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The correlation between autophagy defects and oral squamous cell carcinoma (OSCC)

has been previously studied, but only based on a limited number of autophagy-related

genes in cell lines or animal models. The aim of the present study was to analyze

differentially expressed autophagy-related genes through The Cancer Genome Atlas

(TCGA) database to explore enriched pathways and potential biological function. Based

on TCGA database, a signature composed of four autophagy-related genes (CDKN2A,

NKX2-3, NRG3, and FADD) was established by using multivariate Cox regression models

and two Gene Expression Omnibus datasets were applied for external validation. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed to study the function of autophagy-related genes

and their pathways. The most significant GO and KEGG pathways were enriched in

several key pathways that were related to the progression of autophagy and OSCC.

Furthermore, a prognostic risk score was constructed based on the four genes; patients

were then divided into two groups (i.e., high risk and low risk) in terms of themedian of risk

score. Prognosis of the two groups and results showed that patients at the low-risk group

had a much better prognosis than those at the high-risk group, regardless of whether

they were in the training datasets or validation datasets. Multivariate Cox regression

results indicated that the risk score of the autophagy-related gene signatures could

greatly predict the prognosis of patients after controlling for several clinical covariates.

The findings of the present study revealed that autophagy-related gene signatures play an

important role in OSCC and are potential prognostic biomarkers and therapeutic targets.

Keywords: oral squamous cell carcinoma, the cancer genome atlas, autophagy-related gene, prognostic

biomarker, cox survival analysis

INTRODUCTION

Oral cancer is one of the leading causes of death worldwide. Oral squamous cell
carcinoma (OSCC) is the most common head and neck squamous cell carcinoma,
affecting ∼53,000 people and causing around 10,800 deaths in the USA in 2019
(Siegel et al., 2019). The overall 5-year survival rate of OSCC is <60%, and has only
slightly improved over the past two decades despite considerable advances in the
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treatment of OSCC (Vokes et al., 1993; Bagan and Scully, 2008;
Scully and Bagan, 2009). Recently, extensive efforts have been
devoted to identify molecular prognostic biomarkers for OSCC
by integrating DNA methylations and gene expressions (Bai
et al., 2013; Yang et al., 2016; Sailer et al., 2017; Shen et al.,
2017). Biologically, autophagy is a catabolic process that is
involved in the degradation of unimportant or aberrant cellular
components through lysosomal hydrolysis, and is amajor cellular
process that is implicated in an array of cellular and tissue
events, including cell stress, endogenous and exogenous cellular
component clearance, development, aging, and cancer (Klionsky,
2007; Boya et al., 2013). The cytoprotective role of autophagy
serves to prevent cell death under physiological conditions;
its self-repair mechanism is exploited by cancer cells to resist
therapeutic modalities (Levine and Klionsky, 2004; Mathew
et al., 2007). Autophagy is believed to aid in the survival and
longevity of cancer cells by buffering metabolic stress, and when
conditions permit, can also allow for tumor cell metastases to
survive metabolic deprivation and aid in recovery. As inhibiting
autophagy in an environment of nutrient deprivation leads to cell
death, many current cancer therapies tend to inflict metabolic
stress; therefore, autophagy inhibitors may be beneficial for
cancer treatment (Yang et al., 2013; Adhauliya et al., 2016).

However, autophagy in tumorigenesis can enhance tumor
cell survival under stressful environments, exerting a tumor-
promoting effect (Ahn et al., 2011). Some previous studies
explored the correlation between autophagy defects and OSCC.
For example, G15 (Bai et al., 2013), an antagonist to GPR30,
which is a known cancer cell proliferator, and apicidin (Ahn
et al., 2011), a histone deacetylase inhibitor, were used to induce
autophagy in OSCC. In addition, PIK3CA was reported to be
frequently mutated in OSCC patients, which resulted in the
activation of PI2K and downstream effectors, and facilitated
autophagy (Sailer et al., 2017). Moreover, high levels of LC3-II,
which can increase basal levels of autophagy, were revealed to be
closely linked to unfavorable OSCC prognosis (Yang et al., 2016).

Although recent studies have demonstrated that autophagy
has a complex role in tumorigenesis, drug resistance, and
cancer therapy (Kroemer, 2015), relevant studies of OSCC
autophagy are still lacking, as most of them only analyzed
limited autophagy-related genes in cell lines or animal models
(Patil et al., 2015). Based on The Cancer Genome Atlas
(TCGA) database (Hoadley et al., 2018), some researchers
recently identified 13 autophagy-related genes, but many of
these autophagy-related genes cannot be well-validated and
had no reasonable biological evidence (Hou et al., 2020).
Therefore, it is important to establish a novel autophagy-
related gene signature for the prognostic prediction of OSCC
patients to explore the potential biological function of autophagy-
related genes. In the present study, we aimed to identify
differentially expressed autophagy-related genes based on TCGA,
and established a signature composed of 4 autophagy-related
genes using the multivariate Cox regression model. Two Gene
Expression Omnibus (GEO) datasets (GSE85446 and GSE41613)
was applied to validate the performance of the constructed
autophagy-related gene signature. Furthermore, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed to explore the
function of these autophagy-related genes and their pathways.
The findings of the present study indicated that autophagy-
related gene signatures play an important role in the survival
risk of OSCC patients and might serve as potential prognostic
biomarkers and therapeutic targets.

MATERIALS AND METHODS

Patient Samples of OSCC in TCGA and
GSE85446
We downloaded normalized messenger RNA (mRNA)
expression profiles of 660 OSCC samples from TCGA (Hoadley
et al., 2018). After quality control, a total of 502 tumor and
44 normal samples were reserved to identify differentially
expressed genes (DEGs), of which autophagy-related genes were
of particular interest. Furthermore, after excluding samples
with missing survival time and normal samples, 499 tumor
samples were kept for establishing the risk score pattern based
on these autophagy-related DEGs and performing a correlation
analysis for survival and clinical features. Based on prior studies
Shen et al. (2017, 2018) and Yu et al. (2020), and following the
suggestion given in Liu et al. (2018), we only considered the
overall survival time in the present study as there was minimal
ambiguity in defining an overall survival event. In brief, overall
survival in TCGA was the duration from diagnosis to death. The
median overall survival time of TCGA OSCC patients was 639
days, with the censoring rate being 56.5%. We also evaluated the
prediction performance of the constructed risk score using two
external GEO datasets (accession ID: GSE85446 and GSE41613).
The detailed information of these datasets after quality control is
summarized in Table 1.

Identification of DEGs
The R limma package (version 3.46.0) was applied to detect genes
that were differentially expressed between normal and tumor
samples in TCGA OSCC dataset (Ritchie et al., 2015). After
normalization and gene ID alignment, the expression matrix
of the OSCC cancer data set was employed as an input file.
A linear model was used to calculate the coefficients and the
standard errors. Empirical Bayesian conditioning was then used
to narrow the standard errors that were much larger or smaller
compared to the mean from the other genes. Following prior
studies (Korbolina et al., 2014; Caputo et al., 2020), the screening
criteria for differential expression were set as |log2FC| > 1.0 with
a false discovery rate (FDR) of <0.05 in our analyis.

Functional and Pathway Enrichment
Analyses
We referred to DEGs as autophagy-related genes by matching
them with genes that had been found to attend in the autophagy
regulatory process in the Human Autophagy Database (HADb;
http://autophagy.lu/clustering/index.html) (Homma et al., 2011).
We identified a total of 24 autophagy-related DEGs in TCGA
OSCC dataset. Based on these autophagy-related genes, we
conducted GO and KEGG pathway enrichment analyses with
the R clusterProfiler package (version 3.18.0) (Zou et al., 2020).
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TABLE 1 | Detailed information of the training and validation datasets.

Features TCGA GSE85446 GSE41613

Censor (n, %) 277 (55.5) 34 (51.5) 34 (51.5)

Age (mean ± SD) 61.0 ± 12.0 60.7 ± 9.6 59.07#

Gender (n, %) Male 410 (73.2) 39 (59.1) 66 (68.0)

Female 150 (26.7) 27 (40.9) 31 (32.0)

Clinical stage (n, %) Advanced (III-IV) 413 (73.8) 46 (69.7) 56 (57.7)

Early (I-II) 133 (23.8) 20 (30.3) 41 (42.3)

NA 14 (2.5) 0 (0) 0 (0)

Tobacco smoking history (n, %) Current/former 418 (74.6) / /

Never 127 (22.7) / /

Race (n, %) White 483 (86.3) / /

Other 62 (11.1) / /

#Age was a categorical variable in GSE41613, so the standard deviation cannot be calculated.

In brief, GO database annotates gene products from molecular
functions, biological processes, and cellular components of
biology, while KEGG pathway analysis identifies DEG pathway
enrichment, which can facilitate further mechanism research.
We also constructed a network diagram to demonstrate the
relationship between GO terms and differential genes and gene
overlap relationships between enriched pathways (Zou et al.,
2020). In the network diagram plot, each cluster represents an
enriched pathway; the top 30 enriched pathways were drawn by
default, with the size of the node corresponding to the number of
differentially enriched genes in that pathway.

Risk Score Establishment
Based on TCGA OSCC tumor samples (n = 499), the 24
autophagy-related genes were first analyzed using the univariate
Cox regression, with age, race, sex, and clinical stage as
covariates. Four genes, which were significant in terms of the
univariate regression, were further referred to as autophagy-
related prognostic signatures. Next, multivariate Cox regression
was performed to evaluate the risk score of the 4 genes for
the overall survival of OSCC patients. Cox regressions were
conducted under the proportional hazards (PH) assumption
in terms of the method proposed in Grambsch and Therneau
(1994). The risk score could be obtained for each patient using
the product of the gene expression and estimated coefficients
from the multivariate model (Luan et al., 2019; Yu et al., 2019,
2020; Gao et al., 2020). The patients were then divided into two
groups (low risk and high risk) according to the median of risk
score across all individuals. The Kaplan-Meier curve and the log-
rank test were used to assess the prognostic capability of the 4-
gene signature in TCGA or GSE85446/GSE41613 OSCC patients.
Finally, because the status of cancer and the associated genes
change over time in practice, we calculated the inverse probability
of censoring weighting estimation. A time-dependent receiver
operating characteristic (ROC) curve was performed to evaluate
the survival of patients using the nearest neighbor method (Uno
et al., 2007; Blanche et al., 2013).

The workflow of our analysis is presented in Figure 1. All
graphs and statistical analyses were conducted by R software

(version 3.5.1, The R Foundation for Statistical Computing)
(Ihaka and Gentleman, 1996). The tests in our study were 2-
tailed, and a P-value or FDR <0.05 was regarded as the cutoff
value for statistical significance.

RESULTS

Differential Expression Analysis and
Autophagy-Related Genes
First, we examined DEGs in TCGA OSCC patients based
on 502 normal and 44 tumor samples. A volcanic plot
was created to illustrate the significance and reliability of
differential expression between the two groups (Figure 2A).
We identified a total of 4,409 DEGs with FDR <0.05 and
|log2FC| > 1. After screening the HADb database, we
identified 24 autophagy-related genes (e.g., NRG2, BIRC5,
and PARK2) for further analysis (Figure 2B). Of these
autophagy-related genes, 12 were up-regulated (log2FC
> 1), while the rest were down-regulated (log2FC <−1)
(Table 2).

Pathway Enrichment Analysis
To explore the function of these autophagy-related genes and
their pathways, we performed GO and KEGG enrichment
analyses. The most significant GO and KEGG pathways
are presented in Figure 3. We found that these genes were
enriched in several key pathways related to autophagy
or OSCC (e.g., autophagy, process utilizing autophagic
mechanism, and human papillomavirus infection). For
BP, positive regulation of the glutamate receptor signaling
pathway, ERBB2 signaling pathway, positive regulation
of signaling receptor activity, regulation of N-methyl-D-
aspartate receptor (NMDA) receptor activity, and positive
regulation of autophagy were the most enriched categories.
For CC ontology, enriched categories included the integrin
complex and protein complex involved in cell adhesion.
For MF, receptor ligand activity, signaling receptor activator
activity, insulin-like growth factor I binding, and cytokine
activity were commonly enriched. The gene-concept network
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FIGURE 1 | Flow chart indicating the study design of the present work.

FIGURE 2 | (A) Volcano plot comparing autophagy-related gene expression for tumor and non-tumor tissues. A total of 24 genes were identified [red

(down-regulated) and blue points (up-regulated)]. (B) Heatmap showing 24 genes in tumor tissues and adjacent non-tumor tissues.

depicts the linkages of autophagy-related genes and biological
concepts (i.e., GO terms or KEGG pathways) as a network
(Supplementary Figure 1), while the enrichment plot that

enriched terms into a network with edges connecting
overlapping gene sets shows the clusters of several related
genes (Supplementary Figure 2).
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TABLE 2 | A total of 24 autophagy-related genes identified in TCGA data set.

Gene log2FC Regulate Average t Adjust P

NRG2 3.777 Up −2.150 19.601 4.88E-61

PARK2 2.464 Up −0.877 11.651 5.03E-26

MAP1LC3C 1.897 Up −2.951 10.586 4.83E-22

NRG3 1.664 Up −3.902 10.458 1.42E-21

TP53INP2 1.603 Up 5.019 9.807 2.92E-19

HSPB8 2.383 Up 5.134 9.015 1.37E-16

FOS 1.946 Up 7.660 8.198 5.19E-14

PINK1 1.032 Up 4.313 8.028 1.68E-13

CCL2 1.740 Up 3.344 7.873 4.85E-13

NKX2-3 2.271 Up −2.300 6.290 9.07E-9

DIRAS3 1.250 Up −0.740 6.161 1.84E-8

PTK6 1.178 Up 4.704 5.149 3.24E-6

BIRC5 −1.944 Down 5.322 −14.706 1.16E-38

EIF2AK2 −1.110 Down 5.921 −9.646 1.05E-18

ITGA6 −1.661 Down 8.703 −8.273 3.08E-14

SPHK1 −1.141 Down 5.333 −7.801 7.90E-13

IL24 −2.415 Down 2.109 −7.349 1.55E-11

APOL1 −1.715 Down 7.324 −7.213 3.70E-11

ITGB4 −1.210 Down 8.911 −6.969 1.69E-10

ITGA3 −1.433 Down 7.996 −6.879 2.93E-10

FADD −1.284 Down 3.631 −6.833 3.87E-10

NRG1 −1.570 Down 4.054 −5.765 1.55E-7

IFNG −1.331 Down −2.047 −4.852 1.27E-5

CDKN2A −1.629 Down 2.712 −3.346 3.90E-3

FIGURE 3 | GO and KEGG pathway enrichment analyses for 24 autophagy-related genes.

Genetic Risk Score Analysis
The Kaplan-Meier survival analysis was utilized to evaluate
the relationship between each autophagy-related gene
and the overall survival time in TCGA OSCC data set
(Supplementary Figure 3). Four genes (CDKN2A, NKX2-3,
NRG3, and FADD) were significantly associated with overall

survival. Subsequently, these genes were treated as prognosis-
related genes for further analysis. Using the multivariate
Cox model with TCGA OSCC as the training data, we
constructed a prognostic risk score with these four genes
as follows:−0.174×NKX2-3-0.104×NRG3+0.168×FADD-
0.108×CDKN2A (Figure 4A). Patients were then divided into
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FIGURE 4 | (A) Establishment of autophagy-related gene signature and predictive value analysis for OS of OSCC patients based on TCGA dataset. (B) The survival

probability and time-dependent ROC curve for TCGA; each patient was divided into low- and high-risk score groups according to the median of the risk score; (C)

The survival probability and time-dependent ROC curve for GSE85446. (D) The survival probability and time-dependent ROC curve for GSE41613.

low- and high-risk score groups according to the median of
the risk score (median = 0.031). Compared with patients in
the low-risk score group, patients in the high-risk score group
had a substantially shorter survival (the median overall survival
was 58.7 months in the low-risk score group and 36.0 months
in the high-risk score group; P = 1.34E-05) (Figure 4B). A
time-dependent ROC curve indicated that the 4-gene based
prognostic model had meaningful predictive accuracy, with an
average of the area under the curve (AUC) being 0.615 (range
0.375–0.644) across the survival time (Figure 4B).

Two GEO datasets (i.e., GSE41613 and GSE85446) were
further applied as the test data for evaluating the prognostic
performance of the risk score. The risk score for each patient
in this dataset was first calculated. Based on its median, these
patients were then divided into two groups (high risk or low
risk). Of note, the median overall survival time was 84.1/65.0
months and the censoring rate was 51.5/47.4% for GSE85446
and GSE41613, respectively. Patients with a low autophagy-
related risk score were found to have a higher survival probability
compared with those with a high-risk score in both GSE85446 (P
= 0.024) (Figure 4C) and GSE41613 (P = 0.021) (Figure 4D).
The time-dependent ROC indicated that the 4-gene-based
prognostic model had meaningful predictive accuracy, with an

average AUC of 0.689 (range 0.584–0.805) across the survival
time for GSE85446 (Figure 4C) and an average AUC of 0.648
(range 0.533–0.724) across the survival time for GSE41613
(Figure 4D). Moreover, after adjusting for other available
covariates (e.g., sex), the Cox multivariate regression indicated
that the risk rate of the risk score was 2.73 (95% confidence
intervals [CIs] 1.74–4.28; P = 1.34E-5) in TCGA, 2.49 (95% CIs
1.13–5.48; P = 0.024) in GSE85446, and 2.36 (95% CIs 1.14–
4.92; P= 0.021) in GSE41613 (Figure 5), indicating that a higher
autophagy-related risk score led to a reduced chance of prolonged
survival. This finding also indicated that the autophagy-related
risk score was an independent predictor of patient prognosis.
Moreover, we performed a sensitive analysis by removing some
patients who had very short survival time (<14 days). The results
were consistent with these shown here, although an additional
gene (ITGA6) was identified (Supplementary Material).

Four Autophagy-Related Genes
According to the multivariate Cox model, our results revealed
that among the 4 autophagy-related genes, CDKN2A, NKX2-
3, and NRG3 were protective, while FADD was associated
with the survival risk (Figure 4A). CDKN2A is known as
cyclin-dependent kinase inhibitor 2A. It is a gene located on
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FIGURE 5 | Multivariate Cox regression analyses of the risk score constructed by four autophagy-related gene signatures and predictive clinic pathological factors of

overall survival (OS) based on TCGA and two GEO datasets.

chromosome 9p21 and has 3 exons which encode for tumor-
suppressor protein p16 (Soria et al., 2001; Burke et al., 2013;
Lim et al., 2014). CDKN2A has been found to be inactivated
in a broad spectrum of solid tumors and in more than 80% of
OSCC (Nielsen et al., 1998; Prigge et al., 2015; Pal et al., 2016).
The low expression of CDKN2A was significantly associated with
recurrence in OSCC patients, and the overall survival in patients
decreased in patients with a reduction of CDKN2A expression
(Padhi et al., 2017), which was consistent with our results that
CDKN2A is a potential favorable gene in OSCC.

NKX2-3 is a member of the homeobox NKX family. NKX2
homeobox family proteins are well-known for their crucial role
in cancer development and progression. NKX2-3 was verified to
stimulate the activation of B-cell receptor signaling and drive
carcinogenesis through triggering the NF-kB and PI3KAKT
pathways (Robles et al., 2016). The NKX2-3 protein was found
to be located in the nucleus of tumor cells and was classified as a
promising biomarker to predict the response of cancer patients
undergoing FOLFOX4 chemotherapy (Li et al., 2012). NKX2-3
has also been identified as a prognostic signature for head and
neck squamous cell carcinoma in previously published studies
(Jin and Qin, 2020; Zhu et al., 2020).

The NRG3 gene at 10q22-q24 has been implicated in multiple
psychiatric traits, such as cognitive impairment. It has been

reported that NRG3 is associated with the risk and age at onset
of Alzheimer’s disease (Wang et al., 2014). NRG3 was recently
identified as a prognostic index for inpatients with head and neck
squamous cell carcinoma (Feng et al., 2020).

FADD is a gene located on the 11q13.3 region of chromosome
11 in humans and encodes Fas-associated protein with death
domain, also called MORT1 (Kim et al., 1996). Previous studies
have found that FADD plays an important role in cell growth and
cell proliferation (Hueber et al., 2000). The results from a number
of studies of human malignancies have revealed the highly
controversial relationship between FADD expression and cancer
progression (Tomioka et al., 2006; Gibcus et al., 2007). It was
reported that the expression of FADDwas higher when compared
with that of adjacent areas, which might be determined car
genomic amplification in llql3.3 in OSCC, OSCC cells expressing
FADD are more likely to metastasize and lead to poor survival
rates (Prapinjumrune et al., 2010). This conclusion is consistent
with our own findings that showed FADD was an unfavorable
survival predictor for OSCC patients.

DISCUSSION

It has been previously reported that autophagy has complex
roles in tumorigenesis, drug resistance, and cancer therapy
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(Kroemer, 2015). Studies on OSCC autophagy are limited, and
much remains to be explored about the role autophagy playing
in the progression of head and neck cancers and its use in
cancer therapy (Patil et al., 2015). In the present study, we
discovered and described the differential expression profiles of 24
autophagy-related genes in OSCC. Based on biological function
analysis and pathway enrichment of DEGs, we found that these
genes were mainly enriched in key pathways, such as autophagy,
the ERBB2 signaling pathway, and process utilizing autophagic
mechanism, indicating that 24 autophagy-associated DEGs may
be involved in the development, progression, and drug resistance
of head and neck cancer.

Through a network diagram, we also found that 8 of
the 24 autophagy-related genes (TP53INP2, HSPB8, PTK6,
NRG2, NRG1, PINK1, IFNG, and CCL2) were involved in the
regulation of the followingmultiple pathways: positive regulation
of glutamate receptor signaling, ERBB2 signaling, positive
regulation of signaling receptor activity, regulation of NMDA
receptor activity, and positive regulation of autophagy These
pathways are potentially associated with OSCC development
and metastasis. Previously published studies have shown that
glutamate is a potential growth factor for tumor development;
for example, glioma cells produce glutamate in vivo in neurotoxic
amounts (Takano et al., 2001). ERBB2 receptors are involved
in a variety of important functions in organisms controlled
by members of the ERBB receptor family, including cell
growth, differentiation, and apoptosis. Simultaneous activation
of the ERBB2 receptor signaling pathway can enhance various
properties associated with metastasis, leading to an increase
in cancer metastasis (Yu and Hung, 2000). Activation or
antagonism of NMDA receptors may be associated with anti-
proliferative and anti-invasive effects, which can affect the
proliferation rate of a wide range of cell lines in a variety of
cancers. In addition, targeting NMDA receptors expressed on the
surface of cancer cells can be used as a therapeutic strategy for
cancer (Deutsch et al., 2014).

Furthermore, we constructed an autophagy-related gene
signature and divided OSCC patents into high- and low-
risk groups. The multivariate Cox regression model showed
that the autophagy-related gene signature was a significant
prognostic factor for OSCC, and survival analysis demonstrated
that patients in the high-risk group have significantly shorter
median survival time compared with those in the low-risk group,
which was validated in another GEO datasets. Additionally, of
the 4 identified autophagy-related genes, three were potential
favorable genes (CDKN2A, NKX2-3, and NRG3) and 1 was
a potential unfavorable gene (FADD). These four autophagy-
related genes have been reported to be closely associated with
the development and prognosis of OSCC or other malignancies.
Besides, ITGA6 was also identified in our sensitive analysis. As a
transmembrane glycoprotein adhesion receptor protein, ITGA6
is widely upregulated in many types of tumors and plays a role
in migration and invasion of cancer cell. Further investigations
of these autophagy-related genes in OSCC tissues, cell lines,
and animal models are recommended to clarify the potential
molecular mechanisms of these autophagy-related genes in
impacting survival outcomes of OSCC patients.

Based on public databases, our study comprehensively
explored and verified the prognostic usefulness of an autophagy-
related gene signature in different OSCC subgroups. The findings
of the present study could be employed as a reference for
follow-up functional investigations of autophagy-related genes
in OSCC and targeting drug development. However, our work
still had several limitations. First, the autophagy-related gene
signature only showed moderate prediction ability in our study;
thus, it might be not a powerful indicator to predict the
prognosis of OSCC patients. Further studies integrating multi-
omics datasets might improve the predictive performance (Zhao
et al., 2014). Second, the censored rate in our analyzed datasets
was relatively high, which might undermine the power of the
survival analysis, leading to the failure of identifying more
autophagy-related genes.

CONCLUSION

We identified and confirmed a novel four autophagy-related
genes signature for OSCC patients. Our work also provided
meaningful signature for the molecular mechanism study of
autophagy-related genes in OSCC.
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