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Multi-omics data is frequently measured to enrich the comprehension of biological

mechanisms underlying certain phenotypes. However, due to the complex relations and

high dimension of multi-omics data, it is difficult to associate omics features to certain

biological traits of interest. For example, the clinically valuable breast cancer subtypes

are well-defined at the molecular level, but are poorly classified using gene expression

data. Here, we propose a multi-omics analysis method called MONTI (Multi-Omics

Non-negative Tensor decomposition for Integrative analysis), which goal is to select

multi-omics features that are able to represent trait specific characteristics. Here, we

demonstrate the strength of multi-omics integrated analysis in terms of cancer subtyping.

The multi-omics data are first integrated in a biologically meaningful manner to form

a three dimensional tensor, which is then decomposed using a non-negative tensor

decomposition method. From the result, MONTI selects highly informative subtype

specific multi-omics features. MONTI was applied to three case studies of 597 breast

cancer, 314 colon cancer, and 305 stomach cancer cohorts. For all the case studies,

we found that the subtype classification accuracy significantly improved when utilizing

all available multi-omics data. MONTI was able to detect subtype specific gene sets

that showed to be strongly regulated by certain omics, from which correlation between

omics types could be inferred. Furthermore, various clinical attributes of nine cancer types

were analyzed using MONTI, which showed that some clinical attributes could be well

explained using multi-omics data. We demonstrated that integrating multi-omics data in

a gene centric manner improves detecting cancer subtype specific features and other

clinical features, which may be used to further understand the molecular characteristics

of interest. The software and data used in this study are available at: https://github.com/

inukj/MONTI.
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1. INTRODUCTION

Genes are among the most important building blocks of all organisms. Their transcription and
translation are essential for maintaining fundamental cellular mechanisms. Genes are continuously
and precisely regulated by a wide variety of mechanisms, including transcription factors, miRNAs,
methylation, and mutations, which are often cumulatively referred to as multi-omics. When
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investigating a biological mechanism, each omics can only
provide a single perspective. By matching multi-omics data
sampled from a common subject, a multiple-perspective view
can be generated for an enhanced understanding of the complex
dynamics of biology in the subject. For each additionally
integrated omics data type, a new relationship can be mined
between a gene and the newly added, which increases the ability
to represent complex relationships across multi-omics data types,
as shown in Figure 1. However, due to their heterogeneous
nature, it is difficult to integrate such different omics data types
within a common data structure and even more difficult to
analyze them in a combinedmanner due to their high dimension.

A number of initiative projects have made great effort to
collect and publicly provide large amounts of multi-omics data,
such as TCGA (Weinstein et al., 2013), GTEx (Carithers et al.,
2015), ENCODE (The ENCODE Project Consortium, 2012),
and HFGP (Li et al., 2016). These databases provide more
than 10,000 high-throughput sequencing data sets generated
using various platforms and collected from cancer patients,
normal human tissues and model organisms. Compared to the
availability of such large amounts of multi-omics data, the
development of analytic methods that can encompass such large-
scale heterogeneous data is just recently gaining interest (Hasin
et al., 2017).

It is well understood that more data can improve the accuracy
of data mining. However, this is true only if the data are precisely
understood and, more importantly, correctly integrated. Omics
data are generated on different platforms, which implies unique
measurement scales, data formats, as well as different emphasis
on molecular domains and relationships among molecular
entities. Hence, normalization, pre-processing, as well as how
to evaluate associations with genes or other entities must be
carefully taken into account for each omics data set. Finally, the
data must be analyzed in an integrative manner in order to data
mine inter-relationships across the multi-omics domains.

While the aforementioned initiative projects are focused on
providing large-scale multi-omics data, other databases have

FIGURE 1 | The possible number of relations that a gene can have across omics layers (GE, gene expression; ME, methylation; MI, miRNA) increases exponentially

with each omics data type added to the integration. Here, n indicates the number of genes within a single omics layer.

gathered and processed these large data sets to allow statistical
queries. The LinkedOmics project (Vasaikar et al., 2017) collected
multi-omics data from TCGA that includes 32 cancer types,
surpassing 1 billion data points in total. Using simple correlation
methods (i.e., Pearson, Spearman), a user may search for genes
that are significantly correlated with the query gene. Here, the
correlation is in the context of multi-omics. In addition to issues
around data collection and analysis, methods for visualizing
multi-omics data is important. With an increasing number of
omics comes increased difficulty in visualizing the relationships
between multiple omics. PaintOmics3 (Hernández-de Diego
et al., 2018) is a web-based visualization tool that allows users
to observe multi-omics relationships in a graphical manner. It
supports nearly every sequencing technology platform, including
proteomics and region-based omics data, such as ATAC
(Buenrostro et al., 2015) or ChIP-seq (Park, 2009) data.

To date, studies sought to analyze high-throughput multi-
omics sequencing data, with the majority reporting results
using a single or a pair of omics (e.g, mRNA-miRNA, mRNA-
methylation). In addition, the majority of such studies focus
on identifying genes showing significant correlation with a
certain omics type using statistical methods, such as Pearson’s
correlation or cosine similarity. Furthermore, such approaches
tend to focus on finding a matching omics relation for a single
gene with each iteration of the analysis rather than analyzing
all genes and omics data in a combined manner. This is mainly
due to the heavy computation load and requirements of multiple
testing, which makes statistical analysis difficult.

A number of studies have reviewed multi-omics integration
methods. A recent study (Huang et al., 2017) grouped multi-
omics integration methods into four categories: (1) Matrix
factorization methods, (2) Bayesian methods, (3) Network-based
methods, and (4) Multiple step-analysis. In addition to those
categories, the recently popular deep learning technique has
been applied to predict genes that yield significant survival
results in liver cancer (Chaudhary et al., 2017). Such multi-
omics integration methods can also be categorized as supervised
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FIGURE 2 | Two prevalently used multi-omics integration methods. The multi-staged (top), or gene-centric, method encodes all omics measurement values in a per

gene basis. Hence, the number of genes (g) and samples (or patients p) in each omics matrix are required to have equal dimensions. The multi-dimensional (bottom)

integration method is less restrictive in the dimensions and makes use of each omics data as is.

and unsupervised by making use of labels that represent the
phenotype of the data, such as normal vs tumor sample. Tools
such as jNMF (Zhang et al., 2012), MOFA (Argelaguet et al.,
2018), and PARADIGM (Vaske et al., 2010) are unsupervised
methods that mine gene clusters or modules associated with
a phenotype of interest. Also, a network based multi-omics
clustering method, SNF (Similarity Network Fusion) (Wang
et al., 2014), was proposed that integrates multiple omics
networks by weighted similarity of cluster samples.

More importantly, the aspect of the result greatly depends
on how the multiple omics data are integrated. Two studies
well-categorized and defined two important integrationmethods,
which are the meta-dimensional and multi-staged integration
approaches (Ritchie et al., 2015; Sathyanarayanan et al., 2020).
The multi-staged integration method focuses on identifying
omics factors that effect gene expression level, which is expected
to find the causal relationship of a certain phenotype of interest.
Hence, the omics data are integrated in a gene-centric manner
and requires that each omics data have the same dimensions in
sample and gene numbers as shown in Figure 2 (top). Here, g
and p refers to the gene and patient (or sample) indices i and
m, respectively. Such gene-level multi-omics integration can be
advantageous in assessing the flow of information from omics to
genes. For example, gene-level analysis of mRNA, methylation,
and miRNA omics data can discover strong relationships across
the three omics layers in means to explain the dynamics of
gene expression (Subramanian et al., 2020). However, with
limited number of omics data, the landscape of gene expression
modulation may not be fully explained. Also, the selection
of omics data need to be focused on the assumption that

they influence the gene expression regulation. In the other
hand, the multi-dimensional integration method makes us of
each omics data as is. Thus, the number of entities in each
omics matrix may differ. The two integration methods both
assume a matched multi-omics, that is, multi-omics data are
retrieved from the same subject and therefore have the same
number of samples. Such assumption is also referred to as
multi-modal data. Such omics-level integration may capture the
bigger dynamics underlying a phenotype since the entire data
is analyzed as is (Sathyanarayanan et al., 2020). However, to
analyze relationships across the omics layers, post-processing
of the result is required, which can become very complex with
larger number of omics data since the combinations of omics
exponentially increase.

Utilizing multi-omics data, we can identify important
biomarkers and also identify multi-omics features specific to
a given sample or phenotype. In the context of cancer, multi-
omics features specific to cancer subtypes can be identified,
which can serve as valuable information for constructing
highly accurate subtype classification models. This approach will
eventually facilitate enhanced identification of subtype-specific
genes. Delineation between cancer and normal tissues or across
different cancer types have long been a popular problem (Furey
et al., 2000; Ramaswamy et al., 2001; Sotiriou et al., 2003), with
a classification accuracy reaching 85% (Gevaert et al., 2006).
However, classifying cancer subtypes (Network et al., 2012;
Shen et al., 2012; Paquet and Hallett, 2015) is more difficult
than distinguishing tumor and normal samples. For example,
classification accuracy for predicting breast cancer subtypes is
low, ranging from 56.7 to 75% (Wu et al., 2017; Tao et al., 2019).

Frontiers in Genetics | www.frontiersin.org 3 September 2021 | Volume 12 | Article 682841

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jung et al. A Multi-Omics Integrative Analysis Method

FIGURE 3 | The workflow of the MONTI framework. (A) Each omics data (gene expression, methylation, miRNA expression) is pre-processed as a two-dimensional

gene-centric matrix comprised of genes and samples. (B) The omics matrices are then stacked to form a three-dimensional tensor structure (genes, samples, omics)

all sharing the same genes and samples. (C) Using the PARAFAC approach, the tensor is decomposed into two-dimensional gene, patient and omics components.

Here, the components share the rank features. (D) The patient component is used to select subtype-specific features using subtype-specific L1 classifiers. The

selected subtype-specific features are used to build a subtype classifier model using MLP (Multi-layer perceptron). Genes associated to the subtype-specific features

are then selected for biological function analysis.

In this study, we developed MONTI (Multi-Omics Non-
negative Tensor Decomposition Integration) that learns hidden
features through tensor decomposition for the integration of
multi-omics data. MONTI is based on the gene-level integration
method, which we find to be more helpful in understanding the
results. The objective of MONTI is to extract feature genes that
well explain some clinical attribute of interest in large multi-
omics data. Being able to extract such a genes list with significant
relation to clinical attributes can serve as a source that can
naturally be used for simpler downstream analysis, such as, gene
set enrichment of pathway analysis. Also, MONTI constraints the
multi-omics data to be subject matched, where each omics data
are collected from a common subject (i.e., patient). Such design
may avoid omics variance within a same group, thus, amplifying
the signals of hidden features.

In experiments with TCGA multi-omics data sets from
breast, colon and stomach cancer samples, MONTI achieved
significantly higher cancer subtype classification accuracy than
existing multi-omics analysis methods. For the downstream
analysis, genes associated with subtype-specific features were
identified for biological interpretation.

2. MATERIALS AND METHODS

2.1. MONTI Framework Overview
The MONTI workflow operates in two phases. In the first
phase, the multi-omics data are integrated and decomposed
using non-negative tensor decomposition. In the second phase,
subtype-specific features and genes associated with them are
selected using L1 regularization, and these features are then
used to generate a subtype classifier using the multi-layer

perceptron (MLP) neural network. The overall workflow is
depicted in Figure 3.

2.2. Data Preparation and Preprocessing of
Multi-Omics Data
Samples withmatched gene expression, methylation, andmiRNA
expression data sets were collected for three case studies from
TCGA: (1) 597 breast cancer samples, (2) 314 colon cancer,
and (3) 305 stomach cancer samples. Only primary tumor
samples with all three matching omics data sets were selected
for the analysis. The pre-quantified gene and miRNA expression
values from TCGA were used as provided. For the methylation
data, we used the HumanMethylation450 BeadChip-based data
and further selected probes located within the gene promoter
regions (i.e., 2 Kb upstream of a gene’s transcription start site).
Subtype information were acquired from the original studies. The
partially missing subtype information of the breast cancer case
study was taken from Lim et al. (2018), which were generated
by the PAM50 classification method (Parker et al., 2009). Sample
case IDs and annotated cancer subtypes of the samples used in
this study are in Supplementary Table 1.

Because we aim to discover gene regulatory multi-omics
features, each omics data is individually processed to form a gene-
centric two-dimensional sample(patient)-genematrix. The values
in each omics matrix are computed and assigned with respect to
each gene. The tensor structure requires all slices to be of the same
size. Thus, while each omics matrix is independently processed,
they share the same set of genes and samples.

The gene expression values were preprocessed according
to the provided TCGA level 3 gene expression data, which
were subject to log2 quantile normalization across samples. For
miRNA, they were first bundled per target gene, such that
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the number of bundles matched the number of genes. The
geometric mean of miRNA expression per bundle was assigned
to each corresponding gene. The expression values were then log2
quantile normalized. For methylation data, probes located within
the transcription start site and 2 Kb upstream of gene promoter
regions were grouped per gene. The averagemethylation level per
gene was further quantile normalized.

Due to the nature of tensor decomposition, the omics value
in each matrix need to be scaled within a common range. If
not, an omics matrix with comparably large values, such as
gene expression, would have a diminishing effect on other omics
matrices with relatively lower values. Hence, normalizedmatrices
are further scaled within the range of 0–1. Finally, the omics
matrices were stacked on an orthogonal axis to form a three
dimensional tensor structure.

2.3. Tensor Decomposition
There are several ways to decompose a tensor. PARAFAC (Carroll
and Chang, 1970; Harshman, 1970) (a.k.a CANDECOMP-
canonical decomposition) and TUCKER3 (Kroonenberg, 1983)
are the most widely used methods. Both are multi- or bi-linear
decomposition methods, which decompose the array into sets
of scores and loadings. The decomposed scores and loadings
describe the original data in a more compressed form. PARAFAC
is based on factorization, whereas TUCKER3 utilizes principal
component analysis. The resulting decomposition structure
also differs between the two. PARAFAC decomposes a tensor
into three two-dimensional components or matrices, while
TUCKER3 generates three two-dimensional components along
with an additional core matrix that is shared by the components.
Due to the core matrix, interpreting data with the TUCKER3
model is more complicated (due to the increased number of
parameters) than PARAFAC (Bro, 1997). Hence, here we used the
PARAFAC method to decompose the multi-omics tensor.

A PARAFACmodel of a three-way arrayT with elements xijk is
given by three loading matrices, Cg , Cp, and Co with elements gif ,
pjf , and okf . Here, we refer to Cg , Cp, and Co as the gene, patient
and omics components, respectively. The tensorT is decomposed
using a predefined number of ranks R, which we will refer to as
features f = 1, . . . ,R.

Due to the non-negative constraint, the interpretation of the
feature values are much easier, since they are cumulative and do
not negate themselves. Thus, a larger value will imply a strong
signal of the feature. Furthermore, since omics data aremost non-
negative, the non-negative constraint can be naturally applied.

The trilinear model minimizes the sum of squares of the
residuals, eijk in the model

xijk =

R
∑

f=1

gif pjf okf + eijk, (1)

which can also be written as

T =

R
∑

f=1

gf ⊗ pf ⊗ of (2)

An illustration of the PARAFAC model using gene expression,
methylation level and miRNA expression data is in Figure 4.
Here, gn(n = 0, ...,N) refers to the genes, ok(k = 0, ...,K)
indicates the type of omics and pm(m = 0, ...,M) refers to patient
samples. N, M and O indicate the number of genes, samples,
and omics types, respectively. Three omics types are used in this
illustration; thus, K = 2.

2.4. Feature Selection
Subtype-associated tensor features, a subset of features selected
from the tensor decomposition result, significantly improved
subtype classification accuracy. To select such subtype-specific
features, L1 regularization was used for each subtype and applied
to the (Cp) component (i.e., patient component) with the
following equation,

min

M
∑

i=1

(yi −

R
∑

f=1

zifwf )
2
+ α

R
∑

f=1

∣

∣wf

∣

∣ . (3)

Here, M refers to the number of patient samples and R the
number of features, or columns, in Cp. yi refers to the target
subtype value. Because an L1 model is built for each subtype, the
target value is set to 1 for the corresponding subtype and 0 for the
other subtype samples. For example, for the breast cancer case
study, four L1 models were generated, one for each subtype of
Luminal A, Luminal B, Her2, and Basal. z refers to the values of
each feature in Cp. wf (f = 1, ...,R) refers to the weight of each
feature to be inferred. The α value is the weight of the penalty
term. Larger α values yields greater penalty, which will result in
more features having zero weight and causing fewer features to
be selected. We found that the L1 regularization achieved greater
performance compared to the L2 regularization (Figure 5).

The feature selection performance using L1 and L2 were
measured using the BRCA, COAD, and STAD data with varying
ranks. As show in Figure 5, L1 showed better feature selection
performance in terms of subtype classification accuracy in the
three cancer types.

2.5. Selecting Feature Associated Genes
Based on the L1 selected features from Cp, feature genes were
further selected from Cg . This procedure outputs a sparse set of
genes, where each gene has a membership to a single feature.
The association of a gene g to a feature is decided by gf =

max(g0,R), where the weight is maximum at the corresponding
feature index f .

2.6. Cancer Subtype Classification Analysis
The significance of the selected feature genes was measured by
their power of subtype classification accuracy. The classification
accuracy was measured using a multi-layer perceptron (MLP)
classifier with 10-fold cross validation. Here, values of the feature
genes from Cg were given as input to build the MLP classifier.
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FIGURE 4 | An illustration of the non-negative tensor decomposition (PARAFAC) using three types of omics. The tensor T is decomposed into three components:

gene, sample (patient), and omics. Each component corresponds to one axis in tensor T. Each component is a two-dimensional matrix where one axis embeds the

rank features fi (i = 0, ..., r) for the entities in each component (i.e., genes, samples, and omics), similar to the traditional matrix factorization method.

FIGURE 5 | The cancer subtype classification accuracy of BRCA, COAD, and STAD was measured using features selected by the L1 and L2 method with

different ranks.

3. RESULTS

3.1. Three Case Studies
MONTI was applied to three cancer types: breast cancer (BRCA),
colorectal cancer (COAD), and stomach cancer (STAD). The
cancer types were chosen based on the number of samples
that had matched multi-omics data from the same patient.
There were 597, 314, and 305 matched omics data for BRCA,
COAD, and STAD, respectively. To avoid an overly sparse
tensor, genes that do not have any methylation probes located
within their promoter and 2 Kb upstream of transcription start
site (TSS) regions were discarded, which resulted in 14,513

genes with 60,707 methylation probes in total. The average

methylation beta values were taken and assigned per gene.

Similarly, miRNA expression values were grouped per target gene

and the arithmetic mean of miRNA expression values in a group
was assigned to its target gene. The multi-omics data items were
used to produce gene centric omics matrices, which were then
combined to form a three dimensional tensor of each cancer type,
i.e., genes×multi-omics×patient samples.

3.2. Subtype Classification Results
Before deriving cancer subtype-specific features through tensor
decomposition, a pre-defined rank R value for decomposing
the tensor were needed to be chosen. In addition, a penalty
strength, α value needed to be set for L1 regularization. Both were
empirically chosen over a range of values by testing the subtype
classification accuracy.

First, we evaluated the subtype classification accuracy using
the feature in Cp over different ranks. The subtype classification
accuracy for BRCA, COAD, and STAD was the highest with
ranks 450, 150, and 100, respectively. The α value for L1
regularization determines the strength of the penalty for the
features. The larger the α is the smaller number of features and
genes be selected. Subtype classification performance was further
investigated using α values ranging from 0 to 0.1. To further
select informative features, the non-zero weight features were
ranked by their absolute coefficient value from which top 20%
features were chosen.

The subtype classification accuracy was the highest when α =

0.01 (Figure 6). As a result, 26, 31, and 37 features from Cp were
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FIGURE 6 | The classification accuracy with varying α values. The

classification accuracy was the highest with α = 0.01.

selected for subtype classification from the BRCA, COAD, and
STAD tensors, respectively.

The multi-omics tensors for the three cancer case studies
were decomposed with the optimal rank numbers and α values
that were chosen as explained above. We then investigated how
much contributions feature genes (i.e., from Cg) made to the
improvement in subtype classification accuracy.

Our primary interest in this study was whether the selected
features would better represent the underlying biological
mechanism when using multiple omics data compared to single
or a smaller subset of omics data. As shown in Figure 7A, subtype
classification the accuracy was the highest when all available
multi-omics data were used and combined by the tensor features,
which are labeled as GE, ME, and MI for gene expression,
methylation, and miRNA expression respectively.

Here, we find that such accuracy reflects how much the
subtypes are explainable by the selected features and their
associated genes in multi-omics manner.

The number of features and their associated genes are shown
in Table 1. Since a feature can be associated with multiple
subtypes, the sum of features in the St-Features columnmay
be larger than the number of selected features. Here, Features
and Genes refer to the total number of genes and the number
of features in each cancer case study and St-Features and
St-Genes to the number of genes and the number of features
in each subtype St, respectively. A total of 2,385 genes, 3,831
genes, and 5,461 genes were found to be associated with BRCA,
COAD, and STAD subtypes, respectively. The majority of genes
were exclusively assigned to a certain subtype in all three cancer
data sets (Figure 7B). This was more intuitive in the tSNE plot
in Figure 7C. While the number of features was the largest in
BRCA, the total number of genes did not necessarily differ with
the other cancer types.

The 10-fold cross validated F1 scores of MONTI were 0.844,
0.9, and 0.91 for BRCA, COAD, and STAD, respectively. As
far as we are aware of, the classification accuracy are highest
among classification results reported in the literature so far and,
in our experiments, MONTI outperformed existing methods

such as MOFA2, iCluster, and SNF. For BRCA and COAD,
the classification accuracy increased significantly when at least
two omics data were used involving gene expression omics
(GE). Improvement in classification accuracy was dramatic for
COAD where use of single omics resulted in poor performance.
Interestingly, methylation showed to be more influential in
STAD, where ME alone achieved high classification accuracy.
The CpG island methylator phenotype (CIMP) information
can be used to characterize distinct subtypes of gastric cancer
well and it is known that specific methylation patterns and
clinicopathological features are associated (Network et al., 2014;
Tahara and Arisawa, 2015) with it. While the majority of feature
genes were associated with a single subtype (Figure 7B), some
had membership to multiple. For example, the Venn diagram
of BRCA shows that Luminal A and Luminal B subtypes share
265 genes while Her2 and Basal shared 53, which is true in
the biological concept. Luminal A and Luminal B are hormone-
receptor positive subtypes whereas Her2 and Basal are hormone-
receptor negative subtypes, which also reflects the aggressiveness
of the cancer (i.e., hormone-receptor negative cancers grow
faster). Such characteristics are well-observed in the tSNE plots
in Figure 7C.

3.3. Performance Evaluation
While few tools are available for multi-omics analysis with the
goal of classifying cancer subtypes, all such tools aim to discover
genes that have a strong correlation with one or more omics.
In other words, such relational information is expected to differ
between the cancer subtypes, which information is used to
build classifiers or to mine subtype-specific data on genes or
features. We compared the BRCA, COAD, and STAD subtype
classification accuracy of five methods, which are MONTI, SNF
(Wang et al., 2014), MOFA2 (Multi-Omics Factor Analysis)
(Argelaguet et al., 2020), iCluster (Shen et al., 2009), and PCA.

The three cancer data sets consist of four subtypes. In BRCA,
the number of samples per subtype were 220, 152, 91, and 132 for
Luminal A, Luminal B, Her2, and Basal, respectively. In COAD,
the number of samples per subtype are 43, 125, 48, 99 for CMS1,
CMS2, CMS3, and CMS4, respectively. In STAD, the number of
samples per subtype are 188, 26, 42, and 49 for CIN, EBV, GS, and
MSI, respectively.

The genes used for analysis were chosen by two criteria. First,
only protein coding genes were selected. Second, genes where
the methylation values in the TSS 2 k upstream region was
missing in more than 80% of the samples were filtered out. The
miRNA data was used as is and the target gene information was
acquired frommirDB (Chen andWang, 2020). As a result, 14,514
genes were selected based on the BRCA, COAD, and STAD
data sets. Methylation probes with missing values in all samples
were dropped, resulting in 62,070 probes. Similarly, miRNAs
with zero expression in all samples were excluded, resulting in
1,882 miRNAs. Each omics data were normalized as described
in section 2.

The optimal number of ranks for MONTI were selected using
the nmfEstimateRank function in the R preprocessCore
package. For each gene-level omics data the optimal number of
ranks were investigated based on the dispersion metric, from
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FIGURE 7 | The MONTI analysis results of BRCA, COAD, and STAD subtypes are shown. (A) The subtype classification accuracy was the highest when using all

three omics data for all three cancer types. (B) The cancer subtype specific genes. Here, the genes are shared by at most two different subtypes. (C) tSNE plots that

were drawn using the selected features from Cp of each cancer type.

which we chose an appropriate rank number based on the elbow
method. As a result, 120 ranks were chosen for BRCA, COAD
and STAD. As an example, the dispersion plot of BRCA omics
data are shown in Figure 8. The feature genes omics values were
used for measuring the F1 score.

SNF (Similarity Network Fusion) integrates multi-omics
data by constructing networks for each omics data in terms
of the sample similarity using the omics data and then fusing
the networks iteratively using the message-passing method.
The principle is to keep edges between samples that are consistent
across the different omics networks and to remove that are
inconsistent and of low similarity. The optimal hyper parameters
K, the number of neighbors in K-nearest neighbor, and T, the

number of iterations for the diffusion process, where determined
via the parameter grid search. The (K, T) parameters were set as
(10, 30), (10, 10), and (5, 20) for BRCA, COAD, and STAD data
sets, respectively. The output of SNF is the sample clusters, which
was used to measure the F1 score.

MOFA2 utilizes matrix decomposition with the purpose of
identifying sources of heterogeneity in multi-omics data sets.
It decomposes multiple two-dimensional matrices, where each
matrix represents an omics data type comprised of genes
and samples. The decomposition yields feature matrices, each
associated to one of the input omics matrices, and an additional
factor matrix, which represents the activation values of each
feature per sample. Thus, if three omics data are given as input,
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TABLE 1 | The number of selected features and genes in BRCA, COAD, and STAD.

Case study Ranks Features Genes Subtypes St-Features St-Genes

BRCA 120 26 2,385

Luminal A 10 879

Luminal B 9 732

Her2 11 1,080

Basal 8 665

COAD 120 31 3,831

CMS1 7 1,129

CMS2 9 1,403

CMS3 11 1,473

CMS4 10 704

STAD 120 37 5,461

CIN 9 1,234

GS 9 1,007

MSI 9 839

EBV 8 652

FIGURE 8 | The dispersion plot using different ranks using BRCA omics data for estimating optimal NMF ranks.

they will be decomposed into four matrices (i.e., three feature
and one factor matrices). MOFA2 allows to chose the number
of factors or features from the decomposed factor matrix, where
we utilized as many as possible for each dataset. The maximum
features that could be used was 10 for BRCA, COAD, and STAD,
respectively. The output of MOFA was the Z sample factor
matrix, which was used for measuring the F1 score.

iCluster adopts a joint latent variable model for integrative
clustering of multi-omics data. iCluster aims to data
mine significant associations between different omics data
types through likelihood-inference using the Expectation-
Maximization algorithm. iCluster supports a omics optimal
weight estimation function, which we used for each data set for
clustering. The output of iCluster is the sample clusters, which
was used to measure the F1 score.

At last, sample PCA features were extracted and used for
classifying the cancer subtypes. For each cancer and omics data,
optimal number of PCA features were selected based on the
classification accuracy via a parameter grid search. For BRCA, 10,
6, and 10 PCs were selected from gene, methylation, and miRNA
data, respectively. Similarly, 8, 5, and 2 PCs for COAD and 20,
2, and 18 PCs for STAD were selected from gene, methylation,
and miRNA data, respectively. The selected PCs were stacked

and given as input to the random forest classifier to measure the
F1 score.

The average F1 score was measured via 10-cross validation
for each tool with configurations described above. The train and
test data were split before any normalization or feature selection
in each BRCA, COAD, and STAD data set. The same train and
test data sets were used to measure the F1 score in each method.
Furthermore, the input data were both prepared in gene-level
(i.e., multi-staged) and omics-level (i.e., multi-dimension) format
to observe the difference between the two integration methods.
Thus, each method, except MONTI, was subject to two types of
input data and were tested for classification accuracy accordingly.
The tools measured with gene-level input data are labeled as
SNF_g, MOFA2_g, iCluster_g, and PCA_g.

The comparison results are shown in Figure 9. The F1 score
was the highest in MONTI for all cancer subtypes, followed by
iCluster and SNF. We observed that the gene-level input data
yielded lower F1 scores in MOFA2, while it remained relatively
similar in SNF, iCluster, and PCA methods. The significant drop
of F1 score in MOFA2_g may be due to its feature extraction
method. While the omics-level input data matrix is very dense,
the gene-level matrix is relatively sparse, especially for the
miRNAdata. Hence, the latent factors associated with themiRNA
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FIGURE 9 | The F1 scores of five tools using gene-level and omics-level data sets of BRCA, COAD, and STAD subtypes.

data will loose information. Furthermore, while MONTI utilizes
larger number of rank features, MOFA2 utilized 10 features,
which may have reduced the dimension too much, thus, loosing
more information accordingly.

3.4. Analysis of Pan-Cancer Clinical
Features
The relatively high classification accuracy of the cancer subtypes
above implies that they may be explained using the feature
extracted genes in terms of multi-omics. Thus, we further
investigated whether clinical attributes, other than cancer
subtypes, such as gender, mutation groups or metastasis can
be explained using multi-omics data. Among the many clinical
attributes, categorical attributes with <5 groups were used. Also,
clinical attributes with high sample bias were excluded. As a
result, a total of nine cancer types and 95 clinical attributes
were analyzed using mRNA, methylation and miRNA data. For
example, the “Pathologic M” feature of STAD, which is the TNM
staging of metastasis, has three classes, which are M0, M1, and
MX. If the cancer has spread, the sample is labeled as M0, and
if not it is labeled as M1. If metastasis cannot be measured, it is
labeled as MX. Thus, similar to the cancer subtype classification,
we measured the classification accuracy of each of the categorical
clinical attributes that were selected by the criteria described
above. The details of the data set and clinical attributes are
provided in Supplementary Table 2.

MONTI was executed on each cancer type and each clinical
feature as described in section 2. The classification accuracy of
the cancer clinical attributes are shown in Figure 10. Here, we
observed that some clinical attributes were well classified while
others showed poor classification.

All cancer subtypes showed relatively high accuracy in BRCA,
COAD, STAD, and PRAD (Prostate adenocarcinoma), which
hints that the multi-omics profile is highly correlated with cancer
molecular subtypes. Also, while mutation data was not utilized,
the BRAF and RAS mutation classes were well distinguished in

THCA (Thyroid carcinoma). From such result, we may infer
that at least mRNA, methylation and miRNA omics have causal
relationship with BRAF and RAS mutations, which was also
reported in Agrawal et al. (2014). In case of HNSC (Head
and Neck squamous cell carcinoma), the gender attribute was
classified with almost perfect accuracy, which was also reported
in Yuan et al. (2016).

The Pan-cancer analysis results show that some clinical
attributes are able to be explained using mRNA, methylation
and miRNA data while others need further investigation using
other omics or clinical data. Collectively, we find that such results
may help selecting omics when performing research on clinical
features in a cancer cohort.

4. DISCUSSION

While not shown in this study, the subtype classification accuracy
decreased when involving certain omics types, particularly with
the use of mutation profile data. For BRCA data, the accuracy
dropped below 0.75 when SNP data were included in the
tensor. The first short-coming of the SNP data was its extreme
sparseness (i.e., 0.5% genes with SNP). We further attempted to
impute the remaining missing values using the network-based
stratification method for tumor mutations (Hofree et al., 2013).
Unfortunately, the accuracy further decreased, which may be due
to the introduction of additional uncertainty arising from large
number of predictions. For sparse data, integration methods that
are not gene-centric may be more advantageous, such as SNF.
Such result implies that no single method may be universally
applicable for incorporating all types of omics data, and that
omics data must be well understood and integrated in a manner
specific to the characteristics of each omics. Similar arguments
have been discussed previously (Zhang et al., 2018).

Clustering of the selected sample features from the Cp

component of the BRCA analysis result shows us that the Basal
samples are well clustered together, whereas the Luminal A and

Frontiers in Genetics | www.frontiersin.org 10 September 2021 | Volume 12 | Article 682841

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jung et al. A Multi-Omics Integrative Analysis Method

FIGURE 10 | The radar chart showing classification results of nine cancers and their clinical attributes.

Luminal B subtypes are relatively more mixed (Figure 11A).
Similarly, the clustering of selected feature genes from the Cg

component showed the feature activity of genes (Figure 11B).
Here, the top color bars represent the maximum omics type of
each feature. The feature four related genes had strong relation
with methylation. Genes with high values in multiple features
that are related with different omics types indicate that the gene
has relationship across the two different omics types.

Furthermore, the selected features in all three case studies
captured correlation among different omics data types. As shown
in Figure 12, EXOC6 was most affected by DNA methylation in
Basal subtype of BRCA. EXOC6 is reported to be an important
respondent gene when the effects of a combination of the
histone deacetylase inhibitor suberoylanilide hydroxamic acid
(SAHA) and taxanes were tested for cytotoxicity using human
breast cancer cell lines (Chang et al., 2011). Also, EXOC6 was
found to be one out of five genes that was able to asses breast
cancer risk with high accuracy (Winham et al., 2017). While
EXOC6 was observed to have distinct methylation profiles in

brain tissues (Farlik et al., 2016; Hira and Gillies, 2016), it
was not actively investigated in breast cancer Basal subtype
samples in terms of multi-omics correlation. The OLFML2B
gene was found to be negatively correlated with miRNA in the
CMS4 subtype in COAD. We found that the miRNA OLFML2B
targetingmiRNA,miR-30b, is a well-known oncogene suppressor
miRNA in colorectal cancer (Liao et al., 2014), whichmay explain
the omics relationship here. At last, the MAPK15 has been
reported to be a regulator for redioresistance in nasopharyngeal
carcinoma cells, which is tightly linked to the Epstein-Barr
virus (EBV) infection (Li et al., 2018), which may relate to
the EBV subtype of STAD. Collectively, we may induce that
the MAPK15’s expression is down-regulated by methylation,
which was not the case in other STAD subtypes. Other than the
selected genes, well known multi-omics correlated genes related
to certain cancer subtypes were also detected. Although data
not shown, the ESPL1, detected by MONTI, showed significant
regulatory relationship between gene expression andmethylation
specific to Luminal A and Luminal B subtypes in BRCA, which
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FIGURE 11 | (A) The cluster heatmap of sample features (Cp) and (B) the cluster heatmap of the feature genes (Cg) from the breast cancer result. The left color bars

in (A) refer to the BRCA subtypes. The top color bars in (B) refer to the omics with the largest feature value in Co.

FIGURE 12 | Three genes were selected to show correlation between different types of omics data across patient samples. EXOC6 was associated with the Basal

subtype of BRCA, OLFML2B was associated with CMS4 subtype of COAD and MAPK15 was associated with the EBV subtype of STAD.

was previously reported in Finetti et al. (2014) and Li and Li
(2020).

OLFML2B was most affected by miRNA in CMS4 subtype of
COAD. MAPK15 also showed strong gene expression regulation
by methylation in EBV subtype of STAD. This kind of result
by MONTI may suggest cancer subtype specific gene regulation
mechanisms, which can help discover subtype-specific gene
markers for further biological and clinical investigations.

The genes were further examined to see if they captured
known signals of cancer subtype specific pathways by applying
the Subsystem Activation Scoring (SAS) method (Lim et al.,
2016). SAS is used to decompose molecular pathways into
sub-pathways (named subsystems) and measure the activation
levels of them in terms of gene expression. We expanded

it to multi-omics levels to evaluate the association of each
subsystem with each cancer subtype by constructing random
forest classifiers using its SAS score. The detailed method and
results are described in Supplementary Table 3. The detected
pathway subsystems were highly specific to each cancer type.
For example, the top 10 ranked pathways for the three case
studies were all supported by previous studies. For example, the
“Fanconi anemia” pathway was the top ranked pathway for the
BRCA data, which is known to be a rare chromosomal instability
disorder that is susceptible to cancer (Alan and D’Andrea, 2010).
The “HIF-1 signaling” pathway was top ranked in STAD with
association to miRNA. The study (He et al., 2017) suggests
that miR-224 promotes cell growth migration and invasion by
targeting the RASSF8 gene in STAD. Similarly, the top ranked
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“Vascular smooth muscle contraction” pathway by SAS was also
reported to be induced by colorectal cancer (Li et al., 2017).

The application of MONTI was demonstrated on cancer
subtype multi-omics data. However, MONTI is not tailored
to cancer subtype analysis but can be utilized to identify any
categorical clinical features, such as gender, mutation groups,
tumor grade, or age. Thus, the advantage of MONTI is that it is
able to identify clinical feature associated genes in terms of multi-
omics. Furthermore, the omics component Co can be further
used to investigate which omics are currently active and take part
in gene expression regulation.
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