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Single-cell transcriptional and epigenomics profiles have been applied in a variety of
tissues and diseases for discovering new cell types, differentiation trajectories, and gene
regulatory networks. Many methods such as Monocle 2/3, URD, and STREAM have
been developed for tree-based trajectory building. Here, we propose a fast and flexible
trajectory learning method, LISA2, for single-cell data analysis. This new method has two
distinctive features: (1) LISA2 utilizes specified leaves and root to reduce the complexity
for building the developmental trajectory, especially for some special cases such as
rare cell populations and adjacent terminal cell states; and (2) LISA2 is applicable for
both transcriptomics and epigenomics data. LISA2 visualizes complex trajectories using
3D Landmark ISOmetric feature MAPping (L-ISOMAP). We apply LISA2 to simulation
and real datasets in cerebellum, diencephalon, and hematopoietic stem cells including
both single-cell transcriptomics data and single-cell assay for transposase-accessible
chromatin data. LISA2 is efficient in estimating single-cell trajectory and expression
trends for different kinds of molecular state of cells.
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INTRODUCTION

The fast development of single-cell sequencing technologies has impacted the studies of
transcriptomics (Briggs et al.,, 2018; Farrell et al., 2018; Hochgerner et al., 2018), epigenomics
(Rotem et al., 2015; Clark et al.,, 2018; Gaiti et al., 2019; Sinnamon et al.,, 2019), proteomics
(Palii et al., 2019; Specht et al., 2019), and multiple-omics (Pott, 2017; Bian et al, 2018;
Ren et al, 2018; Gu et al, 2019; Liu et al, 2019). The cell number ranges from dozens to
millions in single-cell transcriptional applications (Briggs et al., 2018; Farrell et al., 2018; Tacono
et al., 2018), and new methods have been developed for all kinds of single-cell data (Butler
et al., 2018; Colomé-Tatché and Theis, 2018; Iacono et al.,, 2018; Liu et al., 2019). Single-cell
transcriptomics and epigenomics technologies provide plenty of multi-view data to integrate
single-cell RNA sequencing (scRNA-seq) as well as multiple-omics data (Butler et al., 2018;
Colomé-Tatché and Theis, 2018; Tacono et al, 2018), identify new cell types/states, discover
the relationships of different levels of molecules, build cell trajectories in time and space, and
find key regulatory factors in differentiation (Butler et al., 2018; Colomé-Tatché and Theis,
2018; Kulkarni et al., 2019; Luecken and Theis, 2019; Mayr et al., 2019; Tritschler et al., 2019).
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Here, we focus on computational methods to estimate the
cell trajectories from single-cell transcriptomic and epigenomic
profiles (Luecken and Theis, 2019).

Many algorithms for estimating cell trajectory have been
developed (Ji and Ji, 2016; Liu et al., 2017; Perraudeau et al,,
2017; Qiu et al., 2017; Chen et al., 2018; Farrell et al., 2018;
Lummertz da Rocha et al., 2018; Street et al., 2018; Cao et al.,
2019; Chen H. et al., 2019; Saelens et al., 2019; Setty et al., 2019;
Wolf et al., 2019) based on single-cell gene expression data. The
main cell trajectory topologies are cycle, linear, tree, and graph
(Saelens et al., 2019). Currently, most tree-constructing methods
learn trajectory without specifying the root and tips. To date,
only slingshot and URD can build global cell trajectories based
on user-specified root and tips. URD constructs a branching tree
structure based on extended diffusion maps and biased random
walks from root to tips (Farrell et al., 2018). Slingshot estimates
the global trajectory by minimum spanning tree (MST) and the
cell pseudotime by simultaneous principal curves (Perraudeau
etal., 2017; Street et al., 2018).

The complexity of single-cell developmental trajectories may
come from the following issues. (1) The multiple branches often
terminate at different states (Perraudeau et al., 2017; Street
et al., 2018). (2) Various development forms include linear,
bifurcation, tree, cycle, or disconnected graph (Saelens et al.,
2019). (3) Rare cell types are hard to detect, and trajectory-
building methods often mix them with other branches (Setty
et al., 2019). (4) The trajectory of development is not always
linear or irreversible (Mayr et al, 2019). The diversity of
cell types/states and complexity of cell differentiation (such as
asynchronous or convergent differentiation) can often lead to
loop or non-divergent tree structure for single cells. Slingshot
and URD can discover the major trajectory but may not work
for rare cell populations and converging/diverging branches such
as loop structure. Saelens et al. (2019) showed that. Slingshot
performs well for more simple trajectories, while PAGA shows
higher performance on tree and more complex graph trajectories
(Perraudeau et al., 2017; Street et al., 2018; Wolf et al., 2019).
In addition, other methods may be suitable for special datasets
(Luecken and Theis, 2019). In Slingshot, the principal tree can be
applied to any predefined dimension-reduced space and clusters.
Users can specify the start cluster and terminal clusters (optional)
to construct single or multiple branches. But it tends to find
fewer branches than PAGA and Monocle 2 (Qiu et al., 2017),
and its scalability is limited (Saelens et al., 2019). PAGA uses
graph-like embedding and graph partition to build an abstract
graph structure for the cell trajectories with both discrete and
continuous cell states (Wolf et al., 2019). Similar to STREAM
(Chen H. et al,, 2019) and Monocle 2 (Qiu et al., 2017; Cao
et al., 2019), PAGA is still overoptimistic for the complexity of
cell differentiation. Monocle 2 and STREAM are based on similar
tree-building methods by fitting the MST on the dimension-
reduced space (Qiu et al., 2017). For Monocle 2, discriminative
dimensionality reduction tree (DDRTree) is built directly on the
principal component analysis (PCA)/independent component
analysis (ICA) space (Qiu et al, 2017; Cao et al, 2019), but
Monocle 2 may be affected by noise and thus fail to distinguish
correct terminal states for multiple branches (Setty et al., 2019).

In STREAM, elastic principal graph is built on modified locally
linear embedding (MLLE) space. But the MLLE method is hard
to scale to larger datasets. CellRouter is proposed to find dynamic
gene expression along a single branch with user-defined source
and target, which is not used for estimating global trajectories
(Lummertz da Rocha et al., 2018).

To find an improved way to solve non-divergent trajectories,
we have developed a fast and flexible trajectory learning method,
LISA2, which provides an efficient solution to construct a
spanning tree structure by specifying the root and tips. LISA2
builds a k-nearest neighbors (kNN) graph from selected principal
components and applies a community detection algorithm for
clustering. Then, it converts the KNN graph into 3D Landmark
ISOmetric feature MAPping (L-ISOMAP) to visualize the cell
differentiation in three-dimensional space. By combining the
clustering and kNN graph, it can produce a proper spanning tree
very fast with specified root and tips. Pseudotime visualization
is built on the tree structure by mapping the cells to the tree.
To discover interesting gene expression patterns along the cell
branch, we use the principal trend analysis (PTA) method (Zhang
and Davis, 2013; Zhang and Ouyang, 2018) and identify key gene
expression patterns.

Here, we first introduce the workflow of LISA2. Then, we
use LISA2 to explore a cerebellum dataset to build a globally
convergent cell trajectory (Wizeman et al., 2019). Furthermore,
we use LISA2 to build the trajectory of the diencephalon
and use PTA to find branch-specific markers. In addition, we
apply LISA2 to a single-cell assay for transposase-accessible
chromatin (scATAC-seq) dataset from the human hematopoietic
[hematopoietic stem cell (HSC)] system to show its potential
applications on single-cell epigenome data (Chen H. et al., 2019)
we further show the capability of LISA2 in identifying rare cell
types. Finally, we compare LISA2 with URD, Monocle 2, and
STREAM on the simulation dataset to show the advantages of
LISA2 (Papadopoulos et al., 2019).

RESULTS

LISA2 Overview
LISA2 is a fast and scalable cell trajectory-building method.
Different from LISA (Chen Y. et al., 2019), LISA2 tries to build the
tree trajectory using specified root and leaf clusters. LISA2 builds
the kNN graph and utilizes community detection methods for
clustering based on PCA. LISA2 visualizes scRNA-seq data by two
nonlinear dimension reduction methods: UMAP and L-ISOMAP
(Silva and Tenenbaum, 2003; McInnes et al., 2018). To build the
tree trajectory, users should specify the root and leaf clusters (e.g.,
based on existing knowledge); we designed a spanning tree to
build a tree for the non-leaf cluster, root, and leaf clusters. With
the tree trajectory, LISA2 can compute the global pseudotime
and use the PTA method (Zhang and Davis, 2013; Zhang and
Ouyang, 2018) to discover the main gene expression trends in the
specified branch.

The main workflow of LISA2 is shown in Figure 1. We
used the cerebellum dataset from Wizeman et al. (2019)
to demonstrate LISA2. The cerebellum dataset was from
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FIGURE 1 | Workflow of LISA2 and cerebellum trajectory analysis. (A) PCA and principal component selection. (B) Community detection for clustering based on
k-nearest neighbors (kNN) graph. (C) Visualizing in UMAP and (D) 3D L-ISOMAP. (E) Trajectory building in LISA2 by specifying root and leaf node structure [linear,
parallel, and minimum spanning tree (MST)]. (F) Trajectory visualization by pie tree plot. (G) Trajectory visualization by cell cluster tree plot (each box is a cluster
marked by Y_cluster ID, each point represents a cell). (H) Pseudotime visualization. (I) Gene expression trend analysis by principal trend analysis (PTA) in GABA.IN
branch. PTA was applied to the GABA.IN branch to identify main gene expression trends (red, blue, and green) from rank 1 to rank 3. (J-L) Heatmap shows gene
expression trend of the GABA.IN branch discovered by PTA in ranks 1, 2, and 3. The root cell type PTZ is in yellow in UMAP and 3D-ISOMAP. The leaf cells are
divided into three branches. GCs, mCN, and IsN/ICN are derived from EGL. PC is derived from GABAergic.Pre. BG is derived from NPC. We chose linear structure
for BG; parallel structure for GC, mCN, and IsN/ICN; tree structure for PC cells. BG, Bergmann glia; EGL, external granule layer cells; GABA.pro, GABAergic
progenitor; GABA.pre, GABAergic precursors; GABA.IN, GABAergic interneurons; IsN, isthmic nuclear neuron; mCN, medial cerebellar nuclei; ICN, lateral cerebellar

nuclei; NPC, neural progenitor cell; GC, granule cell; MidO, midline organizer cell; PC, Purkinje cell; PTZ, posterior transitory zone.

mouse embryos at embryonic day (E) 13.5. The raw data
were processed using Seurat (Satija et al, 2015), and the
cells were annotated based on Wizeman et al. (2019). In
total, 9,165 neural cells were used in LISA2 analysis. Non-
neural cells were removed when computing the trajectory.
Wizeman et al. (2019) identified cell-specific marker genes
and subpopulations of cells in E13.5 cerebellum. In Wizeman
et al. (2019), Monocle 2 and URD were used to reconstruct
several local developmental trajectories for subgroups.
However, the global branches of cerebellum development
are not accomplished.

Based on the LISA2 method, the top 17 principal components
were selected (Figure 1A) for UMAP and community detection
(Figure 1B). By checking the clustering results with a range of
number of neighbors used in the kNN graph, we finally selected
the cluster results with 12 neighbors because the number of
clusters is close to the known the number of cell types and the
noise level is low (Figure 1C).

The E13.5 cerebellum is composed of three major cell
groups: GABAergic neurons, glutamatergic neurons, and neural
progenitor cells in the ventricular zone (VZ) (Wizeman et al.,
2019). The VZ produces GABAergic neurons and various glia
cells. Wizeman et al. (2019) proposed that the posteriormost
region of the VZ, referred to as the posterior transitory zone
(PTZ), also contains stem cells to sustain the rhombic lip (RL),
which gives rise to glutamatergic neurons. Hence, there are three
main branches from PTZ to glia, GABAergic, and glutamatergic
neurons. The 3D L-ISOMAP plot shows a circle in which
medial cerebellar nuclei (mCN), lateral cerebellar nuclei (ICN),
and granule cells (GCs) are very close to Purkinje cells (PCs)
(Figure 1D). Although they belong to different branches, the
global trajectory shows a convergent structure in 3D ISOMAP.
This kind of property can be also found in the diencephalon
dataset in the following sections.

We built a spanning tree with user-specified root and leaves
(Figure 1E). Users can group the leaves into linear, parallel,
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or MST structure, which will be a substructure in the global
trajectory. By comparing the clusters to known cell types, we
set cluster 17 as the root; clusters 2, 6, 8, 9, and 10 are PC
leaves with MST structure; cluster 5 is GABAergic interneurons
(GABAL.IN); cluster 3 contains Bergmann glia (BG); cluster 12
is ICN; cluster 16 as mCN; and cluster 11 as GC. Hence,
with specified root and leaf nodes, our designed spanning tree
can recover a reasonable global tree structure (Figures 1EG).
We designed ways for tree trajectory visualization based on
clusters/nodes as shown in Figures 1EG. In Figure 1F, the pie
tree plot shows the tree trajectory and cell type proportion in each
node. In Figure 1G, the cell tree plot shows each single cell in each
node. Overall, LISA2 successfully builds the global trajectory of
early development of the cerebellum.

We then computed the pseudotime of cerebellum
development based on the estimated trajectory and visualized it
in UMAP space (Figure 1H). The marker genes used in Wizeman
et al. (2019) were employed to illustrate gene expression patterns
along each branch (Supplementary Figure 1). The heatmap
shows dynamic expression changes of transcriptional regulators
for all branches and is consistent with the results of Wizeman
et al. (2019). For example, in the BG_GABA.pro heatmap in
Supplementary Figure 1K, the GABAergic marker genes are
mostly expressed in cluster 14 and the marker genes of BG are
mostly expressed in cluster 3. The GABAergic neurons include
both PCs and GABA.IN, which share common marker genes
Foxp2 and Gad2. Pax2, Gadl, Pnoc, and Glra2 are specifically
expressed in GABA.IN. Tlel and Islr2 are expressed in PC cells.

Next, we used LISA2 to discover the main gene expression
patterns for all branches. For cerebellum and diencephalon
datasets, we used the scaled data from Seurat (v1.4.0) for
PTA. We found that the rank 1 trends go up or down
for all branches (Supplementary Figure 2). One can find
the predominant gene expression trends along the branch
and select the driver genes based on the scores of genes
that represent the contributions to the trends. In Figure 1I,
three different gene expression curves represent the rank 1 to
rank 3 trends along the GABA.IN branch. The corresponding
heatmaps in Figures 1J-L show cascade gene expression along
the GABA.IN branch from ranks 1 to 3. Commonly, three
ranks are enough for detecting main gene expression patterns.
The trend in rank 1 can show the most prevalent gene
expression pattern followed by ranks 2 and 3. The genes are
ranked from negative scores to positive scores. A positive
or negative score reflects a positive or negative contribution
to the trend. For the GABA.IN branch, we found that the
GABAergic markers Lhx1/5 have high scores in ranks 1 and
3 (Supplementary Figure 3D). The marker of GABAergic
precursor Kirrel2 shows the highest positive score 0.15 in
rank 2. Neurogl also has a high score, 0.13 (Figure 1K and
Supplementary Figure 3D). Sp9, a regulator of GABAergic
neuronal development (Li et al., 2018; Xu et al, 2018; Tao
et al, 2019), shows the highest score in the heatmap in
rank 3 (Figure 1L).

The PTA scores and rank 1 heatmaps of other branches are
also shown in Supplementary Figures 2, 3. The genes discovered
by the PTA method are highly or lowly expressed at the ends

of the branches. Hence, one can distinguish the branch-specific
genes based on the scores from rank 1. We also found that
some genes are highly expressed in the middle of the branches,
consistent with the ranks 2 and 3 trends (Figure 1K). By
PTA analysis of the highly variable genes, we found that the
marker genes show high absolute scores in ranks 1-3. Their gene
expression trends were captured by PTA.

Reconstructing Complex Single-Cell

Trajectories for the Diencephalon

To further assess the performance of LISA2, we applied LISA2
to scRNA-seq data from the embryonic diencephalon. The
embryonic diencephalon plays important roles in the forebrain,
which connects the anterior forebrain and the rest of the nervous
system (Sherman, 2007; Hikosaka, 2010; Guo and Li, 2019).
The scRNA-seq data of the diencephalon are from E12.5 mouse
embryos and contain 7,365 filtered cells. Guo and Li (2019)
analyzed the spatial origins of the cell groups and the molecular
features of the diencephalon region (Guo and Li, 2019). With
URD, built a developmental trajectory of the diencephalon with
six cell branches and described the developmental cascades. We
removed the low-quality and non-neural cells based on the Seurat
result of Guo and Li (2019) and obtained 6,952 cells. The scaled
data from Seurat were used for trajectory analysis.

In Figures 2A,B, we showed the cell types and clustering
annotation in UMAP space. The clustering results are from
Leiden community detection algorithm on kNN graph with
k = 14. We selected cluster 1 as the root, which contains
progenitor cell types of the rostral thalamus (rTh), rostral
pretectum (rPT), and caudal thalamus (cTh). Cluster 12 is
annotated as epithalamus (ETh). Clusters 2, 6, and 7 are
annotated as caudal thalamus neuron (cTh.N). Cluster 4 is
annotated as rostral pretectal neurons (rPT.N). Cluster 10
is annotated as rostral thalamic neurons (rTh.N). Cluster 14
is annotated as zona limitans intrathalamica (ZLI). Cluster
16 is annotated as prethalamic neurons (pTh.N). From 3D
L-ISOMAP, we found that there were three branches that
correspond to cTh, rTh, and rPT. The ETh and rPT branches
are derived from the rPT precursors. In 3D L-ISOMAP, cTh
and rPT branches are close. cTh.pro and rPT.pro are mixed and
separated from rTh.pro cells. ZLI, ETh.N, rPT.N, and cTh.N are
close at the end of development (Figure 2E). With LISA2, the
trajectory of the diencephalon is shown in Figures 2C,F. cTh
branch is separated from other branches. rPT.N, Eth.N, and ZLI
share a common parent cluster that contains the rPT.pre cell type.
r'Th.N and pTh.N share a common parent cluster. The trajectory
is consistent with the close relationship of the rTh and pTh and
the ETh, and rPT.

We then computed the pseudotime of cells (Figure 2D).
We plotted the gene expression along the branch for some
transcription factors or marker genes from Guo and Li (2019;
Supplementary Figure 4). For example, in c¢Th branches,
temporal expression profiles of gene Atad2, Birc5, 1d3, and Hesl
(cell cycle and apical progenitors), Neurogl, Neurog2, Insml, and
Cdknlc (basal progenitors), and Gbx2 and Rora (postmitotic) are
very consistent with those in Guo and Li (2019).
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With the pseudotime and scaled data, we applied PTA
to discover gene expression patterns in each branch
(Supplementary Figure 5). In each branch, we show the
gene expression heatmap in rank 1 corresponding to the red
trend curve in rank 1 (Supplementary Figure 5). For most
marker genes, the absolute PTA scores are high (Supplementary
Figure 5). For example, the scores of the DIx5/1 genes in rank
1 of the pTh branch are the most negative and ranked at the
bottom of the heatmap (Supplementary Figures 4A, 5A, 6A).
The Hmgb2 gene shows a high positive score with its gene
expression profile (Supplementary Figure 6A) consistent
with the trend in rank 1 of the pTh branch (Supplementary
Figure 5A). The SHH protein is produced by ZLI to regulate
the diencephalon development, but its expression is low and not
detected by scRNA-seq. Correspondingly, its PTA scores are zero
(Supplementary Figures 4C, 6C).

Discovering Cell Trajectories in
Single-Cell Assay for
Transposase-Accessible Chromatin for

Hematopoietic Stem Cells

The multi-omics single-cell technologies have the ability to
detect chromatin accessibility, in addition to RNA transcription.
We applied LISA2 on scATAC-seq data from Chen H. et al.

(2019) to demonstrate the ability of LISA2 to analyze single-cell
epigenomics data. The scATAC-seq data were preprocessed by
STREAM and chromVAR (Schep et al., 2017) from human bone
marrow, which contains nine cell types. We used the processed
scATAC-seq matrix, which represents the accessibility z-scores
of cells (2,034) and transcription factor binding motifs (8,192; 7-
mers). The principal components used are the same as those used
in the STREAM analysis (Chen H. et al., 2019).

In Figures 3A,B, we used UMAP to visualize the cell
annotation and clusters. Cell clustering was determined by
Louvain community detection algorithm on kNN graph with
k = 12. HSCs corresponding to clusters 5 and 1 were assigned
as the root. Cluster 6 was set as the leaf group of plasmacytoid
dendritic cells (pDCs). Cluster 3 was set as the leaf of lymphoid
progenitor cells (CLPs). Cluster 4 was set as the leaf of
monocytic cells (mono). Cluster 10 was set as the leaf group of
multipotent progenitors (MEPs). Hence, we produced the single-
cell trajectory (Figures 3C,F) and pseudo time (Figure 3D). From
the L-ISOMAP (Figure 3E), we identified four clearly separated
non-root branches. The interactive 3D ISOMAP of the HSCs
can be seen in the Supplementary Data. The HSCs in red are
the root. Based on the trajectory, pDCs and CLPs are close
to each other. But MEPs and mono are much further away.
The trajectory is consistent with the one obtained by STREAM
(Chen H. et al., 2019).
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FIGURE 3 | LISA2 analysis of the development of hematopoietic stem cells (HSC) using single-cell sequencing assay for transposase-accessible chromatin
(SCATAC-seq) data. (A) The cell type visualization in UMAP. (B) The clustering results on UMAP. (C) Pie tree plot shows the cell types and trajectory. (D) The
pseudotime plot in UMAP. (E) The 3D-ISOMAP and trajectory visualization. (F) Cell cluster tree plot shows the differentiation trajectory of HSC. All cell types include
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common myeloid progenitors (CMPs), megakaryocytic cells (MEP), multipotent progenitors (MPPs), and monocytic cells (mono).
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At last, we applied the PTA to the four branches using
the z-scored scATAC-seq data (Supplementary Figure 7).
We identified branch-specific 7-mers in rank 1 for the four
branches. For example, the rank 1 score of AGATAAG is
—0.049, which contributes to the rank 1 trend along the MEP
branch negatively. The rank 1 score of TGTGCAA is —0.047,
which contributes to the rank 1 trend in the mono branch
negatively. Consistently, the two 7-mer DNA sequences were
shown to be mapped to transcription factor motifs of GATA1
and CEBPA respectively, which predominantly regulate the
blood development and differentiation to erythroid and myeloid
(Chen H. et al., 2019). Their expression data are also shown in
Supplementary Figures 7A,B.

Discovering Rare Cell Lineages

Rare cell types are hard to identify from single-cell profiling
data due to small number of cells or low abundance. They
may have important functions in development. For example,
the Cajal-Retzius cells are important to modulate early cortical
patterning and rare choroid plexus that produces cerebrospinal
fluid (Griveau et al., 2010; Pollen et al., 2015). There are
some existing methods to detect rare cell types from scRNA-
seq data. CellSIUS (Wegmann et al, 2019), RaceID3 (Griin
et al., 2016), GiniClust2 (Tsoucas and Yuan, 2018) are two-
step clustering methods using global clustering first and then

doing subclustering to identify rare cell types. scAIDE used
autoencoder with multidimensional scaling (MDS) encoder for
dimensionality reduction and random projection hashing-based
k-means clustering to detect rare cell types (Xie et al., 2020).
DeMeo and Berger (2021) used Shannon component analysis
for dimensionality reduction and assigned an information score
to each transcript to define rare cell types. In these methods,
dimension reduction and clustering strategies are important for
rare cell type detection.

To test the ability of LISA2 to derive rare cell branches, we
simulated a dataset by using PROSSTT (Papadopoulos et al,
2019). The simulated development branch is shown in Figure 4A.
There are seven cell types marked from A to G. The numbers of
cells are 300 in cell types A-D, 350 in cell types F and G, and
15 in the rare cell type E (0.78% of the total number of cells).
Figures 4B,C show the trajectory built by LISA2 and Figure 4F
shows the 3D L-ISOMAP visualization. We used k = 4 for kNN
graph construction and clustering using the Leiden algorithm.
The smaller the k is, the more clusters it produces. Hence, a
smaller k would help identify rare cell types. The clustering results
annotated by cell labels and cluster IDs are shown in the UMAP
space (Figures 4D,E). We find that clusters 19 (10, 0.52%) and 21
(5, 0.26%) contain cells from E. In LISA2, cluster 6 is set as root.
Clusters 19 and 21 are set as sub leaves group with a linear mode.
Cluster 14 is set as sub leaves group. Cluster 9 is set as sub leaves
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FIGURE 4 | Rare cell branch detection using LISA2 on simulated data. (A) The cartoon plot of the trajectory of simulated data with rare cell type E (15 cells, 0.78%).
The gray A node is the root. The orange nodes are the leaf branches. The blue nodes are the middle branches. (B) Pie tree plot shows the cell types and trajectory.
(C) Cell cluster tree plot shows the differentiation trajectory. (D) The cell type visualization in UMAP. (E) The clustering results in UMAP. (F) Cell type visualization in 3D
L-ISOMAP. (G) Monocle 2 trajectory for the simulated data (top 10 PCs used). (H) The URD trajectory for the simulated data. (I) The STREAM trajectory for the
simulated data (all genes were used).

group. Figures 4G-I show the trajectories built by Monocle 2,
URD, and STREAM. Compared to Figure 4A, Monocle 2 derived
5 bifurcations and 11 branches with 10 principal components.
We also tested 2-10 principal components in Monocle 2, but
none of them are consistent with the simulated trajectory. URD
and STREAM derived one bifurcation and three branches. In
URD, we selected the kNN size as eight because the clustering
contains all cells in E. For STREAM, we also adjusted the number
of principal components, neighbors, and clusters. In Figure 41,
we set three principal components, 15 neighbors, and 20 clusters.
Only LISA2 derived the same bifurcation and branches as those
in Figure 4A. The LISA2 trajectories show clearer cell types along
the branches than URD. Hence, LISA2 can detect a rare cell
type branch with proper clustering. In LISA2, we can adjust the
neighbor size in the KNN graph for clustering. Users may also use
other rare cell type clustering methods to replace the clustering
algorithm in LISA2.

Comparing LISA2 With Other Methods

We used the simulated dataset with six bifurcations obtained
from PROSSTT (Papadopoulos et al., 2019) to compare LISA2
with Monocle 2, URD, and STREAM. The simulated data contain
1,300 cells and 500 genes. Its trajectory includes 7 leaves and 13
branches (Figure 5A). The simulated counts were normalized
by the library size in each cell. The scaling factor for each cell
was simulated from a log-normal distribution with mean 0 and
scale 0.7. For Monocle 2, we used the raw count data as the
input. The top 20 PCs were used for DDRTree. Monocle 2
produced 15 branches and 7 bifurcations (Figures 5B,C). When
the number of PCs decreased, the numbers of the branches and
bifurcations also decreased, and vice versa. Monocle 2 could not
distinguish branch 11 and 12 and produced more bifurcations.
For URD, the raw read counts were normalized internally, and
20 PCs were used for dimension reduction. URD resulted in 11
branches and 5 bifurcations, which separated the leaf branches
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while missing some internal nodes (Figures 5B,D). The running
time of URD was the highest among the four methods. For
STREAM, the normalized data from PROSSTT were logged and
treated as the input. All genes were used in STREAM, and 20
PCs were used for dimension reduction. STREAM produced
more branches compared to the trajectory of the simulation data.
Furthermore, branch 1 was regarded as a leaf node in STREAM
(Figure 5E). For LISA2, the normalized and logged data were
used as the input. We selected 10 PCs for UMAP visualization
and performed clustering using 12 neighbors. Clusters 9, 8, 4, 7,
5,12, and 10 were used as the leaf nodes. The LISA2 trajectory has
6 bifurcations and 12 branches, which were most consistent with
the simulated trajectory among the four methods being compared
(Figure 5F). The correlation coefficients between the simulated
and estimated pseudotime also suggest that LISA2 has the highest
performance in pseudotime estimation. Moreover, the running
time and memory usage of LISA2 are the lowest among all the
four methods being compared (Figure 5B).

We also compared the trajectories obtained from LISA2 with
those obtained from Monocle 2, STREAM, and URD on the
cerebellum, diencephalon, and HSC datasets (Supplementary
Figure 8). For STREAM, it could not work with the cerebellum
and diencephalon datasets because of memory exhaustion
error. We used the same input data and PCs for the
latter three methods and tried to adjust their parameters to
obtain optimal results. URD could not directly process the
scaled scATAC-seq data. Only a small proportion of cells are
walked in the URD, and the trajectory failed to build. For
URD, the cerebellum trajectory was not as good as that of
LISA2. Some cells were not walked in the URD trajectory
even though we adjusted its parameters for the cerebellum

(Supplementary Figure 8C). The diencephalon trajectory can
be visualized in Guo and Li (2019), and LISA2 shows the
same performance as URD. For Monocle 2, the results were
largely determined by the PCs used. The more PCs were used,
the more branches it produced. Monocle 2 could not work
well for convergent and parallel trajectories such as those in
the cerebellum and diencephalon datasets. It also derived too
many branches from the scATAC-seq HSC data (Supplementary
Figures 8A,B,D). STREAM worked well for the HSC data
(Chen H. et al, 2019), while costing a large memory and a
long time to compute the MLLE. STREAM could not work
on the diencephalon and cerebellum datasets due to memory
issue, although the cell numbers are below 10,000. Overall,
unlike URD and LISA2, Monocle 2 and STREAM did not
specify root and leaves, which limited their performance on
convergent or parallel branches; URD required a long time
to run on large datasets and it was complex for users to
adjust the parameters.

At last, we tested how the k size in KNN graph affects the
clustering and trajectory results on the simulation dataset. In
Supplementary Figure 9, we show the clustering visualization
in UMAP with k from 4 to 20. As k increases, the number
of clusters decreases overall. From the cell trajectory shown
in Supplementary Figure 10, we found that from k = 4 to
k = 12 in kNN graph, the trajectory is consistent with the
known trajectory. The higher the number of clusters is, the
more complex the trajectory will be. From k = 14-20, cell
type 8 (marked as yellow cells in Supplementary Figure 10)
is directly connected to cell type 7, which is not consistent
with the known trajectory. Hence, if k is too large, the
number of clusters will be small, and some small branches
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may disappear. Hence, users can set a smaller k to discover
finer branches.

DISCUSSION

We developed LISA2 for single-cell trajectory analysis with
user-defined root and leaf clusters. By applying LISA2 to
two simulated datasets, two real scRNA-seq datasets and one
scATAC-seq dataset, we have illustrated the versatility of
LISA2 to reconstruct complex trajectories based on single-
cell transcriptomics and epigenomics data. With the learned
trajectory, we applied PTA to analyze each branch and discovered
main gene expression trends and the corresponding genes.
Using the known markers and transcription factors, we validated
the ability of PTA to discover important gene patterns along
the branches. In PTA, we used the average gene expression
values of neighboring cells to reduce noise and running
time.

LISA2 was designed as a fast, flexible, and scalable method.
LISA2 can do PCA for gene expression matrix with # genes x cells
<109, as suggested previously (Tsuyuzaki et al., 2020). It adopted
fast and scalable graph-based community detection (Leiden
and Louvain) algorithms (Blondel et al., 2008; Traag et al,
2019), which were also integrated in Seurat’s pipeline. Hence,
LISA2 can be used as a stand-alone platform or downstream
of Seurat for trajectory analysis. In trajectory analysis, LISA2
provides a flexible way to group the leaf clusters by linear,
parallel, or tree structures. As the trajectory reconstruction
is based on clusters, it is very fast to run a spanning tree
with specified root and leaves. In addition, users can also run
MST without any prior information for exploratory analysis
in LISA2. For single-cell trajectory visualization, we used fast
L-ISOMAP to view the cell differentiation in 3D space. The
trajectory can be added in the 3D L-ISOMAP by connecting the
cluster centers.

We compared LISA2 with Monocle 2, STREAM and URD.
Monocle 2 and STREAM can build tree structures without
known root or end nodes. They were designed to build
divergent tree structures. However, for parallel or convergent
tree structures, they may produce wrong branches. Users can
adjust the number of principal components in Monocle 2
and multiple parameters in STREAM to explore the trajectory.
They are both limited by memory problems when running
large datasets. URD is designed to solve the problem of
complex tree trajectory for the zebrafish dataset initially. By
specifying the root and leaf clusters, URD works well for the
zebrafish dataset. But zebrafish embryo differentiation cannot be
fully described by tree structures due to converging/diverging
behaviors (Wagner et al., 2018; Tritschler et al, 2019). In
addition, adjusting parameters is also complex in URD.
Compared to other methods, LISA2 is flexible and easy to use.
The running time of LISA2 is also shorter compared to URD,
Monocle 2, and STREAM.

There are also some limitations in scRNA-seq such as
the technical/biological noise and sparsity in gene expression.
Moreover, cells are sampled from the tissue with a “snapshot”

approach. But cell states are dynamic. Branch points in the
trajectory may be hypothetical and lagged behind the real cell
fate decision (Tritschler et al., 2019; Lihnemann et al., 2020;
Savulescu et al., 2020; Wagner and Klein, 2020). These factors
may disturb feature selection, cell clustering, and visualization.
We have tested LISA2 in non-divergent datasets (cerebellum
and diencephalon) and simulated a rare cell type dataset. It
suggests that our method has the potential for asynchronous
or irregular differentiation studies (Beck and Blanpain, 2013;
Kotton and Morrisey, 2014; Tritschler et al., 2019). LISA2 is
in principle not limited to scRNA-seq and scATAC-seq. It
has the potential for modeling other types of data. It may
also be adapted to integrate multiple types of data. LISA2 is
currently used for linear, parallel or tree trajectory learning.
In the future, it can be extended for loop structures such as
cell cycle.

MATERIALS AND METHODS

Dimension Reduction

Raw data can be processed by LISA2 to filter low-quality cells and
keep highly variable genes. Users can also employ other tools such
as Seurat to preprocess the scRNA-seq data. Then, the filtered
data can be processed by PCA, UMAP, and L-ISOMAP.

After PCA, we select top ranked PCs for UMAP and
L-ISOMAP. Then, we use the selected PCs to do UMAP. Users
can also adjust the number of PCs to acquire a reasonable
UMAP visualization.

Graph-Based Clustering

The clustering method is based on the community detection. We
built a kNN graph based on the selected PCs. Then, we use a
community detection (Leiden or Louvain) algorithm (Blondel
et al., 2008; Traag et al, 2019) to cluster the cells. Because
the clustering results depend on the kNN graph, we set a
range of k-values (from 4 to 20) and obtained corresponding
clusters. Users should determine which clusters are better for
their applications. The community detection methods are often
fast. The Leiden algorithm improves the graph connectivity
problem in communities and runs faster than Louvain. In
addition, users can also apply the clustering algorithms in other
methods such as LISA (Chen Y. et al, 2019) and LrSClust
(Wu et al., 2021).

3D L-ISOMAP

After clustering, we calculate the graph hubs in the corresponding
kNN graph, which has the most number of connections with
other nodes in each cluster. The L-ISOMAP in LISA2 uses
these graph hubs as landmark points, which is similar to LISA.
Compared to LISA, LISA2 uses 3D L-ISOMAP to visualize
the complex development process. We modified the source
code of the dimRed package and improved the running time
of L-ISOMAP. By modifying the order of computing the
shortest distance between landmark cells and the other cells,
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the running time of L-ISOMAP decreases significantly compared
to the dimRed package (Supplementary Table 1). We also
implemented parallelization in L-ISOMAP for datasets with a
large number of cells.

Building the Spanning Tree With

Specified Root and Leaves
With the clusters, we designed a spanning tree with specified
root and leaf nodes. The MST method can produce the shortest
paths to connect all vertexes. However, it may also neglect the real
biological development process.

The spanning tree methods are as follows:

Step 1. We calculate the neighbor distance matrix and graph
distance matrix for the clusters. In the neighbor distance
matrix, if two clusters are connected, we compute the mean
distance of the edges. If two clusters are not directly connected,
we set the distance as NA. The graph distance matrix is
computed for each two clusters based on the shortest path.

Step 2. User specifies the root cluster. Then, LISA2 builds the
kNN graph for the non-leaf clusters. The neighbor size is set
from 3 until the graph is connected. The leaf clusters are then
added to its nearest non-leaf clusters. For the leaf nodes, if one
leaf group contains multiple leaf clusters, the user can specify
linear, parallel, and MST structures (Figure 1E). For each leaf
group, the cluster having the shortest distance to the non-leaf
clusters can be selected.

Step 3. For each leaf cluster, we find the shortest path from the
root to the leaf cluster. For isolated non-leaf clusters, we find
the cluster with the shortest distance to the isolated non-leaf
cluster and merge it into the graph. In the final spanning tree,
the degree of non-leaf clusters must be at least two. The degree
of leaf nodes is only one.

The spanning tree method can produce the tree trajectory for
the clusters by user-specified root (e.g., cluster 17) and leaves (e.g.,
clusters 2, 8, 9, 10, 6) (Figure 1F) for the cerebellum dataset. We
can visualize the tree trajectory by L-ISOMAP (Figure 3E), pie
tree (Figure 1F), or cluster tree (Figure 1G).

Pseudotime and Principal Trend Analysis
Based on the trajectory, LISA2 derives the pseudotime for the
global branches (Figure 1H). Similar to LISA, LISA2 first maps
the cells on the tree. The difference is that LISA2 maps each cell to
the edge in which the vertex is the cluster that the cell belongs to.
Principal trend analysis is proposed to discover principal time-
course trends from gene expression data (Zhang and Davis, 2013;
Zhang and Ouyang, 2018). It also quantifies the contribution of
each gene to the trends. Here, we used “score” to represent the
contribution of each gene to each trend. In most cases, the score
of most genes is zero. Only subsets of genes contribute to the
trends. Hence, we sought to use PTA to find the marker genes
that may represent the specific branch development. PTA can
iteratively identify multiple trends from the time-course gene
expression data. We used PTA to generate three trends, named

as “rank 1” to “rank 3, to represent the main gene expression
patterns along the branches (Figure 1I).
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Supplementary Figure 1 | The marker gene expression of each branch in
cerebellum. The cells are ordered by pseudo time. In each heatmap, each column
is corresponding to a cluster in the branch. The legend in the heatmap is
corresponding to the clustering results in D. (A) Marker genes expression along
PC1 branch. (B) Marker genes expression along PC2 branch. (C) Marker genes
expression along PC3 branch. (D) Clustering results shown in UMAP. (E) Marker
genes expression along IsN, ICN branch. (F) Marker genes expression along mCN
branch. (G) Marker genes expression along GC branch. (H) Cell types shown in
UMAP. (I) Marker genes expression along GABIN branch. (J) Marker genes
expression along BG branch. (K) Compare the marker genes expression along
BG and GABA.pro branch. (L) Pie tree plot shows the trajectory by LISA2.
Purkinje cell (PC), GABAergic Interneurons (GABA.IN), Bergermann glia (BG),
medial cerebellar nuclei (MCN), Isthmic nuclear neurons (IsN), lateral cerebellar
nuclei (ICN), granule cells (GC), GABAergic progenitor (GABA.pro).

Supplementary Figure 2 | The main gene expression trends (rank 1: red, rank 2:
blue, rank 3: green) in each branch (A-H) in cerebellum are shown from rank 1 to
rank 3 by PTA analysis. Here we only show the heatmap of normalized gene
expression in rank 1. For all branches, we did down sampling using 50 as a group
to compute the average signals as input of PTA. The gene expression data is the
scaled data from Seurat. In the heatmap (A-H), all genes in rank 1 are ranked by
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the scores (values in the bar plot) from negative to positive. Negative value means
that the gene expression is reverse to the trend. Positive value means that the
gene expression is consistent with the trend. We set a threshold 0.03 to filter the
genes with low absolute scores and show the genes with top 30 positive and
smallest 30 negative scores. Purkinje cell (PC), GABAergic Interneurons
(GABA.IN), Bergermann glia (BG), medial cerebellar nuclei (MCN), Isthmic nuclear
neurons (IsN), lateral cerebellar nuclei (ICN), granule cells (GC), GABAergic
progenitor (GABA.pro).

Supplementary Figure 3 | The PTA scores of marker gene expressions of each
branch in cerebellum (A-H) from rank 1 to 3. In each heatmap, three columns are
corresponding to the rank 1 to 3. Purkinje cell (PC), GABAergic Interneurons
(GABA.IN), Bergermann glia (BG), medial cerebellar nuclei (mCN), Isthmic nuclear
neurons (IsN), lateral cerebellar nuclei (ICN), granule cells (GC), GABAergic
progenitor (GABA.pro).

Supplementary Figure 4 | The marker gene expression of each branch in
diencephalon (A-F). The cells are ordered by pseudo time. In each heatmap, each
column is corresponding to a cluster in the branch. The legend in the heatmap is
corresponding to the clustering results in Figure 2B. Prethalamic neuros (pTh.N),
rostral thalamic neurons (rTh.N), zona limitans intrathalamica (ZLI), epithalamic
neuros (ETh.N), rostral pretecal neurons (rPT.N), caudal thalamus neuro | (cTh.N1),
caudal thalamus neuro Il (cTh.N2).

Supplementary Figure 5 | The main gene expression trends (rank 1: red, rank 2:
blue, rank 3: green) in each branch (A-F) in diencephalon are shown from rank 1
to rank 3 by PTA analysis. Here we only show the heatmap of normalized gene
expression in rank 1 (A-F). For all branches, we did down sampling using 50 as a
group to compute the average signals as input of PTA. The gene expression data
is the scaled data from Seurat. In the heatmap, all genes in rank 1 are ranked by
the scores (values in the bar plot) from negative to positive. Negative value means
that the gene expression is reverse to the trend. Positive value means that the
gene expression is consistent with the trend. We set a threshold 0.03 to filter the
genes with low absolute scores and show the genes with top 30 positive and
smallest 30 negative scores. Prethalamic neuros (pTh.N), rostral thalamic neurons
(rTh.N), zona limitans intrathalamica (ZLI), epithalamic neuros (ETh.N), rostral
pretecal neurons (rPT.N), caudal thalamus neuro | (cTh.N1), caudal thalamus neuro
Il (cTh.N2).

Supplementary Figure 6 | The PTA scores of marker gene expressions of each
branch in diencephalon (A-H) from rank 1 to 3. In each heatmap, three columns
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