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The aim of this study was to investigate the expression features of discordant
inflammatory bowel disease (IBD) twin pairs to identify novel molecular features and
markers. We collected an expression dataset of discordant twin pairs with ulcerative
colitis and performed integrative analysis to identify the genetic-independent expression
features. Through deconvolution of the immune cell populations and tissue expression
specificity, we refined the candidate genes for susceptibility to ulcerative colitis. We
found that dysregulated immune systems and NOD-related pathways were enriched
in the expression network of the discordant IBD twin pairs. Among the identified factors
were significantly increased proportions of immune cells, including megakaryocytes,
neutrophils, natural killer T cells, and lymphatic endothelial cells. The differentially
expressed genes were significantly enriched in a gene set associated with cortical
and medullary thymocytes. Finally, by combining these expression features with genetic
resources, we identified some candidate genes with potential to serve as novel markers
of ulcerative colitis, such as CYP2C18. Ulcerative colitis is a subtype of inflammatory
bowel disease and a polygenic disorder. Through integrative analysis, we identified some
genes, such as CYP2C18, that are involved in the pathogenesis of IBD as well as some
candidate therapeutic targets, such as LOXL2.

Keywords: inflammatory bowel diseases, ulcerative colitis, novel marker, CYP2C18, LOXL2

INTRODUCTION

Inflammatory bowel disease (IBD) is a multifactorial disorder that includes three main subtypes,
Crohn’s disease (CD), Ulcerative Colitis (UC), and IBD unclassified (IBDU) (Uhlig and Muise,
2017). The phenotypes of these disorders are usually caused by defects in the epithelial barrier
and dysregulation in the innate and adaptive immune responses. The pathogenic pathways of
IBDs overlap with those of other disorders, such as psoriasis (Parkes et al., 2013). Therefore, the
underlying genetic or epigenetic factors likely have pleiotropy phenotype which further complicates
the identification of the molecular etiology of IBDs.
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Familial aggregation and twin-paired studies have provided
evidence that genetic factors contribute to the pathogenesis of
IBDs. For instance, concordance in the diagnosis of UC (15.3
vs. 3%) and CD (51.6 vs. 5.1%) is higher in monozygotic twins
than dizygotic twins (Annese, 2020). The heritability of IBDs
varies across subtypes, as has been observed in twin studies
of UC and CD. Rare variants in IL10 and ILIORB have been
shown to be highly penetrant for intestinal inflammation (Uhlig
and Schwerd, 2016). However, the penetrance of some variants
might be variable, and researches on rare variants in IBDs is
limited. Complex phenotypes are observed in IBDs, and the
genetic results support this complexity. Thus far, more than
240 genes or loci have been linked to the IBDs (Annese, 2020),
which indicates that these disorders are polygenic. Genome-wide
association studies have refined the candidate genes involved in
the pathogenesis of IBDs and have identified candidates in the
NOD2-related microbe sensing pathway (Jostins et al., 2012), IL-
23 driven T-helper cell response (Liu et al., 2015), and autophagy
(Schwerd et al., 2017).

IBDs are multifactorial disorders. Research on discordant
twin pairs with IBDs has indicated some genetic-independent
factors underlying the pathogenesis. For instance, differences
were observed in the gut microbiome of the inflamed and non-
inflamed segments of the gut in both CD and UC (Ryan et al.,
2020). However, a recent report showed that the gut microbiome
of the healthy cotwins from discordant IBD twin pairs displays
IBD-like signatures, indicating that the discordant monozygotic
twins with IBD not only share the same genetic background
but also the same gut microbiome (Brand et al., 2021). Thus,
the causative role of the gut microbiome in the pathogenesis of
IBDs requires longitudinal follow-up to confirm. Based on these
findings, we supposed that the differential expression patterns
between the affected and unaffected discordant twins could
provide clues to the mechanism underlying the pathogenesis
of IBD. In this study, we identified dysregulation of seven
immune cell subpopulations as factors that might contribute
to IBD, especially those related to the cortical and medullary
thymocyte. In addition, we identified some candidate makers and
therapeutic targets for UC.

MATERIALS AND METHODS

Microarray Dataset

We download a transcriptome dataset from the Gene
Expression Omnibus (GEO) database that included 10 paired
discordant monozygotic twins for UC (GSE22619). We also
collected expression data from 20 paired unrelated healthy
twins (GSE7821).

Identification of Differentially Expressed

Genes

We performed rma normalization of the gene array dataset of
twin pairs and identified the Differential Express Genes (DEGs)
using the oligo (Carvalho and Irizarry, 2010) and limma R
packages (Ritchie et al., 2015). The cutoft for DEGs was a log fold
change (| logFC|) > 2 and a p-value less than 0.01.

Principal Component Analysis and
Sample Similarity Analysis
We performed principal component analysis (PCA) on the

expression dataset using the R package FactoMineR (Lé et al,
2008) and factoextra'.

Gene Set Enrichment Analysis

We performed a Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
using the R package clusterProfiler (Yu et al.,, 2012) and Gene
Set Enrichment Analysis (GSEA) to evaluate the underlying
expression spectrum of UC using the R package GSEABase
(Morgan et al., 2020).

Deciphering the Immune Cell
Populations Using the Expression

Dataset

We applied the expression matrix to xCell (Aran et al., 2017)
to decipher the immune cell proportion with the parameters
set as default and applied paired Wilcoxon.test to evaluate the
differential cell populations.

Deconvolution of the Tissue Expression

Specificity of the DEGs

We downloaded the normalized RNA-seq dataset from
Genotype-Tissue Expression (GTEx) Portal and tissue origin
annotation information and used the t-distributed stochastic
neighbor embedding (t-SNE) approach to investigate the tissue
expression specificity of the identified DEGs and normalized the
mean expression for each type of tissues. To keep the consistency
of the gene names, the gene symbols were converted to Ensembl
gene id by gprofiler (Reimand et al, 2007), and the genes
unmatched were ruled out in the downstream analysis.

Cell Culture and Treatments

The human colon cancer cell lines HCT116 and HT29 were used
in this study Cell lines were cultured at 37°C under 5% CO, in
McCoy’s 5A (Gibco) supplemented with 10% (v/v) fetal bovine
serum (FBS, Gibco) and penicillin G (100 U/ml, Gibco) and
streptomycin (100 pg/ml, Gibco). To induce the inflammation
status, the cell lines were stimulated with TNF-a (100 ng/ml)
for 24 h. And the control group, the cell lines were treated with
DMSO. All the experiments were repeated three times.

Determine the Expression of CYP2C18

The expression level of CYP2C18 was determined in cell lines,
HCT116, HT29, and the control cell line. Cells were washed with
ice-cold phosphate-buffered saline (PBS), harvested with a cell
scraper (Corning), centrifuged at 2,000 rpm for 5 min at 4°C, and
resuspend with RIPA buffer supplemented with PMSF (Sigma),
protease inhibitor (Roche). Lysates were subjected to sonication
and spun at 13,300 rpm at 4°C. The supernatant was transferred
into new tubes. Protein concentrations were qualified with the

'https://CRAN.R-project.org/package=factoextra
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FIGURE 1 | Sample inherent similarity based on principle component analysis (PCA) and pairwise correlation analysis. (A) Scatter plot of the top two components
from the PCA. (B) Sample similarity derived from the pairwise correlation analysis. Pearson’s correlation results were shown in the heatmap.
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BCA reagent (Thermo Scientific). Protein lysates were resolved
on SDS-PAGE gels, and protein of interest was detected with one
of the following antibodies: CYP2C18 (PA5-112394, Invitrogen),
B-actin (ab8226, Abcam). Paraffin section from 7 unrelated
UC affected cases and 5 normal controls were applied to
immunohistochemistry, which was performed as recommended
with the antibody CYP2C18 (PA5-112394, Invitrogen).

Curation the Association of Variants in
Given Candidate Genes With Risk of
IBDs

The rare non-silent variants in the identified genes were further
inspected based on the IBD Exome Browser’ following the
guidelines as described before (Richards et al., 2015; Yin et al.,
2019).

RESULTS

Revisiting the Potential Causative

Genetic Factors of IBDs

To evaluate the genetic architecture underlying IBDs, we
retrieved candidate genes by text mining and estimate their
prevalence and penetrance using the IBD exome browser.
Second, we focused on high confidence variants likely to be
disease causative based on the results of a previous fine-mapping
study (Huang et al, 2017). Of the fine-mapped genes with
at least one variant located in the coding region, six genes,
NOD2 (n = 7), IL23R (n = 3), CCDC71 (n = 2), BANKI
(n = 2), MSTI (n = 2), and FUT2 (n = 2) had recurring
non-silent variants. We evaluated the potential phenotypes of
IBD associated with these fine-mapped candidate genes, and we
found that the terms abnormal immunological process, colitis,
and inflammation of gastrointestinal or intestinal recurred in

Zhttps://dmz-ibd.broadinstitute.org

the top 10 human phenotypes (Supplementary Table 1). To
validate this result, we evaluated the enriched non-silent variants
in these candidate genes using the IBD exome browser (IBD
Exomes Portal, 2021), and only NOD2 was highly enriched with
potential disease-causing variants (Data not shown). Although
Mendelian IBD has been reported, the underlying genetic factors
interact with other non-genetic factors to determine the final
phenotype. Therefore, it might be difficult to identify all the
penetrant variants for IBDs and combine multiple sources of
dataset, including gene mutation burden test results, gene tissue
expression specificity and differential expression genes between
affected cases and control could refine the candidate genes
(Supplementary Figure 1).

Expression Features Identified in the

Discordant Twin Pairs

To identify the most informative gene for distinguishing the
affected twins from the unaffected twins, we retrieved the
expression profile of discordant twin pairs (monozygotic) for
IBDs (n = 10). We also included healthy twin pairs (n = 20) for
quality control (Supplementary Figure 2). We first performed
PCA on the healthy twin pairs cohort, and little distinction
was observed among the individuals from each twin pairs
(Supplementary Figure 2). In the discordant twin pairs for IBDs,
the affected twins could be distinguished from the unaffected
twins; however, in four twin pairs (ID: 03, 04, 07, and 12), there
was little difference between the affected and unaffected twins
(Figure 1A). We also performed a pairwise correlation using
the expression dataset and obtained results similar to the PCA
(Figure 1B). Although heterogeneity exists among different twin
pairs, the distinction between the discordant pairs could provide
specific information regarding the pathogenesis of IBD.

To evaluate the expression dataset for possible noise, we first
identify the DEGs among the healthy twin pair, and we did not
identify any genes with significant differences (Supplementary
Figure 3). Second, we examined the expression datasets from
discordant IBD twin pairs. In total, we identified 118 genes that
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FIGURE 2 | Differentially expressed genes (DEGs) in the discordant inflammatory bowel disease (IBD) twin pairs. (A) Heatmap of the scaled expression values of
DEGs. (B) Volcano plot of the DEGs, with the top five upregulated and downregulated genes labeled. (C) Enriched components containing the DEGs.

tended to be differentially expressed between the affected and
unaffected twins (P < 0.01 and | logoFC| > 1; Figure 2A and
Supplementary Table 2). A comparison to genes reported to be
related to IBDs based on GWAS and DiseaseNet identified four
genes, CDH3, CXCLS8, ILIR2, and NXPE], that were differentially
expressed between the discordant twin pairs (Supplementary
Figure 4 and Supplementary Table 3). Among the top up-
regulated DEGs, OLFM4, MMPI1, CYP2C18, COLI2A1, and
LOXL2, gene OLFM4 encodes Olfactomedin4, which is a stem
cell marker for small intestinal. The expression of OLFM4 was
highly upregulated in inflamed colonic epithelium, especially in
UC (Gersemann et al., 2012; Suzuki et al., 2018). Furthermore,
the relationships between IBD and some of the top DEGs
(Figure 2B), such as MMP1 (Wang and Qiu, 2010) and COL12A1
(Ji et al., 2020), have also been reported. Interestingly, the serum
levels of LOXL2 are significantly higher in primary sclerosing
cholangitis (PSC) (Pollheimer et al., 2018), which is closely
associated with IBD, and LOXL2 targeting in IBD has been

evaluated in PSC (Lynch et al, 2019). Meanwhile, among the
top down-regulated DEGs, such as BRINP3, CKB, CP, CLDNS8
and DPP10-ASI, down regulation of BRINP3 (Smith et al,
2014), CLDN8 (Wang et al., 2016), has been reported in UC.
CLDN8 has been identified as a novel target of IL23 signaling
and inhibition of CLDNS8 could destroy the intestinal barrier
function (Wang et al., 2016; Li et al., 2020). However, the roles
of CYP2C18, DPP10-ASI, CKB, and CP involved in the IBD
associated syndrome has not been reported. Therefore, the top
DEGs identified in this study, especially those had not been
reported, were deemed to be worthy of further investigation.

Gene Set Enrichment of the Differentially
Expressed Genes and Immune

Signatures Associated With UC
Given that the IBD and related disorders are characterized by
the dysregulated immune system, quality control based on gene
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FIGURE 3 | Enriched functional pathway associated with the DEGs.

set enrichment and pathway analysis were performed to check we performed gene set enrichment analysis and we found
the confidence of the informative markers identified via DEG  that the DEGs were significantly related to functions, such as
analysis. To estimate the underlying functional components, ion response and chemokine activity (Figure 2C). To further
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investigate the dysfunction network underlying the pathogenesis
of IBD, we performed functional pathway enrichment analysis.
In our analysis, the top five enriched pathways were rheumatoid
arthritis, pertussis, TNF signaling pathway, IL-17 pathway, and
NOD-like receptor signaling pathway (Figure 3), which is
consistent with the observation the NOD2-related pathways
were involved in the pathogenesis mechanism underlying IBD.
Generally, immune system dysregulation was highly enriched
in the related functional pathways, and pathways related to
virus infection recurred (Figure 3). Interestingly, we also found
that the DEGs were also enriched in the Coronavirus disease
(COVID-19) associated pathway, which was consistent with
some recent publications (Allocca et al, 2020). Apart from
the immune-related disorders, dysregulated expression of the
identified DEGs might also be involved in other disorders, such
as cancer. For instance, the PD1/PD-L1 checkpoint pathway was
highly regulated among the affected twins (Figure 3). Therefore,
individuals with IBDs may have a high predisposition to other
disorders and might benefit from the immune checkpoint
inhibitors treatment.

Given that abnormal immune responses were highly enriched
in the IBDs, we further evaluated the dysregulated immune cell
subpopulations. We applied xCell to estimate the immune cell
subpopulation and we found seven immune cell subpopulations
that were distinct between the affected and unaffected twins
(Figure 4A). For instance, the proportion of megakaryocytes,
neutrophils, natural killer T (NKT), and endothelial cells was
highly increased in the UC affected twins; and the proportion
of CD4™ T cell, CLP, and MEP subpopulations was significantly
decreased in the UC affected twins (Figure 4B). Furthermore,
we performed a GSEA of the immune-related gene sets, we
found that the DEGs were enriched in cortical and medullary
thymocyte gene sets (P = 0.0016; q < 0.05), and the genes with the
greatest contribution were VNNI1, CHI3L1, APOBECI, CXCL2,
CXCL6, ILIRN, CXCL3, and IFIT3. Therefore, the genetic-
independent pathways involved in the pathogenesis of discordant
twin pairs of IBDs were similar to the dysfunction of genetic
components, such as NOD2.

Deconvolution of the Tissue Specificity
of the DEGs and Refinement of

Candidate Genes

To refine the candidate genes involved in IBD, we deconvolve
the tissue expression specificity of the DEGs that do not
have disease-causative supporting evidence in either GWAS
FineMapping or DiseaseNet curation by t-SNE based approach.
Due to RP11-247L20.4, LOC283070, EMR2, GPR126, MFSD4,
and GPRI28 have unmatched gene id in the GTEx dataset,
we rule them out from the downstream analysis. Based on
the GTEx dataset, we found that those DEGs showed wide
tissue specificity (Figure 5). After normalized the expression
level, we found two clusters of genes, including OLFM4,
NXPEI, APOBECI1, CYP2CI18 that were specifically expressed
in either the colon or small intestine (Figure 6). Given that
the role of the gene CYP2CI8 in the pathogenesis of IBDs has
not been investigated, we mainly focused on determining the
functional role of CYP2C18. Interestingly, we found multiple,
rare, non-silent variants in CYP2C18 (e.g., Tyr68Ter, Cys279Arg,
and Thr243Met) that were enriched in IBD using the IBD
exome browser (Supplementary Table 4). We performed
functional assay to validate the results we observed. After
inducing the inflammation signaling by TNF-a, the expression
of CYP2CI8 was significantly increased in the HCT116 and
HT29 cell lines (Figure 7A). Immunohistochemistry (IHC)
analysis showed that the expression of CYP2C18 was highly
increased in the UC-affected cases in comparison with the
normal individuals (Figure 7B). Therefore, CYP2CI8 is a
good candidate susceptible gene for IBDs and valuable for
further investigation.

DISCUSSION
Shared etiological factors owing to both clinical and
immunological characteristics among immune-mediated

diseases (IMDs) have long been suspected (Parkes et al., 2013).
Individuals who are affected by one type of IMD could have
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higher susceptibility to other IMDs. There are two main types
of IMDs, seropositive autoimmune diseases, such as rheumatoid
arthritis, and seronegative auto-inflammatory disorders, such as
CD and psoriasis (Parkes et al., 2013). In our studies, we found
that genes upregulated in UC are also enriched in rheumatoid
arthritis and psoriasis. Therefore, IMDs could have some shared
susceptibility loci and similar underlying genetic etiologies.
Consistent with the phenotypes observed in IBD, the
DEGs identified in the discordant twin pairs were significantly
enriched in the immune-related pathways and components.

In our analysis, we found that the proportions of four
immune-related cell subpopulations were increased in
UCs. The proportion of megakaryocytes was significantly
increased in the UC-affected twins, but the proportion of
megakaryocytic-erythroid progenitor cells was decreased in
the UC-affected twins. Megakaryocytes are derived from
hematopoietic stem cell precursor cells in the bone marrow
and produce platelets. Inflammation and coagulation are
involved in the pathogenesis and clinical manifestation of
IBDs (Voudoukis et al., 2014), and the increased influx of

Frontiers in Genetics | www.frontiersin.org

June 2021 | Volume 12 | Article 680125


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Du et al.

A Novel Marker for IBD

I

" ‘
HH Lung
H H Ovary
kl l - F Fallopian Tube:
. . ] Uterus
: - Blood Vessel 08
; | | 1| Nerve 8
H_ 1 A ] adpose Tssue
reas!
£ H 11 |7 Stomach
2 T ; i
5
H I 3 EEE EE 1 06
i Salvary Giand
H I Esophagus
T T ass | S
- L HH ! - o
u .ﬁ:. Tt T ﬁvgall Intestine b4
icney
T H
SSERSS.SEIESEREST-EE o =
EESE NN m
H () 1
H i
T
Head - i
Tt EndaREmaEEE

FIGURE 6 | Expression spectrum of the DEGs across different tissues. Normalized expression values across the tissues were shown in the heatmap. Among the
identified candidate genes for the pathogenesis of IBD, gene CYP2C18 could be a novel marker for IBD, especially UC and CYP2C18 was labeled in red.
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progenitor cells in the megakaryocyte cell compartment in
IBD would alter the platelet count (Voudoukis et al., 2014).
Interestingly, infliximab treatment significantly rescued pro-
platelet formation by megakaryocytes from IBD patients but not
by megakaryocytes from healthy controls (Di Sabatino et al.,
2016), which confirms the specific role of megakaryocytes in the
pathogenesis of IBDs.

Neutrophils have a dual role in intestinal inflammation,
and overactivated neutrophils cause chronic inflammation in
IBDs (Fournier and Parkos, 2012). NKT cells are involved in
both the innate and adaptive immune responses and recognize
CD1—restricted microbial and self-lipids, which participate in
the development of IBD by regulating intestinal homeostasis (Lai
etal., 2019; Brailey et al., 2020). In addition, during inflammation,
the lymphatic system undergoes intense expansion through
lymphangiogenesis, and aberrant increases in the lymphatic
vasculature have been reported in patients with CD and UC
(Danese, 2011). Therefore, the distinct proportions of immune
cell subpopulations in UC-affected and unaffected twins explain,
in part, the underlying pathogenesis of IBD.

By combining the expression features identified in our
analysis with the rare variants enriched in IBD-affected twins,
we identified some candidate makers for IBDs. Although we
excluded random expression noise by including unrelated healthy
twin pairs in our analysis, the sample size was quite small. In
our analysis, the role of the top DEGs, such as OLFM4, LOXL2,
COLI12A1, MMPI, and CLDNS, involved in the pathogenesis of
IBD has recently been identified. Gene OLFM4 acts as a stem cell
marker of the small intestine and is overexpressed in the inflamed
colonic epithelium, especially in UC-affected cases. And we
also identified some novel candidates which might have disease
contributing roles. For instance, we observed that the expression
of CYP2C18 is highly upregulated in IBD-affected twins, and
multiple rare non-silent variants in CYP2CI8 are enriched in
IBDs. So far, the roles of CYP2CI8 in the pathogenesis of IBDs
have not been elucidated. Therefore, we focused on validating the
association between CYP2C18 and UC.

CYP2C18 encodes a member of cytochrome P450 (CYPs)
superfamily of enzyme, which catalyze the metabolism of
endogenous and exogenous substances, and extrahepatic and
extrarenal CYP enzymes play critical roles in the development of
UC (Sen and Stark, 2019). In vitro, the expression of CYP2CI8
was significantly upregulated in TNF-a induced inflammation
status (Figure 7A). And the expression of CYP2C18 was also
increased in the UC-affected case (Figure 7B). Based on the
mouse model, various components such as P450 substrates and
P450 metabolites in the blood may change with the UC-specific
pattern (Yamamoto et al., 2018). The secretion of CYP2C18 in
serum and varied expression of CYP2C18 between UC affected
cases and UC unaffected cases, provide the possibility to evaluate
UC using P450 enzyme through non-invasive method. However,
the sample size was limited in our analysis, further investigation
is needed to confirm our results and determine the detailed
mechanism by which the identified genes contribute to the
pathogenesis of IBDs.

A HCT116 HT29
CTL __ TNF-u CTL _ TNF-a
~ --.!L———i‘ CYP2C18
-_-_--{ ‘._ p—— -‘ B-actin
B
Normal #1 Normal #2

Cae #1 Case#2

FIGURE 7 | The expression level of CYP2C18 was upregulated in colorectal
cancer cell lines and UC-affected cases. (A) The expression level of CYP2C18
was highly increased after TNF-a stimulation. (B) Representative images of
immunohistochemistry staining of CYP2C18 in UC affected cases and normal
individuals. Scale bar: 100 pm.
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