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Pancreatic cancer (PC) is a highly fatal disease, yet its causes remain unclear.
Comprehensive analysis of different types of PC genetic data plays a crucial role in
understanding its pathogenic mechanisms. Currently, non-negative matrix factorization
(NMF)-based methods are widely used for genetic data analysis. Nevertheless, it
is a challenge for them to integrate and decompose different types of genetic
data simultaneously. In this paper, a non-NMF network analysis method, NMFNA, is
proposed, which introduces a graph-regularized constraint to the NMF, for identifying
modules and characteristic genes from two-type PC data of methylation (ME) and copy
number variation (CNV). Firstly, three PC networks, i.e., ME network, CNV network,
and ME–CNV network, are constructed using the Pearson correlation coefficient (PCC).
Then, modules are detected from these three PC networks effectively due to the
introduced graph-regularized constraint, which is the highlight of the NMFNA. Finally,
both gene ontology (GO) and pathway enrichment analyses are performed, and
characteristic genes are detected by the multimeasure score, to deeply understand
biological functions of PC core modules. Experimental results demonstrated that
the NMFNA facilitates the integration and decomposition of two types of PC data
simultaneously and can further serve as an alternative method for detecting modules
and characteristic genes from multiple genetic data of complex diseases.

Keywords: pancreatic cancer, non-negative matrix factorization, module, network analysis, characteristic gene

INTRODUCTION

Pancreatic cancer (PC) is a highly fatal disease of the digestive system and it is becoming an
increasingly common cause of cancer mortality, yet its pathogenic mechanisms remain unclear
(Mizrahi et al., 2020). Therefore, comprehensively analyzing multiple types of PC genetic data
to understand its pathogenic mechanisms has become a hot topic and many studies have
been conducted. For instance, Wu et al. (2011) applied the lasso penalized Cox regression to
transcriptome data to identify genes that are directly related to PC survival. Yang et al. (2013)
identified thousands of differentially expressed genes of PC and then six genes were predicted
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to be involved in PC development. Gong et al. (2014) integrated
pathway information into PC survival analysis and applied the
doubly regularized Cox regression model to microarray data
to identify both PC-related genes and pathways. Kwon et al.
(2015) used the support vector machine to evaluate the diagnostic
performance of PC biomarkers based on miRNA and mRNA
expression data. Tao et al. (2016) performed a comprehensive
search of electronic literature sources to evaluate the association
between K-ras gene mutations and PC survival. Li et al. (2018)
identified two hub genes of PC from the integrated microarray
data and then validated them in RNA-sequencing data by
k-nearest neighbor and random forest algorithms. These studies
provided several underlying biomarkers and can help cancer
researchers design new strategies for the early detection and
diagnosis of PC (Gong et al., 2014).

Currently, non-negative matrix factorization (NMF)-based
methods are widely used for genetic data analysis. For example,
Mishra and Guda (2016) applied the NMF to genome-scale
methylome analysis of PC data and detected three distinct
molecular subtypes. Wang et al. (2013) proposed the maximum
correntropy criterion-based NMF (NMF-MCC) method for
cancer clustering on gene expression (GE) data. Zhao et al.
(2018) used the NMF bi-clustering method to identify subtypes
of pancreatic ductal adenocarcinoma, which is the most
common type of PC. Xiao et al. (2018) proposed the graph-
regularized NMF to discover potential associations between
miRNAs and diseases. These methods show that the NMF
is a powerful tool for genetic data analysis. Nevertheless,
it is a challenge for them to integrate and decompose
different types of genetic data simultaneously. Zhang et al.
(2012) adopted the joint NMF (jNMF) method to address
this challenge, which projects multiple types of genomic data
onto a common coordinate system, and applied the jNMF
to the methylation (ME), GE, and miRNA expression data
of ovarian cancer to identify cancer-related multidimensional
modules. Yang and Michailidis (2016) introduced the integrative
NMF (iNMF) to analyze multimodal data, which includes a
sparsity option for jointly decomposing heterogeneous data,
and also evaluated the iNMF on ME, GE, and miRNA
expression data of ovarian cancer. These integrated NMF
methods can reveal pathogenic mechanisms that would have
been overlooked with only a single type of data, and uncover
associations between different layers of cellular activities
(Zhang et al., 2012).

However, most of these NMF-based methods only consider
individual genetic effects and ignore interaction effects among
different features. It has been widely accepted that interaction
effects could unveil a large portion of unexplained pathogenic
mechanisms of cancers (Ding et al., 2019). For capturing these
interaction effects, several NMF-based network analysis methods
have been proposed due to network facilitating presenting
interactions between features. Liu et al. (2014) developed a
network-assisted co-clustering algorithm for the identification of
cancer subtypes, which first assigns weights to genes based on
their impact in the network, and then utilizes the non-negative
matrix trifactorization (TriNMF) to cluster cancer patients (Ding
et al., 2006). Chen and Zhang adopted the NMF framework in a

network manner (NetNMF) to integrate pairwise genomic data
for identifying two-level modular patterns and the relationships
among these modules (Chen and Zhang, 2018). Elyanow et al.
(2020) proposed the netNMF-sc method to cluster cells based
on prior knowledge of gene–gene interactions. Nevertheless, the
netNMF-sc ignored interaction effects among different features
and used the decomposed submatrix to construct the network,
which might weaken the internal connection between nodes
in the network. Gao et al. (2019) proposed the integrated
graph-regularized NMF (iGMFNA) model for clustering and
network analysis of cancers, which decomposes the integrated
data into submatrices for constructing networks. Zheng et al.
(2019) used the NMF to integrate ME and copy number
variation (CNV) networks for identifying prognostic biomarkers
in ovarian cancer. These NMF-based network analysis methods
provide new insights into the pathogenic mechanisms of cancers,
especially their interaction effects.

Inspired by both integration and network-assisted strategies
of the NMF, in this paper, we presented a NMF network
analysis method, NMFNA for short, based on graph-regularized
constraint, to identify modules and characteristic genes from
integrated ME and CNV data of PC. Firstly, the Pearson
correlation coefficient (PCC) is employed to construct three
PC networks, i.e., ME network, CNV network, and ME–
CNV network. Then, these networks are further integrated
and decomposed simultaneously to identify modules effectively
due to the introduced graph-regularized constraint, which is
the highlight of the NMFNA. Finally, both gene ontology
(GO) and pathway enrichment analyses are performed, and
characteristic genes are detected by the multimeasure score, to
deeply understand biological functions of PC core modules.
Experimental results demonstrated that the NMFNA facilitates
the integration and decomposition of two types of PC data
simultaneously and can further serve as an alternative method for
detecting modules and characteristic genes from multiple genetic
data of complex diseases.

METHODS

Non-negative Matrix Factorization
Methods
The NMF (Lee and Seung, 1999) and its variants have been
increasingly applied to identify modules in biological networks
(Chen and Zhang, 2018; Wang et al., 2018; Gao et al., 2019).
For a biological network Xm×n, the NMF can decompose it
into two non-negative matrices Um×k and Vk×n, such that X ≈
V , where k < min (m, n). The Euclidean distance between X
and its approximation matrix UV is applied to minimize the
factorization error, which can be written as,

min
U,V
||X− UV||2F

s.t. U ≥ 0, V ≥ 0
(1)

where ||·||2F is the Frobenius norm of a matrix. Since it is difficult
to find a global minimal solution by optimizing the convex and
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non-linear objective function, the NMF adopts the multiplicative
iterative update algorithm to approximate U and V,

uik ← uik
(XVT)ik

(UVVT)ik
(2)

vkj ← vkj
(UTX)kj

(UTUV)kj
(3)

In addition to the two-factor NMF, the three-factor NMF also
plays an important role in matrix factorization, which constrains
scales of U and V by an extra factor S, i.e., X ≈ USV . This
factored matrix S not only provides an additional degree of
freedom to make the approximation tight, but also indicates
associations between identified modules (Chen and Zhang, 2018).
A three-factor NMF variant TriNMF (Ding et al., 2006) is
defined as,

min
U,V
||X− USV||2F

s.t. U ≥ 0, S ≥ 0, V ≥ 0
(4)

which minimizes the objective function by,

uik ← uik
(XVST)ik

(UUTXVST)ik
(5)

vkj ← vkj
(XTUS)kj

(VVTXTUS)kj
(6)

skk ← skk
(UTXV)kk

(UTUSVTV)kk
(7)

Particularly, if X is the symmetric similarity matrix, it could be
decomposed into USUT . For pairwise biological networks with
the same samples but two types of features, Xm1×n

1 and Xm2×n
2 ,

combining the idea of two-factor and three-factor NMF, the
NetNMF (Chen and Zhang, 2018) is defined as,

min
G1,G2,S11,S22

||R11 − G1S11GT
1 ||

2
F + α||R12 − G1GT

2 ||
2
F + β||R22 − G2S22GT

2 ||
2
F

s.t. G1 ≥ 0, G2 ≥ 0, S11 ≥ 0 , S22 ≥ 0
(8)

where Rm1×m1
11 and Rm2×m2

22 are the symmetric feature
similarity matrices of X1 and X2, respectively, that is, their
respective co-expression networks; Rm1×m2

12 is the two-type
feature similarity matrix (co-expression network) between X1

and X2; Gm1×k
1 and Gm2×k

2 are the non-negative factored matrices
used for identifying modules in their respective networks; Sk×k11
and Sk×k22 are also symmetric matrices whose diagonal elements
can be used for measuring associations between identified
modules; k is the user prespecified dimension parameter; α and
β are used to balance three terms of the objective function
and default settings are m1

/
m2 and

(
m1
/
m2
)2, respectively

(Chen and Zhang, 2018). The NetNMF minimizes the objective
function by,(

g1
)
ik ←

(
g1
)
ik

(2R11G1S11 + αR12G2)ik(
2G1S11GT

1 G1S11 + αG1GT
2 G2

)
ik

(9)

(
g2
)
kj ←

(
g2
)
kj

(
2βR22G2S22 + αRT

12G1
)
kj(

2βG2S22GT
2 G2S22 + αG2GT

1 G1
)
kj

(10)

(s11)kk ← (s11)kk

(
GT

1 R11G1
)
kk(

GT
1 G1S11GT

1 G1
)
kk

(11)

(s22)kk ← (s22)kk

(
GT

2 R22G2
)
kk(

GT
2 G2S22GT

2 G2
)
kk

(12)

Non-negative Matrix Factorization
Network Analysis Method
In order to further improve the capability of identifying modules
and capturing interaction effects, we proposed the NMFNA
method by introducing the graph-regularized constraint into the
NetNMF, which can preserve the inherent geometrical structure
of input networks (Deng et al., 2011). For demonstrating its
effectiveness, in the study, we applied the NMFNA to two-
type PC data of ME and CNV to identify modules and
characteristic genes. In fact, the NMFNA is universally useful
and can be applied to any type of genetic data in various
complex diseases.

The overall workflow of the NMFNA for identifying
modules and characteristic genes by integrating ME and
CNV data of PC is shown in Figure 1. It is seen that the
NMFNA mainly has three stages. In the first stage, three
co-expression networks are constructed from ME and
CNV data of PC. In the second stage, these three networks
are applied to the objective function to identify modules.
In the third stage, both GO and pathway enrichment
analyses are performed, and characteristic genes are
detected, to deeply understand biological functions of PC
core modules. Among them, the objective function, which
introduces the graph-regularized constraint, is the highlight of
the NMFNA.

The graph-regularized constraint indicates the inherent
geometrical structure of the input networks. In other
words, the graph-regularized constraint ensures that
interactive features in the Euclidean space are also close
to each other in the low-dimensional space, which is
defined as,

GRC =
1
2

∑
ij

∣∣∣∣∣∣vi − vj
∣∣∣∣∣∣2Zij = Tr(GTLG) (13)

where Z is the sparse weight matrix established using
the geometrical information of X (Xiao et al., 2018), and
Zij represents the similarity between gene vi and vj. Tr (·)
represents the trace of a matrix, and G is the factored matrix
of the biological network X by the NMF. Define a diagonal
matrix D whose elements are column sums of matrix Z,
that is, Dii =

∑
i Zij, and L is the graph Laplacian matrix

defined as:

L = D− Z. (14)
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FIGURE 1 | The overall workflow of the non-negative matrix factorization network analysis (NMFNA) for identifying modules and characteristic genes by integrating
methylation (ME) and copy number variation (CNV) data of pancreatic cancer (PC).

Based on the NetNMF and the graph-regularized constraint, the
objective function of the NMFNA is defined as,

min
G1,G2,S11,S22

||R11 − G1S11GT
1 ||

2
F + α||R12 − G1GT

2 ||
2
F+

β||R22 − G2S22GT
2 ||

2
F +

∑2
i=1 λiTr

(
GT
i LiGi

)
s.t. G1 ≥ 0, G2 ≥ 0, S11 ≥ 0 , S22 ≥ 0

(15)

where R11 and R22 are the ME and CNV co-expression
networks, R12 is the ME–CNV co-expression network, λ is the
tuning parameter to adjust the closeness between interactive
features, and other notation meanings and parameter settings are
the same as those in the NetNMF.

The multiplicative iterative update algorithm is adopted here
to minimize the objective function of the NMFNA. Suppose
ψ1, ψ2, ψ3, and ψ4 are matrices of Lagrange multipliers that,
respectively, constrain S11 ≥ 0, S22 ≥ 0, G1 ≥ 0, and G2 ≥ 0, the
Lagrange function f of the NMFNA is,

f = tr
((

R11 − G1S11GT
1
)T (R11 − G1S11GT

1
))
+

αtr
((

R12 − G1GT
2
)T (R12 − G1GT

2
))

+βtr
((

R22 − G2S22GT
2
)T (R22 − G2S22GT

2
))
+

λ1Tr
(
GT

1 L1G1
)
+ λ2Tr

(
GT

2 L2G2
)

+tr
(
ψT

1 S11
)
+ tr

(
ψT

2 S22
)
+ tr

(
ψT

3 G1
)
+ tr

(
ψT

4 G2
)

(16)

Hence, partial derivatives of f with respect to S11, S22, G1, and
G2 are,

∂f
∂S11
= −2GT

1 R11G1+2GT
1 G1S11GT

1 G1+ψ1 (17)

∂f
∂S22
= −2GT

2 R22G2+2GT
2 G2S22GT

2 G2+ψ2 (18)

∂f
∂G1
= 4

(
G1S11GT

1 G1S11 − R11G1S11

)
+2α(

G1GT
2 G2 − R12G2

)
+2λ1L1G1+ψ3 (19)

∂f
∂G2
= 4β

(
G2S22GT

2 G2S22 − R22G2S22

)
+2α(

G2GT
1 G1 − R12G1

)
+2λ2L2G2+ψ4 (20)

According to Karush–Kuhn–Tucher conditions (Dreves et al.,
2011), i.e., ψ1S11 = 0, ψ2S22 = 0, ψ3G1 = 0, and ψ4G2 = 0,
iterative formulas can be written as,

(s11)kk ← (s11)kk

(
GT

1 R11G1
)
kk(

GT
1 G1S11GT

1 G1
)
kk

(21)

(s22)kk ← (s22)kk

(
GT

2 R22G2
)
kk(

GT
2 G2S22GT

2 G2
)
kk

(22)

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 678642

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-678642 July 17, 2021 Time: 20:56 # 5

Ding et al. A NMF Network Analysis Method

(
g1
)
ik ←

(
g1
)
ik

(αR12G2 + 2R11G1S11 + 2λ1Z1G1)ik(
2G1S11GT

1 G1S11 + αG1GT
2 G2 + 2λ1D1G1

)
ik

(23)

(
g2
)
kj ←

(
g2
)
kj

(
αRT

12G1 + 2βR22G2S22 + λ2Z2G2
)
kj(

2βG2S22GT
2 G2S22 + αG2GT

1 G1 + λ2D2G2
)
kj

(24)
Two types of modules, namely, ME modules and CNV modules,
can be identified from R11 and R22 guided by G1 and
G2, respectively. In particular, G1 and G2 are first z-score
normalized; then for each column (1, · · · , k) of them, those
genes whose corresponding weights are greater than or equal
to the threshold are considered as a cluster; finally, according
to these clusters, subnetworks of R11 and R22 can be captured
as ME modules and CNV modules. Here, the threshold is set
to be 2 according to the reference (Chen and Zhang, 2018).
In addition, similar to previous studies (Hou et al., 2019;
Zhao et al., 2020), modules with the most genes are known
as core modules.

To identify characteristic genes from core modules, which may
play an important role in deeply understanding the biological
functions of modules, we employ the multimeasure score (MS)
to numerically quantify the importance of each gene, which is
defined as,

MS (v) =
DC (v) · BC (v)

EC (v)
(25)

where DC (v), BC (v), and EC (v) are the degree centrality,
betweenness centrality, and eccentricity centrality of gene v in
R′11 and R′22, which are networks filtered from R11 and R22,
respectively, with edge weights higher than a given threshold.
Betweenness centrality and eccentricity centrality focus on the
global feature of a gene in the network, while degree centrality
focuses on the local feature of a gene in the network (Shang
et al., 2019); hence, the MS combines both global and local
features of a gene.

RESULTS AND DISCUSSION

Data and Parameter Settings
Two types of PC data, i.e., ME data and CNV data, are
downloaded from the TCGA database1. These two data have
the same samples (176 tumor samples and 4 normal samples)
but different features: 21,031 methylations in ME data and
23,627 CNVs in CNV data. Based on these PC data, three
co-expression networks, i.e., the ME network R21,031×21,031

11 ,
the CNV network R23,627×23,627

22 , and the ME–CNV network
R21,031×23,627

12 , are constructed using the PCC. Besides, to further
prove the experimental results of two types of PC data, we
also analyze the GEO datasets of PC. Four profile datasets, i.e.,
GSE62452, GSE15471, GSE16515, and GSE28735, of PC are

1https://cancergenome.nih.gov/

downloaded from the GEO database2 for this study. Details of
these four datasets are shown in Table 1.

In the NMFNA, four parameters should be set, which is,
tuning parameters λ1 and λ2, the dimension parameter k,
and the iteration number. λ reflects the degree of imposed
graph-regularized constraint. A large one focuses on reaching
consensus across views, while a small one cannot tolerate matrix
factorization error (Liu et al., 2013). Since these different items
have no distinction of importance, and the dimension reduction
parameter k has a greater impact compared with parameter λ,
considering the convenience of comparison, both λ1 and λ2 are
set to be the same value. We run the NMFNA with different λ

values ranging from 0 to 0.1 to select the proper one based on the
measure of total module similarity (Wang et al., 2018), which is
defined as,

TMS =
∑
x,y

∣∣Mx
⋂

My
∣∣

min
(
|Mx| ,

∣∣My
∣∣) (26)

where Mx represents members in module x. According to
experiment results (Figure 2A), λ1 and λ2 are set to be 0.03.
The dimension parameter k is determined by the singular value
decomposition method (Qiao, 2015), and its first inflection point,
i.e., 6,834, is selected to k. In order to reduce the decomposition
error, a large iteration number is used. In the study, we set it
to 200 since the decomposition error here has already reached
a relatively stable state (Figure 2B).

GO and Pathway Enrichment Analyses
To demonstrate the validity of the NMFNA, we compared
it with the NMF, TriNMF, and NetNMF by performing GO
and pathway enrichment analyses on their respective identified
core modules. The GO enrichment analysis was carried out
by an online tool, DAVID Bioinformatics Resources3 (Dennis
et al., 2003). The pathway enrichment analysis was conducted
using the KOBAS v3.0 web server4 (Kanehisa et al., 2016), in
which, the KEGG pathway, BioCyc, PANTHER, and Reactome
databases were used. The numbers of GO terms and pathways
(p-value < 0.05) obtained from enrichment analyses of ME
and CNV core modules identified by the compared methods
are shown in Figure 3. It is seen that either ME or CNV
core modules identified by the NMFNA have more GO terms
and pathways than those identified by other methods, implying
that modules identified by the NMFNA might contain more

2http://www.ncbi.nlm.nih.gov/geo/
3https://david.ncifcrf.gov
4https://github.com/xmao/kobas

TABLE 1 | Details of GEO datasets of PC.

Datasets Normal Tumor Genes

GSE62452 61 69 20,358

GSE15471 36 36 22,188

GSE16515 16 36 22,187

GSE28735 45 45 20,314
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FIGURE 2 | Parameter settings for the NMFNA. (A) Is the influence of parameter and (B) is the convergence analysis of NMFNA.

FIGURE 3 | Numbers of GO terms and pathways obtained from enrichment analyses of ME and CNV core modules that identified by compared methods. (A)
Represents the details of the ME core module and (B) represents the details of the CNV core module.

biological information related to understanding the pathogenic
mechanisms of PC.

The numbers of enriched genes in GO terms obtained
from the enrichment analyses of ME and CNV core modules
identified by the NMFNA are shown in Figure 4. It is seen
that for the ME core module, genes are mainly enriched
in GO:0005515, GO:0005737, GO:0005829, GO:0070062,
GO:0005654, GO:0016020, GO:0005615, and GO:0005739,
corresponding to protein binding, cytoplasm, cytosol,
extracellular exosome, nucleoplasm, membrane, extracellular
space, and mitochondrion; for the CNV core module, genes are
mainly enriched in GO:0005515, GO:0006351, GO:0003676,
and GO:0005789, corresponding to protein binding, DNA-
templated, DNA binding, and endoplasmic reticulum. Details
of these significant GO terms are listed in Table 2. Several
studies have confirmed that these GO terms contribute to the
development of PC cells. The protein binding (GO:0005515)
is the most significantly enriched GO term among molecular
functions in both ME and CNV core modules. As one of
the specific binding protein, IGF binding protein-1 has been
confirmed to inhibit the activity of insulin-like growth factor
I, which has growth-promoting effects on PC cells (Wolpin
et al., 2007). The cytoplasm (GO:0005737) plays an important
role in the development of PC by regulating the expression of
carbonic anhydrase IX (Juhász et al., 2003). As a member of

the cadherin/catenin family, p120(ctn) has been found in the
cytosol (GO:0005829) of PC cells (Mayerle et al., 2003), which is
correlated to the degree of tumor dedifferentiation. The fractional
volume of the extracellular space (GO:0005615) in the PC tissue
has been reported to be statistically larger than that in the normal
tissue (Yao et al., 2012). The novel mitochondrion interfering
compound NPC-26 may effectively inhibit the growth of PC
cells by destroying the mitochondria (GO:0005739) (Dong et al.,
2016). Genes involved in the DNA-templated (GO:0006351)
have been clinically used for treating lung cancer (Lu et al.,
2016), which might be speculated to affect other cancers by
their pan-cancer co-regulation mechanisms. The nicotine can
induce the inhibitor of the DNA binding (GO:0003676) and has
been confirmed as an established risk factor for PC (Treviño
et al., 2011). The endoplasmic reticulum (GO:0005789) has been
identified as the key target in PC, which shows its potential
for antitumor drug development (Gajate et al., 2012). Other
three GO terms, including extracellular exosome (GO:0070062),
nucleoplasm (GO:0005654), and membrane (GO:0016020) also
have been reported to associate with PC (Sakai et al., 2019; Zhou
et al., 2019).

Among all pathways obtained from enrichment analyses
of ME and CNV core modules identified by the compared
methods (Figure 3), we recorded common pathways that
appear in at least three out of four methods in Table 3.
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FIGURE 4 | Numbers of enriched genes in GO terms obtained from enrichment analyses of ME and CNV core modules identified by the NMFNA. (A) Represents
numbers of the enriched gene of the ME core module and (B) represents numbers of the enriched gene of the CNV core module.

TABLE 2 | Details of significant GO terms obtained from enrichment analyses of ME and CNV core modules identified by the NMFNA. adj.P is the p-value
corrected by the FDR.

Module ID Name Count p-value adj.P

ME, CNV GO:0005515 Protein binding 614 1.62E-04 4.80E-02

ME GO:0005737 Cytoplasm 379 3.26E-04 6.93E-07

ME GO:0005829 Cytosol 287 1.15E-09 5.25E-06

ME GO:0070062 Extracellular exosome 245 1.74E-08 2.85E-01

ME GO:0005654 Nucleoplasm 204 8.85E-03 4.77E-01

ME GO:0016020 Membrane 161 2.13E-02 1.32E-01

ME GO:0005615 Extracellular space 111 2.10E-03 2.01E-01

ME GO:0005739 Mitochondrion 108 4.09E-03 9.85E-01

CNV GO:0006351 Transcription, DNA-templated 185 3.75E-02 7.27E-01

CNV GO:0003676 Nucleic acid binding 103 1.08E-02 9.26E-01

CNV GO:0005789 Endoplasmic reticulum membrane 87 2.79E-02 9.53E-02

ME, methylation; CNV, copy number variation.

It is seen that in terms of p-values, as well as p-values
corrected by the false discovery rate (FDR), namely adj.P,
the NMFNA performs best among all compared methods,
implying that pathways enriched in core modules identified
by the NMFNA are more significant than those enriched
in core modules identified by other compared methods. To
further analyze these core modules, the top 10 pathways
according to their adj.P enriched in ME and CNV core

modules identified by the NMFNA are listed in Figure 5,
in which, the node size and color represent the number
of genes enriched in the pathway and the significance of
the pathway, respectively. Specifically, two pathways, i.e.,
transport of small molecules and arachidonic acid metabolism,
have already been reported to be associated with PC. The
former can filter downregulated differentially expressed genes
of PC, while the latter can promote the progress of PC
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TABLE 3 | Common pathways appearing in at least three out of four methods.

Pathways NMFNA NetNMF TriNMF NMF

p-value adj.P p-value adj.P p-value adj.P p-value adj.P

Metabolism 4.58E-16 2.30E-12 3.65E-15 1.86E-11 4.94E-06 1.19E-02 7.70E-04 1.87E-01

Immune system 1.11E-05 4.46E-03 7.72E-06 3.93E-03 1.15E-03 1.33E-01 1.02E-03 1.87E-01

Disease 1.29E-06 1.08E-03 5.27E-04 4.71E-02 1.05E-04 6.63E-02 \ \

Transport of small molecules 6.46E-09 1.08E-05 2.42E-07 3.08E-04 \ \ 4.61E-03 3.56E-01

Arachidonic acid metabolism 6.79E-04 5.08E-02 4.62E-03 1.52E-01 4.38E-03 2.13E-01 \ \

Metabolic process 1.27E-04 4.14E-02 4.28E-04 1.26E-01 4.65E-04 4.79E-02 \ \

adj.P is the p-value corrected by the FDR. “ \” represents that the pathway cannot be obtained from enrichment analyses of ME and CNV core modules that were
identified by the corresponding method.

FIGURE 5 | Top 10 pathways enriched in ME and CNV core modules identified by the NMFNA. (A) Represents pathways enriched in the ME core module and (B)
represents pathways enriched in the CNV core module.

(Biswas et al., 2014; Long et al., 2016). To aid early diagnosis,
the metabolism pathway can be used individually or in
combination to differentiate people with and without PC. The
metabolism of xenobiotics by cytochrome P450 pathway has
been considered as an important pathway associated with the
progression of cancer (Hu and Chen, 2012). Besides, three
other metabolism-related pathways, namely, lipid metabolism
and autophagy, glutamine-regulatory enzymes, and Akt/c-
Myc pathway (Dando et al., 2013; Blum and Kloog, 2014),
have been identified to directly affect the growth of PC
cells. The small molecule metabolic process also has been
found as the enriched pathway for the biological process
of PC (Hu et al., 2017). The identification of immune
system-related regulation pathways has been reported to
provide several new insights for PC treatment and prognosis
(Yang and Michailidis, 2016).

Analysis of Characteristic Genes
In order to further demonstrate the validity of the NMFNA
and deeply understand biological functions of core modules, we

detect and analyze characteristic genes from these core modules.
First, ME and CNV core modules identified by four compared
methods are filtered by removing weak edges with their PCC less
than or equal to 0.8. Second, based on these filtered networks,
the MS of each gene in the corresponding module is calculated,
which can be considered as its contribution to interactions among
genes in the module. Third, genes in each core module are sorted
in descending order according to the MS, and the top ones are
viewed as characteristic genes. In the study, the top 10, 30, and 50
characteristic genes in each core module are, respectively, selected
and sent to GeneCards5 to measure their relevance scores, which
represent association strengths between corresponding genes and
PC. After that, for each compared method, relevance scores of
characteristic genes in both ME and CNV core modules are
summated together and recorded in Table 4. It is seen that
in all scenarios, scores of the NMFNA are significantly larger
than the scores of other compared methods, which implies that
characteristic genes detected by the NMFNA are more relevant

5http://www.genecards.org
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TABLE 4 | Summated relevance scores of characteristic genes in both ME and
CNV core modules identified by each compared method.

Method Top 10 Top 30 Top 50

NMFNA 32.80 90.74 220.54

NetNMF 22.51 58.62 97.70

TriNMF 12.03 52.87 76.29

NMF 12.83 81.05 117.23

TABLE 5 | PC-related genes in the top 10 characteristic genes of both ME and
CNV core modules.

Method Count Gene

NMFNA 8 TTC21A TNKS1BP1 TK1 KCNJ1 USF1 SDC3
MAN1C1 NR3C2

NetNMF 6 YTHDF1 TK1 KCNJ1 USF1 CALCOCO1 LIMD1

TriNMF 5 MTF1 LTBP4 SDC3 NEDD4 ASCC2

NMF 5 UBL4B FCGR1A KMT2D ANK1 PARG

TABLE 6 | Numbers of common genes in ME and CNV core modules.

Module NMFNA NetNMF TriNMF NMF

ME 1,139 1,135 1,058 1,147

CNV 1,470 1,435 1,019 819

to PC and are more likely to reveal the pathogenic mechanisms
of PC.

In addition, for each compared method, PC-related genes
in the top 10 characteristic genes of both ME and CNV core
modules are retrieved from GeneCards and listed in Table 5. It
is seen that the NMFNA hits eight genes and is the winner of
all compared methods. We then analyzed in detail the biological
functions of these PC-related genes. The TNKS1BP1 has been
reported to regulate cancer cell invasion, which might further
affect the progression of PC (Mayerle et al., 2003). The TK1 level
is upregulated 4-fold in the mice PC specimen (Yao et al., 2012);
therefore, we naturally speculate that it might also play a potential
role in the human PC. The variation of the KCNJ1 has been
claimed to be associated with diabetes (Farook et al., 2002), which
is a closely related disease to PC and is generally thought of as
the important risk factor of PC. As an independent prognostic
biomarker, the SDC1 has been confirmed to be upregulated in
PC (Juuti et al., 2005). Since the SDC1 is an important paralog
of the SDC3, we infer that the SDC3 might be related to PC. The
NR3C2 has been identified as the target of miR-135b-5p, which
promotes migration and invasion of PC cells (Zhang et al., 2017).
Though the TTC21A, USF1, and MAN1C1 have been marked as
PC-related genes in GeneCards, and they are indeed associated
with several PC complicating diseases, including hyperlipidemia
and alcohol-induced mental disorder, there are few supporting
literature studies.

Besides, the experiments of the GEO datasets are also
performed to further verify the effectiveness of modules and
characteristic genes identified by the NMFNA method. Firstly,
we calculated the numbers of common genes of the four datasets
GSE62452, GSE15471, GSE16515, and GSE28735. As shown in

Supplementary Figure 1, there are 17,327 common genes, which
are more likely to be related to PC. Secondly, Table 6 lists the
number of genes in the modules obtained by different methods
that overlap with these common genes. It can be seen from
Table 6 that genes of the core modules identified by the NMFNA
method contain the largest number of common genes, which
indicates that these core modules have been verified to be related
to PC in different databases.

CONCLUSION

Pancreatic cancer is a disease with a poor prognosis, in which
malignant cells originate in the pancreatic tissue. To understand
its pathogenic mechanisms, in this study, based on NMF and
graph-regularized constraint, we presented NMFNA to identify
modules and characteristic genes from integrated ME and CNV
data of PC. First, the ME network, CNV network, and ME–CNV
network are constructed by the PCC. Then, these networks are
further integrated and decomposed simultaneously to identify
modules effectively due to the introduced graph-regularized
constraint, which is the highlight of the NMFNA. Finally,
both GO and pathway enrichment analyses are performed, and
characteristic genes are detected by the multimeasure score,
to deeply understand the biological functions of PC core
modules. Compared with the NMF, TriNMF, and NetNMF,
the NMFNA identified more PC-related GO terms, pathways,
and characteristic genes in core modules, demonstrating that
the NMFNA facilitates the integration and decomposition of
two types of PC data simultaneously and can further serve as
an alternative method for detecting modules and characteristic
genes from multiple genetic data of complex diseases.

The NMFNA has several advantages. First, it performs
well in integrating and decomposing different types of genetic
data simultaneously. Second, introducing the graph-regularized
constraint into the NMFNA eases the heterogeneity of multiple
networks, which is beneficial to detect core modules. Third, the
NMFNA can not only consider individual genetic effects but also
capture interaction effects among different features contributing
to the development of PC. Nevertheless, it still has some
limitations. For instance, associations between ME modules and
CNV modules, i.e., S11, S22, are not deeply analyzed in theory and
experiment; it only supports the integration and decomposition
of two types of genetic data and fails three or higher types. These
limitations inspire us to continue working in the future.
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