation coefficients of the 21 m6A regulators obtained by Pearson
correlation analysis. (C) The mutation co-occurrence and exclusion analyses of the 21 m6A regulators. (D) The univariate Cox regression model used to evaluate the
prognostic value of the 21 m6A regulators in ovarian cancer (*P < 0.05).

component 1, PC2 represents principal component 2, and i
represents the m6A-related genes.

Statistical Analysis
All statistical analyses and drawings were performed using
R version 4.0.0. We visualized the mutation data of ovarian
cancer using the “maftools” package (Bi et al., 2020). The
correlation coefficients between the 21 m6A RNA methylation
regulators were calculated using Spearman correlation analyses.
A univariate Cox regression model was utilized to evaluate the

prognostic value of the 21 m6A regulators. Single sample gene
set enrichment analysis was used to calculate the abundance of
immune cells in ovarian cancer samples (Zhang et al., 2020). The
tumor mutation burden (TMB) of each sample was calculated
based on the following formula: TMB = Sn × 1,000,000/n,
where Sn represents the absolute number of somatic mutations
and n represents the number of exon bases covered at a
depth ≥ 100 × (Bi et al., 2020). The Mann-Whitney test was
performed to compare any differences between groups. All
parametric analyses were based on two-tailed tests, for which
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FIGURE 2 | Consensus clustering of the 21 m6A regulators in TCGA-OV dataset. (A–D) Consensus matrices of the 21 m6A regulators for k = 2–5. (E) Expression
heat map of the 21 m6A regulators in m6Acluster.A and m6Acluster.B. (F) Differential expression boxplot of the 21 m6A regulators in m6Acluster.A and
m6Acluster.B. Differences in the abundance of activated CD4 T cell (G), CD8 T cell (H), and dendritic cell (I) infiltrates between m6Acluster.A and m6Acluster.B.
(J) Differences in the tumor mutation burden (TMB) level between m6Acluster.A and m6Acluster.B. (K) Principal component analysis (PCA) for the expression profiles
of the 21 m6A regulators, showing a remarkable difference in transcriptomes between the 2 m6A patterns. The variance of PCA1 was 39.67, while the variance of
PCA2 was 19.92. (L) Kaplan-Meier curves showing the prognostic value of the two m6A patterns in TCGA-OV dataset (**P < 0.01 and ***P < 0.001).

the statistical significance was set at P < 0.05 (Hazra and
Gogtay, 2016). Survival analysis was visualized using Kaplan-
Meier curves.

RESULTS

Landscape of the 21 m6A Regulators in
Ovarian Cancer
Waterfall plots were drawn to evaluate the somatic mutation
incidence of the 21 m6A RNA methylation regulators in ovarian

cancer samples from TCGA-OV dataset. The results revealed
that among 436 ovarian cancer samples, only 38 samples had
somatic mutations in the 21 m6A RNA methylation regulators.
ZC3H13 displayed the highest mutation frequency among the
21 m6A regulators (Figure 1A). The OV samples in single-
nucleotide variation datasets did not include samples with
ALKBH5 and YTHDF3 mutations. The mutation frequency
of METTL3, METTL14, RBM15B, CBLL1, WTAP, RBM15,
KIAA1429, FTO, YTHDC1, YTHDC2, ELAVL1, YTHDF1,
YTHDF2, HNRNPC, HNRNPA2B1, and IGF2BP1 in the OV
samples was close to 0%. Spearman correlation analyses were
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FIGURE 3 | Consensus clustering of the 196 m6A-related genes in TCGA-OV dataset. (A–D) Consensus matrices of the 196 m6A-related genes for k = 2–5.
(E) Differential expression boxplot of the 21 m6A regulators in m6A.gene.cluster.A and m6A.gene.cluster.B. (F) PCA for the expression profiles of the 196
m6A-related genes, showing a remarkable difference in transcriptomes between the two m6A gene patterns. The variance of PCA1 was 45.23, while the variance of
PCA2 was 14.94. Differences in the abundance of activated CD4 T cell (G), CD8 T cell (H), and dendritic cell (I) infiltrates between m6A.gene.cluster.A and
m6A.gene.cluster.B. (J) Differences in the TMB level between m6A.gene.cluster.A and m6A.gene.cluster.B. (K) Gene ontology (GO) analysis exploring the potential
mechanisms underlying the effect of the 196 m6A-related genes on the occurrence and development of ovarian cancer. “Count” represents “number of enriched
genes.” “GeneRatio” represents “number of enriched genes/number of total genes.” The size of the dots represents the number of genes enriched, and the color
represents p. adjust. The redder the color, the smaller the p. adjust (**P < 0.01 and ***P < 0.001).

utilized to calculate the correlation coefficients between the 21
m6A regulators. We found that KIAA1429 had the highest
positive correlation with YTHDF3 (correlation coefficient: 0.69;
Figure 1B). The mutation co-occurrence and exclusion analyses
of the 21 m6A regulators using the “maftools” package in R

revealed that ELAVL1, HNRNPC, and YTHDC2 had the highest
mutation co-occurrence association (Figure 1C). Unfortunately,
the univariate Cox regression model showed that the 21
m6A regulators had no significant prognostic value in ovarian
cancer (Figure 1D).
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Construction of Two Distinct m6A
Patterns Based on the 21 m6A
Regulators
We obtained two distinct m6A patterns (m6Acluster.A and
m6Acluster.B) based on the expression levels of the 21 m6A
regulators using a consensus clustering algorithm (Figures 2A–
D). The heat map and boxplot revealed that the expression of all
21 m6A regulators except IGF2BP1 was higher in m6Acluster.A
than in m6Acluster.B (Figures 2E,F). Principal component
analysis indicated that the 21 m6A regulators could effectively
distinguish between patients in m6Acluster.A and m6Acluster.B
(Figure 2K). We also found that the abundance of activated
CD4 T cells, activated CD8 T cells, and activated dendritic
cells was higher in patients in m6Acluster.B than in patients in
m6Acluster.A (Figures 2G–I). However, there were no significant
differences in prognosis (Figure 2L) and TMB level (Figure 2J)
between m6Acluster.A and m6Acluster.B.

Establishment of Two Distinct m6A Gene
Patterns Based on the m6A-Related
Genes
We obtained 196 m6A-related genes between the two distinct
m6A patterns using the “limma” package in R. Consistent with
the two distinct m6A patterns, we also found two distinct
m6A gene patterns (m6A.gene.cluster.A and m6A.gene.cluster.B)
based on the 196 m6A-related genes using a consensus clustering
algorithm (Figures 3A–D). The boxplot indicated that the
expression of all 21 m6A regulators except IGF2BP1 was
higher in m6A.gene.cluster.A than in m6A.gene.cluster.B, which
was consistent with the expression in the two distinct m6A
patterns (Figure 3E). PCA also indicated that the 196 m6A-
related genes could effectively distinguish between patients
in m6A.gene.cluster.A and m6A.gene.cluster.B (Figure 3F).
Activated CD4 T cells, activated CD8 T cells, and activated
dendritic cells were more abundant in m6A.gene.cluster.B than
in m6A.gene.cluster.A (Figures 3G–I). There was no significant
difference in the TMB level between m6A.gene.cluster.A
and m6A.gene.cluster.B (Figure 3J). Collectively, the results
demonstrated strong stability of the consensus clustering
algorithm in sample classification. Finally, GO analysis was used
to reveal the possible mechanisms by which the 196 m6A-related
genes affect the progression of ovarian cancer. As shown in
Figure 3K, the 196 m6A-related genes were primarily enriched
in regulation of calcium ion transport, calcium ion transport,
regulation of metal ion transport, and regulation of blood
circulation, all of which are associated with signal transduction.

Significance of the m6A Score in Ovarian
Cancer
To quantify the m6A patterns, PCA algorithms were performed
to calculate an m6A score for each ovarian cancer sample.
The boxplot indicated that the expression of all 21 m6A
regulators except IGF2BP1 was higher in the high m6A score
group than in the low m6A score group (Figure 4A). The
patients in m6Acluster.A and m6A.gene.cluster.A had higher

m6A scores than those in m6Acluster.B and m6A.gene.cluster.B
(Figures 4C,D). As illustrated in Figure 4F, there was a negative
correlation between advanced ovarian cancer stage and m6A
score. However, the m6A score had no statistical correlation with
prognosis, TMB level, or pathological grading of ovarian cancer
(Figures 4B,E,G). From the above results, we inferred that there
are complex correlations among m6Acluster, m6A.gene.cluster,
m6A scores, and stage. To better understand these correlations,
we drew a Sankey diagram (Figure 4H). Finally, as shown
in Figure 4I, patients with a lower m6A score had a higher
abundance of infiltrating immune cells.

Biological Phenotypes Associated With
the m6A Score in Ovarian Cancer
We then investigated the biological phenotypes related to the
m6A score in ovarian cancer. The results indicated that human
leukocyte antigen (HLA) genes, immune checkpoint molecules,
and immune activation-related genes were more highly expressed
in the low m6A score group than in the high m6A score
group, suggesting that patients with a low m6A score may be
more sensitive to ICIs (Figures 5A–C). The expression levels of
proliferation-related and DNA repair-related genes [1, 2] were
higher in the high m6A score group than in the low m6A score
group, suggesting that a high m6A score is likely to be associated
with poor ovarian cancer prognosis (Figure 5D–F).

Differences in Genetic Mutations
Between Groups With High and Low m6A
Scores
To reveal the differential gene mutations between groups with
high and low m6A scores, the “maftools” package was used, and
the results were visualized using forest plots (Figure 6A) and
co-onco plots (Figure 6B). The OV samples in transcriptome
profiling datasets were not consistent with the OV samples in
single-nucleotide variation datasets. Thus, we only obtained 274
overlapping samples showing differences in genetic mutations.
We found five differentially mutated genes (BRCA1, PPP1R3A,
PTPRH, FANCM, and BIRC6) between the groups with high and
low m6A scores. Aside from that of BRCA1, the mutation rates
of the remaining genes were higher in the high m6A score group
than in the low m6A score group.

Validation of the Correlation Between
m6A Regulators and Immune
Microenvironment in Ovarian Cancer
To verify our results, we performed microarray sequencing on
60 ovarian cancer samples collected at ShengJing Hospital of
China Medical University. The 21 m6A regulators were extracted
and the consensus clustering algorithm was used. Consistent
with the results of the original analysis, ovarian cancer patients
were divided into two groups (m6Acluster.A and m6Acluster.B,
Figures 7A–D). The boxplot indicated that the expression of all
21 m6A regulators except IGF2BP1 and YTHDF3 was higher
in the m6Acluster.A group than in the m6Acluster.B group
(Figure 7E). In addition, patients in the m6Acluster.B group
showed increased immune infiltration compared with patients in
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FIGURE 4 | Significance of the m6A score in ovarian cancer. (A) Differential expression boxplot of the 21 m6A regulators in high and low m6A scores.
(B) Kaplan-Meier curves showing the prognostic value of the m6A score in TCGA-OV dataset. Differences in m6A score between m6Acluster.A and m6Acluster.B
(C) and m6A.gene.cluster.A and m6A.gene.cluster.B (D). (E) Differences in m6A score between tumor grade (G)1/2 and G3/4. (F) Differences in m6A score between
different stages of ovarian cancer. (G) Differences in the TMB level between high and low m6A scores. (H) Sankey diagram revealing the relationship between
m6Acluster, m6A.gene.cluster, m6A scores, and stage. The abscissa represents the groups. Black boxes represent the grouping of each group. Red represents the
patients in the m6Acluster.A group, while green represents the patients in the m6Acluster.B group. (I) Differential immune cell infiltration between high and low m6A
scores (*P < 0.05, **P < 0.01, and ***P < 0.001).

the m6Acluster.A group (Figure 7F). Moreover, 125 m6A-related
genes were acquired between the two distinct m6A patterns based
on a differential expression analysis according to the screening
criteria p < 0.05 and | log2 fold change ≥ 2|. We then obtained
two distinct m6A gene patterns (m6A.gene.cluster.A and
m6A.gene.cluster.B) based on the 125 m6A-related genes using
a consensus clustering algorithm (Figures 7G–J). The boxplot
indicated that the expression of all 21 m6A regulators except
IGF2BP1 and YTHDF3 was higher in the m6A.gene.cluster.A
group than in the m6A.gene.cluster.B group (Figure 7K). In
addition, patients in the m6A.gene.cluster.B group showed higher
immune infiltration (Figure 7L). Finally, PCA algorithms were
used to calculate an m6A score for each ovarian cancer sample
and quantify the m6A patterns. As expected, expression of
most m6A regulators was higher in the high m6A score group

(Figure 7M), and the patients in the low m6A score group had
a higher abundance of infiltrating immune cells (Figure 7N).
Together, these results confirmed that the m6A regulators
have a stable relationship with the immune microenvironment
in ovarian cancer.

DISCUSSION

The immune system is an important barrier to the occurrence
and development of malignant tumors; adaptive T cell immunity
exerts the most important anti-tumor effect (Yang, 2015).
However, the abundance of infiltrating T cells in the TME
is low owing to the low immunogenicity of solid tumors,
which mostly originate from mutations in epithelial or stromal
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FIGURE 5 | Biological phenotypes associated with the m6A score in ovarian cancer. Differential expression of human leukocyte antigen (HLA) genes (A), immune
checkpoint molecules (B), immune activation-related genes (C), proliferation-related genes (D), DNA repair-related genes (E), and transforming growth factor
(TGF)β-epithelial mesenchymal transition (EMT) pathway-related genes (F) between the high and low m6A score groups (*P < 0.05, **P < 0.01, and ***P < 0.001).

FIGURE 6 | Differences in genetic mutations between the high and low m6A score groups. (A) Forest plots showing five differentially mutated genes between the
high and low m6A score groups. (B) Co-onco plots showing five differentially mutated genes between the high and low m6A score groups (*P < 0.05 and
***P < 0.001).

cells (Khalil et al., 2015). In addition, tumor cells can use a
variety of mechanisms, including recruitment of inhibitory cells,
production of inhibitory cytokines and chemokines, expression

of inhibitory molecules, and metabolic competition, to limit
the infiltration of T cells (Anderson et al., 2017). Therefore,
improving the infiltration and function of tumor-specific T cells
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FIGURE 7 | Validation of the correlation between m6A regulators and immune microenvironment in ovarian cancer. (A–D) Consensus matrices of the 21 m6A
regulators for k = 2–5. (E) Differential expression boxplot of the 21 m6A regulators in m6Acluster.A and m6Acluster.B. (F) Differential immune cell infiltration between
m6Acluster.A and m6Acluster.B. (G–J) Consensus matrices of the 125 m6A-related genes for k = 2–5. (K) Differential expression boxplot of the 21 m6A regulators in
m6A.gene.cluster.A and m6A.gene.cluster.B. (L) Differential immune cell infiltration between m6A.gene.cluster.A and m6A.gene.cluster.B. (M) Differential expression
boxplot of the 21 m6A regulators in high and low m6A scores. (N) Differential immune cell infiltration between high and low m6A scores (*P < 0.05, **P < 0.01, and
***P < 0.001).
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is one of the important strategies of anti-tumor immunotherapy.
Numerous lines of evidence have revealed that m6A regulators
play an indispensable role in tumor immunity. However, the
relationship between m6A regulators and immune infiltrates of
ovarian cancer remains unexplored. The aim of this research was
to comprehensively analyze the role of m6A regulators in anti-
tumor immunity and provide guidance for the immunotherapy
of ovarian cancer.

In the present study, we obtained two distinct m6A patterns
based on the expression levels of 21 m6A regulators. Patients in
the m6Acluster.B group showed a higher abundance of activated
CD4 T cells, activated CD8 T cells, and activated dendritic cells
than patients in the m6Acluster.A group, indicating that the
m6Acluster.B is related to elevated immune activity. Further,
we obtained 196 m6A-related genes through differential analysis
of the two distinct m6A patterns. Surprisingly, we found two
distinct m6A gene patterns based on the expression levels of the
196 m6A-related genes that were similar to the m6A patterns.
Activated CD4 T cells, activated CD8 T cells, and activated
dendritic cells were more abundant in the m6A.gene.cluster.B,
and the 196 m6A-related genes were mainly enriched in immune
activity-related biological functions. These observations revealed
that the consensus clustering algorithm has strong stability
in sample classification and that m6A regulators have great
significance in immune infiltrates of ovarian cancer. Considering
the individual differences, PCA algorithms were performed to
calculate an m6A score for each sample in order to quantify
the m6A patterns. Sankey diagram showed that the patients in
m6Acluster.A and m6A.gene.cluster.A had higher m6A scores
than those in m6Acluster.B and m6A.gene.cluster.B. The patients
with advanced ovarian cancer stage have lower m6A score,
suggesting that the m6A regulators play any role in ovarian
tumor aggressiveness. We also found that the m6A patterns
characterized by elevated immune activity exhibited a lower
m6A score. In addition, patients with a low m6A score showed
higher expression levels of HLA genes, immune checkpoint
molecules, and immune activation-related genes, consistent with
our expectations. Together, these results indicate that patients
with lower m6A scores may be more sensitive to ICIs. Since a
lower m6A score was associated with an advanced pathological
stage of ovarian cancer, we speculated that advanced ovarian
cancer patients may benefit from ICIs. However, the m6A
score showed no statistical correlation with ovarian cancer
prognosis. Thus, we suggest that patients who are highly sensitive
to ICIs can only improve their survival time by receiving
ICI therapy. Moreover, we successfully verified the correlation
between m6A regulators and the immune microenvironment in
ovarian cancer using our microarray analysis data, which greatly
adds to the credibility of our study. Our data also indicated
that the m6A score is negatively correlated with proliferation,
the transforming growth factor (TGF)β-epithelial mesenchymal
transition (EMT) pathway, and DNA damage repair of ovarian
cancer. These observations suggest that lower m6A scores and
sensitivity to ICIs are not only related to elevated immune
activity and overexpression of immune checkpoint molecules
but also associated with the suppression of proliferation, the
TGFβ-EMT pathway, and DNA damage repair. Consistent with

our results, previous studies have revealed that the TGFβ pathway
is associated with immune evasion of tumors by restricting T cells
(Mariathasan et al., 2018; Tauriello et al., 2018).

Finally, we revealed five differentially mutated genes (BRCA1,
PPP1R3A, PTPRH, FANCM, and BIRC6) between the high and
low m6A score groups. Aside from that of BRCA1, the mutation
rates of the remaining genes were higher in the high m6A
score group than in the low m6A score group. Previous studies
have indicated that ovarian cancer subtypes with higher BRCA1
mutations correspond to environments with higher expression
levels of immune checkpoint molecules and elevated levels of
infiltrating immune cells, consistent with our results (Wei et al.,
2020; Zheng et al., 2020). However, there are no studies on the
relationship between the other four mutated genes and ovarian
cancer immunity. We will utilize this knowledge gap as a research
direction for further experimental studies and ideally provide
novel insights into the treatment of ovarian cancer.

CONCLUSION

In conclusion, our research identified two distinct m6A patterns
based on 21 m6A regulators and calculated an m6A score for
each sample to quantify the m6A patterns using PCA algorithms.
A low m6A score represented more sensitivity to ICIs. These
findings may help develop a potential therapeutic strategy for
advanced ovarian cancer.
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