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Type 1 diabetes is an autoimmune disease with rising incidence in high-income countries.

Genetic and environmental predisposing factors contribute to the etiology of the disease,

although their interaction is not sufficiently understood to allow for preventive action.

Strongest known associations with genetic variation map to classical HLA class II

genes. Because of its genetic complexity, the HLA region has been under-represented

in genome-wide association studies, having potentially hindered the identification of

relevant associations underlying the etiology of the disease. Here, we performed a

comprehensive HLA-wide genetic association analysis of type 1 diabetes including

multi-allelic and rare variants. We used high-density whole-exome sequencing data of the

HLA region in the large UK Biobank dataset to apply gene-based association tests with a

carefully defined type 1 diabetes phenotype (97 cases and 48,700 controls). Exon-based

and single-variant association tests were used to complement the analysis. We replicated

the known association of type 1 diabetes with the classical HLA-DQ gene. Tailoring

the analysis toward rare variants, we additionally identified the lysine methyl transferase

EHMT2 as associated. Deeper insight into genetic variation associated with disease as

presented and discussed in detail here can help unraveling mechanistic details of the

etiology of type 1 diabetes. More specifically, we hypothesize that genetic variation in

EHMT2 could impact autoimmunity in type 1 diabetes development.

Keywords: GWAS, HLA, type 1 diabetes, UK Biobank, whole exome sequencing

INTRODUCTION

Diabetes is a life-threatening condition that requires a tight control of blood sugar levels. The
disease is accompanied by health complications and costly therapies throughout life. The estimated
prevalence of adults living with diabetes in Europe was 7.3% in 2014 (World Health Organization,
2016). Type 2 diabetes (T2D) is the main form of the disease and preventive action is taken based
on well-established risk factors. Type 1 diabetes (T1D) accounts for about 10–15% of the cases
(Pociot and Lernmark, 2016), but a 3% annual increase in incidence in high-income countries has
been observed over the past decades (World Health Organization, 2016). T1D is usually diagnosed
in childhood (Maahs et al., 2010) and preventive strategies have been largely unsuccessful, mainly
because of a lack of knowledge about the etiology of this heterogeneous and complex disease.
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T1D is an autoimmune disease resulting from the progressive
destruction of insulin-producing pancreatic β-cells by the body’s
own immune system. It is assumed that environmental triggers
need to act on a genetically susceptible background to develop
disease. On the genetic side, the strongest association with T1D
locates to variations in classical HLA class II genes (chromosome
6p21.3), but genetic associations with more than 50 other genes
have been identified, most of them related to immune functions
(Hu et al., 2015; Pociot and Lernmark, 2016; Pociot, 2017).

HLA proteins present antigenic peptides for T cell
surveillance. Genetic variation in the HLA genes influences
the peptide pool that can be displayed and recognized to initiate
an immune reaction. The high rate of single nucleotide variants
(SNVs) in the HLA genes results in altogether 16,755 classical
HLA alleles (Kennedy et al., 2017). Based on the strong linkage
disequilibrium (LD) in the HLA region, specific combinations
of allelic variants form haplotypes. HLA-DR/DQ haplotypes
associated with T1D (Erlich et al., 2008) include the allele
HLA-DQB1∗03:02, in which the SNV coding for the D57A
variation is responsible for the display of antigenic peptides
triggering autoreactive T cell responses, thereby explaining most
of the genetic risk for T1D (Hu et al., 2015). However, genetic
variation in genes coding for PTPN22 (chromosome 1p13.2) and
CTLA4 (chromosome 2q33.2), which have a higher-order role in
immune regulation, have also been associated with T1D (Pociot
and Lernmark, 2016) indicating that immunity might go astray
on a superior level. There is a common agreement that these
genes do not account for all the observed heritability of T1D and
that the complexity of the HLA region has not been sufficiently
accounted for by standard GWAS (Kennedy et al., 2017). Indeed,
recent studies on non-classical HLA class II function have shown
that these genes could play an important role in T1D (Morgan
et al., 2013) and relevant associations of non-HLA genes with
T1D might still be hidden in that region.

Here, we used the high-density UK Biobank (UKB) whole
exome sequencing (WES) dataset of the HLA region including
multi-allelic and rare variants, and employed detailed case-
control definitions of T1D. We performed a systematic analysis
of the association between genetic variation and T1D on
the single-variant, exon- and gene-level in order to identify
novel potentially causal protein-coding variants in the HLA
region. A deeper understanding of genetic variation associated
with T1D can increase our knowledge of the mechanisms
underlying autoimmune disease development in general, which
in turn can be used to develop preventive, diagnostic or even
therapeutic action.

METHODS

Study Design
UKB is a population-based prospective cohort (Bycroft et al.,
2018) assembling genotypic and phenotypic information of
502,536 participants from Great Britain aged 39–70 years at
baseline at the time of data retrieval. WES data were available for
a subset of 49,997 participants. In order tominimize confounding
by relatedness, we restricted the analysis to the 49,025 unrelated
participants by excluding up to third-degree relatives. As T1D

is a chronic disease with ill-defined onset usually diagnosed
in youths, we consider T1D outcome variables as retrospective
life-time prevalence.

Variable Coding and Case-Control
Definition
From assessment center visits, self-reported diabetes and T1D
diagnosis was available, as well as the age at diagnosis, the
information whether participants use insulin medication and
whether they started insulin therapy within the first year
of diagnosis. Information about main and secondary disease
diagnoses were available from hospital admission data in the
form of ICD10 codes.

As primary T1D case definition (NDR-defined T1D, 97 cases
and 48,700 controls), the epidemiologic definition of the Swedish
National Diabetes Register (NDR) (Nationella Diabetesregistret,
2018) was used in all the genetic association analyses: A
participant was defined as case, whenever age at diagnosis
was <30 years and insulin medication was used. A control
was defined as a participant who did not report using insulin
medication or reported insulin medication but had an age at
diagnosis of ≥30 years. Four further T1D case definitions were
constructed for sensitivity analyses: A less stringent definition
(“weak,” 302 cases and 35,539 controls) defines a participant
as T1D case, if any two combinations of age at diagnosis <30
years, insulin medication used, self-report or ICD10 code for
T1D were fulfilled. The more stringent definition (“stringent,”
80 cases and 48,719 controls) includes the use of insulin
medication within 1 year of diagnosis besides the NDR criteria.
Finally, ICD10-defined (355 cases and 42,232 controls) and self-
reported T1D (47 cases and 40,450 controls) case definitions were
directly available.

Preparation of Whole Exome Sequencing
Data
The HLA region [bases 29,722,775–33,314,387 (GRCh38/hg38)]
on chromosome 6 was extracted from the UKB WES data and
included 59,480 SNVs. After filtering out monomorphic variants,
singletons and doubletons, and performing standard quality
control steps 20,236 SNVs remained. We used an additive coding
of the genotypes.

Statistical Analysis
All the statistical analyses were conducted in R (R Development
Core Team, 2010), version 3.6.1. We used the significance
level α = 0.05 for hypothesis testing and respective Bonferroni
corrections to account for multiple testing in single-variant-,
exon-, gene- and allele-level analyses. In all the association
tests, we controlled for confounding by relatedness, ethnicity
and population structure by restricting the analyses to unrelated
participants and by using the top ten genetic principal
components (PCs) provided by UKB (Bycroft et al., 2018)
as covariates.

In order to test for association between single SNVs and
NDR-defined T1D, a logistic regression model was used and
evaluated for all 20,236 SNVs separately. In order to model the
effects of rare variants jointly to overcome problems of statistical
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power, region-based tests were performed by using the logistic
mixed model sequence kernel association test (SKAT) (Wu et al.,
2011). Kernels giving equal weight to all variants (linear) or
higher weight to prioritize rare variants (linear-weighted) were
computed. SNVs were grouped by gene or exon, resulting in 147
genes and 1,209 exons for analysis. For the allele-based test, we
used HLA alleles imputed with the HLA∗IMP:02 algorithm as
provided by UKB (Bycroft et al., 2018), containing 362 classical
HLA class I and II alleles. HLA imputation data were available
for 48,974 participants from our dataset. A logistic regression
analysis using the same statistical model as for the single-SNV
analysis was used to test for associations between HLA alleles and
NDR-defined T1D.

For more details regarding the study population, coding
of diabetes-related variables, UKB data-fields, case-control
definitions, preparation of the WES dataset, and statistical
analyses, see Supplementary Data.

RESULTS

Demographic and Clinical Characteristics
of the Dataset
The distribution of demographic and clinical variables in
the analyzed dataset of 49,025 unrelated participants of the
UKB cohort is shown in Supplementary Table 1. The age
distribution at baseline is 39–70 years, the dataset contains
slightly more women than men and most of the participants
are Caucasians. The descriptive statistics of the diabetes-related
variables (Supplementary Table 1) illustrate the challenges of
defining T1D cases in large datasets that have not been
specifically constructed for the clinical disease phenotype. While
355 individuals ever had a main or secondary ICD10-coded
diagnosis for T1D, only 47 self-report to have T1D, with
an overlap of only 33 individuals. Thus, in order to reduce
misclassification, we employed the epidemiologic definition of
T1D used by the Swedish national diabetes register (NDR),
which is based on age at diagnosis and insulin medication.
This definition has been reported to be in good agreement with
clinical diagnoses (Nationella Diabetesregistret, 2018; Rawshani
et al., 2018). In our dataset, this results in 97 cases, for which
other diabetes-related variables are also in overall agreement
with the case definition (Supplementary Table 1). For sensitivity
analyses, four alternative T1D definitions were used (see section
Methods for details). Differences in demographic and clinical
variables among the differentially defined cases are shown in
Supplementary Table 2.

Gene-Based Association Tests
The HLA region contains 148 protein coding genes not
only involved in immunity but in various cellular processes
(Supplementary Figure 1). In order to test for association
of these genes with NDR-defined T1D, we first used the
variance-component test SKAT after grouping SNVs in genes.
As a WES dataset is used, deep intronic sequences are not
included and the association analysis is thus tailored toward
coding variants. Without specifically weighting for rare variants
(linear kernel) and after Bonferroni correction, 26 genes

were significantly associated with NDR-defined T1D (Table 1,
p-value < 3.40·10−4). Assuming ∼20,000 genes in the human
genome (Piovesan et al., 2019), seven genes reach genome-
wide significance (p-value < 2.5·10−6). These are six HLA class
II genes (HLA-DQB1, -DQA1, -DRB1 and the paralogues -
DQB2, -DQA2, and -DRB5) in line with known associations
of T1D with HLA-DR/DQ haplotypes (Erlich et al., 2008) as
well as PRRT1. Additionally, the classical HLA-DRA and the
non-classical HLA-DO gene, the peptide transporters TAP1 and
TAP2 involved in HLA class I antigen processing, the HLA-
DO/TAP2 read-through variant AL669918.1 and 14 non-HLA-
genes are significantly associated after Bonferroni correction. No
significant associations were observed with HLA class I genes.

The distribution of the 26 significantly associated genes
in the HLA region on chromosome 6 is shown in the
Manhattan plot in Figure 1A, illustrating that the associated
genes cluster in a defined region. The quantile-quantile (QQ)-
plot in Supplementary Figure 2A clearly shows many small p-
values (median p-value 0.05), likely resulting from the extensive
LD in the HLA region (de Bakker et al., 2006). Repeating the
analysis with a dataset containing only common variants (MAF
> 0.01) led to the exclusion of the genes PRRT1, IER3, LTB,
LY6G6C, DDAH2, NEU1 from the analysis, as they now have
<2 SNVs per gene. There was no further effect on the result,
indicating that the common variants dominated the outcome
(Supplementary Table 4 and Supplementary Figure 2B).

For sensitivity analyses, the gene-based SKAT test using
the linear model was repeated with the four alternative
T1D definitions (Table 1). By using the self-reported T1D
definition, only three significantly associated genes were
observed likely resulting from an impact of low case counts
(Supplementary Table 2) on statistical power. In contrast, the
four other T1D case definitions detected an overlap of 17 genes
significant after Bonferroni correction (Figure 2A) with PRRT1,
HLA-DQB1, -DQA1, -DRB1, and -DRB5 showing genome-
wide significance.

Exon-Based Association Tests
Next, 1,209 exons were analyzed in exon-based SKAT thereby
focusing on the impact of protein-coding variants. In total,
40 exons belonging to 25 genes were significantly associated
with NDR-defined T1D using the linear kernel SKAT test
after Bonferroni correction (Table 2, p-value < 4.14·10−5).
Assuming ∼550,000 exons in the human genome (Piovesan
et al., 2019), 15 exons reach genome-wide significance (p-
value < 9·10−8). The distribution of associated exons in the
analyzed HLA region is shown in the Manhattan plot in
Figure 1B. Again, small p-values dominate the shape of the QQ-
plot (Supplementary Figure 2D), although large p-values are
overrepresented (median p-value 0.71).

Found with genome-wide significance in both the gene- and
exon-based tests were only the genesHLA-DQB1, -DQA1, -DRB1
and the paralogues -DQB2 and -DRB5, in line with previous
knowledge. Significant after Bonferroni correction in both the
exon- and gene-based test were additionally the classical HLA-
DQA2, the non-classical HLA-DOB gene, TAP2, AL669918.1,
CLIC1, CYP21A2, HSPA1A, TSBP1, and VWA7.
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TABLE 1 | List of the 26 genes found to be associated with T1D, sorted by p-value of the association test using the NDR-defined T1D definition and the linear SKAT

kernel after Bonferroni correction for 147 tests.

Gene p-value p-value p-value p-value p-value p-value n (SNVs)/gene
(linear, NDR) (linear, ICD10) (linear, weak) (linear, stringent) (linear, self-report) (linear-weighted, NDR)

PRRT1 3.96·10−11 1.54·10−06 2.36·10−11 7.39·10−14 2.24·10−17 3.68·10−11 33

HLA-DQA1 6.77·10−11 1.55·10−13 7.94·10−15 4.36·10−10 2.02·10−02 3.61·10−04 159

HLA-DQB1 6.93·10−11 2.88·10−13 3.69·10−14 3.77·10−11 7.54·10−03 6.77·10−03 331

HLA-DRB5 7.72·10−08 5.51·10−11 1.58·10−11 7.44·10−10 3.36·10−04 1.72·10−04 436

HLA-DQA2 8.37·10−08 8.70·10−04 3.63·10−05 1.71·10−07 1.09·10−02 2.22·10−01 120

HLA-DRB1 3.24·10−07 1.10·10−07 7.21·10−08 6.16·10−07 6.15·10−02 4.08·10−05 579

HLA-DQB2 1.79·10−06 1.25·10−03 3.46·10−05 2.76·10−07 1.20·10−02 1.94·10−06 186

HSPA1A 4.93·10−06 1.59·10−07 5.98·10−09 1.02·10−06 4.37·10−03 1.20·10−01 71

TSBP1 1.17·10−05 8.01·10−07 1.28·10−08 7.42·10−07 3.99·10−03 5.11·10−02 216

HLA-DRA 1.18·10−05 1.79·10−05 1.30·10−06 4.99·10−06 5.82·10−02 6.39·10−02 52

ABHD16A 1.31·10−05 7.71·10−07 2.51·10−07 9.83·10−07 3.11·10−02 1.32·10−01 197

CLIC1 1.81·10−05 5.00·10−06 8.11·10−07 5.09·10−06 1.47·10−02 5.37·10−03 69

AL669918.1 2.46·10−05 5.29·10−03 3.58·10−05 1.52·10−04 4.74·10−02 2.60·10−03 387

VWA7 2.61·10−05 1.15·10−06 1.19·10−07 8.07·10−06 9.27·10−02 1.43·10−03 233

MSH5 2.76·10−05 2.11·10−06 1.60·10−07 5.01·10−06 4.77·10−02 2.95·10−03 236

HLA-DOB 2.82·10−05 1.32·10−03 2.69·10−05 2.09·10−04 6.23·10−02 1.32·10−04 83

TAP2 3.54·10−05 7.76·10−03 5.04·10−05 1.90·10−04 4.52·10−02 5.85·10−03 328

MSH5-SAPCD1 3.79·10−05 2.54·10−06 1.83·10−07 6.19·10−06 4.18·10−02 5.04·10−03 283

PRRC2A 5.22·10−05 1.81·10−08 8.98·10−10 3.69·10−06 4.61·10−02 5.14·10−01 517

C6orf47 6.35·10−05 6.39·10−06 1.68·10−07 1.80·10−05 2.12·10−03 1.00·10+00 42

PSMB9 7.98·10−05 6.10·10−03 7.19·10−04 1.79·10−04 3.01·10−01 1.31·10−01 315

BRD2 1.72·10−04 1.54·10−02 2.44·10−03 2.90·10−05 4.79·10−04 1.34·10−01 288

TAP1 1.82·10−04 5.72·10−03 1.01·10−03 3.22·10−04 1.88·10−01 2.72·10−01 201

CYP21A2 1.86·10−04 3.85·10−06 7.91·10−09 7.48·10−05 2.24·10−02 2.43·10−02 230

LSM2 2.01·10−04 5.34·10−05 6.26·10−06 3.90·10−05 6.21·10−02 3.83·10−01 39

BTNL2 2.28·10−04 6.36·10−03 6.12·10−04 9.81·10−05 2.76·10−01 2.02·10−01 172

AL662899.3 3.77·10−04 2.05·10−05 6.32·10−06 3.24·10−05 4.52·10−02 2.23·10−01 277

BAG6 4.95·10−04 1.10·10−06 5.94·10−07 1.25·10−04 1.16·10−01 1.25·10−01 276

DDAH2 5.74·10−04 3.98·10−02 1.06·10−02 1.79·10−04 6.30·10−05 3.50·10−04 43

ATP6V1G2 7.55·10−04 1.09·10−04 2.23·10−05 1.23·10−03 6.00·10−02 9.75·10−01 47

DXO 9.45·10−04 1.19·10−03 2.85·10−04 1.52·10−05 4.09·10−02 7.69·10−03 89

CFB 9.56·10−04 5.49·10−05 1.50·10−05 5.17·10−04 5.91·10−02 1.01·10−03 169

TNXB 1.33·10−03 3.22·10−04 1.49·10−05 2.77·10−04 1.59·10−02 5.37·10−05 1,022

ATP6V1G2-DDX39B 1.62·10−03 4.28·10−04 5.12·10−05 2.20·10−03 4.74·10−02 2.04·10−01 119

AGER 1.82·10−03 1.73·10−06 1.17·10−06 4.58·10−03 1.95·10−01 1.53·10−01 113

MICB 2.50·10−03 7.87·10−04 2.52·10−04 2.02·10−03 6.11·10−03 2.66·10−01 137

DDX39B 2.72·10−03 8.82·10−04 9.44·10−05 3.47·10−03 5.28·10−02 1.33·10−01 94

NOTCH4 3.78·10−03 3.66·10−04 7.71·10−05 6.85·10−03 3.95·10−01 1.18·10−03 404

VARS1 5.56·10−03 3.40·10−05 2.00·10−05 8.50·10−04 1.01·10−01 9.05·10−01 277

ATF6B 5.97·10−03 6.73·10−04 2.62·10−04 3.32·10−03 9.56·10−02 5.97·10−01 201

GPANK1 6.47·10−03 1.14·10−04 5.05·10−05 7.12·10−04 8.25·10−02 9.01·10−02 106

PPT2 7.63·10−03 1.38·10−05 1.86·10−05 1.69·10−02 2.01·10−01 6.03·10−01 88

PPT2-EGFL8 1.84·10−02 2.23·10−04 3.46·10−04 3.65·10−02 1.61·10−01 8.43·10−02 203

GPSM3 1.86·10−02 3.13·10−05 1.13·10−04 3.97·10−02 5.81·10−01 1.17·10−01 57

RNF5 1.91·10−02 1.62·10−05 4.38·10−05 3.36·10−02 4.73·10−01 1.32·10−01 36

AL645922.1 2.39·10−02 4.77·10−04 1.06·10−03 1.48·10−02 8.50·10−02 2.07·10−04 376

EHMT2 2.84·10−02 3.57·10−03 2.53·10−03 2.32·10−02 1.95·10−01 1.27·10−07 296

ZNRD1 3.09·10−02 1.60·10−04 2.51·10−03 5.60·10−02 2.38·10−01 1.28·10−01 44

NELFE 5.03·10−01 1.47·10−01 2.66·10−01 3.79·10−01 9.13·10−01 9.07·10−06 91

Additionally, results using the linear SKAT kernel with the four alternative T1D definitions (ICD10, weak, stringent, self-reported) as well as using the linear-weighted SKAT kernel with
the NDR-defined T1D definition are also shown. The number of SNVs per analyzed gene is given in the last column. Significant p-values after Bonferroni correction (<0.05/147 i.e.,
3.40·10−4) are shown in bold. The gene ID as well as start and end position is given in Supplementary Table 3.
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FIGURE 1 | (A) Manhattan plot of all 147 analyzed genes showing the position of the 26 genes found significantly associated after Bonferroni correction using the

linear kernel SKAT test (see also Table 1). (B) Manhattan plot for all 1,209 analyzed exons showing the position of the 40 exons found significantly associated after

Bonferroni correction using the linear kernel SKAT test (see also Table 2). (C) Manhattan plot for all 20,236 analyzed SNVs showing the position of the 92 SNVs found

significantly associated after Bonferroni correction using logistic regression (see also Supplementary Table 6). The line indicates the significance cutoff after

Bonferroni correction that is (A) [–log (0.05/147) = 3.47], (B) [–log (0.05/1209) = 4.38] and (C) [–log (0.05/20236) = 5.61]. A circle is drawn for every SNV or at every

gene’s or exon’s start position.

FIGURE 2 | (A) Venn diagram for genes found to be significantly associated with the T1D definitions NDR, ICD10, weak and stringent using the linear SKAT model.

(B) Venn diagram for genes found to be significantly associated with NDR-defined T1D in the single-SNV analysis and the gene- or exon-based test using the linear

SKAT model. Six genes (HLA-DQA1, -DQB1, -DRB1, -DQA2, -DQB2, -DRB5) were identified in all tests, eight genes (AL669918.1, CLIC1, CYP21A2, HLA-DOB,
HSPA1A, TAP2, TSBP1, and VWA7) in the gene- and exon-based SKAT tests, and three genes (HLA-DRA, PRRT1, and TAP1) in the gene-based SKAT and the

single-SNV analysis. TNXB was identified in the exon-based and the single-SNV analysis. (C) Venn diagram for genes found to be significantly associated with

NDR-defined T1D in the gene- or exon-based test using the linear-weighted SKAT model. Three genes (HLA-DOB, TNXB, and EHMT2) were identified in both tests.

Role of Rare Variants in Region-Based
Tests
In order to unravel the association of NDR-defined T1Dwith rare
genetic variants, we repeated the gene-based SKAT increasing
the weight of rare (MAF < 0.01) and low-frequency variants
(MAF 0.01–0.05) in the association test (linear-weighted kernel)
(Wu et al., 2011). Most genes (21 out of 26) detected to
be significant with the linear kernel showed no significant
association when using the linear-weighted kernel (Table 1),

indicating that their association is dominated by common
variants. Four genes (TNXB, AL645922.1, EHMT2, and NELFE)
were only significantly associated with NDR-defined T1D using
the linear-weighted model, implying a role of rare or low-
frequency variants. In the attempt to determine protein-coding
regions that might account for these associations, the exon-based
test was repeated using linear-weighted SKAT. This removed the
signal of 26 out of the 40 associations found with the linear kernel
(Table 2). Four exons belonging to the genes PSMB9, EHMT2,
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TABLE 2 | List of exons found to be significantly associated with NDR-defined T1D using the linear as well as the linear-weighted SKAT kernel, after Bonferroni correction

for 1,209 tests.

Exon ID Gene Exon p-value (linear) p-value (linear-weighted) n (SNVs)/exon

ENSE00001707124 PPP1R10 exon8 4.46·10−27 4.46·10−27 2

ENSE00003635259 BAG6 exon16 3.19·10−17 3.18·10−17 3

ENSE00001656329 COL11A2 exon55 6.55·10−14 5.73·10−14 3

ENSE00001766857 HLA-DQA1 exon1 8.77·10−13 3.64·10−02 16

ENSE00001836503 SLC44A4 exon21 9.27·10−13 9.10·10−13 6

ENSE00003786549 FLOT1 exon9 6.23·10−11 6.25·10−11 4

ENSE00001792039 TNXB exon30 1.20·10−10 1.20·10−10 11

ENSE00001619685 HLA-DPA1 exon1 4.98·10−10 4.96·10−10 14

ENSE00003421994 HLA-DQB1 exon2 7.74·10−10 2.33·10−02 71

ENSE00001596914 HLA-DQB1 exon3 1.84·10−09 3.73·10−01 25

ENSE00001930619 HLA-DRB1 exon1 3.11·10−09 9.00·10−04 69

ENSE00001911406 HLA-DPB1 exon1 2.01·10−08 1.92·10−08 8

ENSE00003562109 HLA-DQB1 exon4 2.34·10−08 4.93·10−01 13

ENSE00001641881 HLA-DRB5 exon3 2.86·10−08 5.82·10−05 50

ENSE00001703275 HLA-DQB2 exon4 8.62·10−08 1.76·10−02 15

ENSE00003658074 HLA-DQA1 exon3 9.78·10−08 5.99·10−01 24

ENSE00001614414 HLA-DQA2 exon4 1.56·10−07 9.10·10−02 22

ENSE00001723559 HLA-DQB2 exon3 1.76·10−07 6.27·10−02 26

ENSE00001768120 HLA-DRB5 exon2 1.77·10−07 1.20·10−01 107

ENSE00001731226 HLA-DRB1 exon2 2.43·10−07 1.23·10−01 104

ENSE00001465231 HLA-DQA1 exon4 2.51·10−07 1.14·10−02 35

ENSE00003589061 ABCF1 exon15 3.55·10−07 3.56·10−07 2

ENSE00001715371 HLA-DRB5 exon4 6.99·10−07 2.41·10−01 13

ENSE00001646872 PSMB8 exon1 7.82·10−07 7.73·10−07 8

ENSE00003839368 TNXB exon44 1.95·10−06 4.41·10−02 16

ENSE00003843744 CYP21A2 exon10 2.05·10−06 1.19·10−01 42

ENSE00003744412 TSBP1 exon16 2.27·10−06 2.09·10−01 2

ENSE00003555889 VWA7 exon8 2.50·10−06 2.66·10−06 8

ENSE00001663669 HLA-DQB2 exon5 3.35·10−06 5.00·10−05 45

ENSE00003725416 TSBP1 exon32 3.58·10−06 3.27·10−01 13

ENSE00003739283 TSBP1 exon1 3.78·10−06 1.09·10−02 9

ENSE00001690505 HSPA1A exon1 4.93·10−06 1.20·10−01 71

ENSE00003465858 AL669918.1 exon11 5.86·10−06 3.90·10−05 10

ENSE00003685114 TAP2 exon11 5.86·10−06 3.90·10−05 10

ENSE00003703225 HSPA1A exon2 9.46·10−06 2.27·10−01 32

ENSE00001801024 HLA-DRB1 exon3 1.03·10−05 8.41·10−04 61

ENSE00001858405 CLIC1 exon1 1.04·10−05 2.63·10−04 13

ENSE00001625708 HLA-DOB exon1 2.41·10−05 1.58·10−05 8

ENSE00001775810 HLA-DQB2 exon2 3.41·10−05 1.88·10−01 9

ENSE00001691563 MICB exon3 3.60·10−05 2.94·10−01 14

ENSE00001727868 PSMB9 exon5 4.15·10−03 2.18·10−05 10

ENSE00003580154 EHMT2 exon2 1.61·10−01 7.87·10−06 9

ENSE00003463002 VARS2 exon26 7.16·10−01 1.68·10−08 8

ENSE00003569101 SKIV2L exon8 7.73·10−01 4.39·10−11 8

Results are sorted by p-value of the association test using the linear SKAT kernel. Significant p-values after Bonferroni correction (<0.05/1,209 i.e., <4.14·10−5 ) are shown in bold. The
number of analyzed SNVs per exon is given in the last column. Start and end position of the exons are given in Supplementary Table 5.

VARS2, and SKIV2L were significantly associated with NDR-
defined T1D using the linear-weighted but not the linear SKAT
model (Table 2), indicating that rare variants might account for
their association.

Single-SNV Association Analysis
Region-based association tests aggregate single SNVs. In case
that common variants dominate the association, a single-SNV
logistic regression analysis can identify SNVs responsible for the
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association of a genetic region. Here, the single-SNV logistic
regression analysis of the 20,236 SNVs in the WES data of the
HLA region and NDR-defined T1D resulted in 92 significantly
associated SNVs in 13 genes after Bonferroni correction
(Supplementary Table 6, p-value < 2.47·10−6). Twenty-eight
SNVs belonging to the genes HLA-DQB1, -DQA1, -DRB1, -
DQB2, -DRB5, GTF2H4, PRRT1 are genome-wide significant
with a p-value < 5·10−8 and all of them reach the suggestive level
of statistical significance (p-value < 1·10−5). The distribution
of these associated SNVs in the analyzed HLA region is
shown in the Manhattan plot in Figure 1C, indicating the
strong involvement of the HLA-DR/DQ region: 85 significantly
associated SNVs locate to HLA-DQB1, -DQA1, -DRB1, -DRA,
and their paralogues -DQA2, -DQB2, and -DRB5. The most
significant SNV codes for the HLA-DQB1 D57A variation, the
leading risk variant for T1D (Hu et al., 2015). In contrast to
that, no significant association was detected with single SNVs
coding for variation in HLA-DRB1 amino acid positions β13
and β71 that had also been described to confer strong risk for
T1D (Hu et al., 2015). Possibly, relevant SNVs remain below the
significance cut-off in our analysis, as for example two SNVs
(6:32584354:C:A and 6:32584355:T:A) coding for variation in
HLA-DRB1 β13 show protective odds ratios [OR (95%CI)= 0.53
(0.29; 0.96) and 0.53 (0.29; 0.95)] but non-significant p-values
(3.79·10−2 and 3.42·10−2).

Odds ratios for all the significantly associated SNVs within
HLA-DQB1, -DQA1, -DRB1, -DRA, and -DRB5 genes show
a clearly increased chance to have T1D as compared to the
reference nucleotide (Supplementary Table 6). Some of the
SNVs in the paralogues HLA-DQA2 and -DQB2 show protective
odds ratios.

Only seven of the significantly associated SNVs locate to
non-HLA proteins and code for variation in intronic regions
of TAP1, GTF2H4, PRRT1, SLC39A7/RXRB and in protein
coding regions of EGFL8 (R69C) and TNXB (E4051K). However,
the low MAF and wide confidence intervals of the odds
ratios of the significant SNVs in GTF2H4, SLC39A7/RXRB,
EGFL8, and TNXB imply that these associations have to be
interpreted with care (Supplementary Table 6). The shape of
the QQ-plot (Supplementary Figure 2E) is dominated by high
p-values (median 0.98), resulting from the fact that most
SNVs in the dataset are rare variants (MAF < 0.01) (see also
Supplementary Figure 2F).

Combined Results
The overlap of genes associated in the single-variant as well as the
gene- and exon-based tests using the linear kernel is illustrated in
the Venn diagram in Figure 2B. The six genes associated after
Bonferroni correction in all three tests are the classical HLA
class II genes HLA-DQA1, -DQB1, -DRB1 and their paralogues
-DQA2, -DQB2, -DRB5. The classical HLA-DRA gene, the non-
classical HLA-DO and 10 non-HLA genes are associated in two
of the association tests. Focusing on rare variants, the genes
HLA-DO, TNXB, and EHMT2 were found associated both in the
gene- and exon-based tests (Figure 2C), but only EHMT2 was
exclusively associated using the linear-weighted SKAT kernel in

both tests, indicating that rare protein-coding variation might
lead to the association.

DISCUSSION

In this study, we used UKB WES data to investigate genetic
associations in the HLA region with T1D in detail. By
using gene- and exon-based as well as single-variant tests,
we could confirm known associations of T1D with classical
HLA class II genes, and we identified new candidate genes for
independent associations.

In our UKB dataset, 5.9% of the participants self-reported
to have any type of diabetes (Supplementary Table 1). This is
consistent with a diabetes prevalence of 7.3% in Europe (World
Health Organization, 2016) in combination with the healthy
cohort effect seen in UKB (Fry et al., 2017). However, instead of
expected 10–15% (Rewers and Ludvigsson, 2016), only 3.3% of
the diabetes cases have NDR-defined T1D. Some true T1D cases
diagnosed later in life (Thomas et al., 2018) might be excluded
in the NDR definition due to the age criterion. However, the
average age at diagnosis in the alternative case definitions is
unexpectedly high (Supplementary Table 2) suggesting that the
NDR definition better differentiates T1D from T2D. Underlying
our choice of the NDR case definition is also that, given the
massive case-control imbalance in our dataset, misclassifying a
control as a case would be more harmful than misclassifying
a case as a control. This goes hand in hand with lower case
counts, resulting in less statistical power than in more targeted
epidemiologic studies, despite the large size of the UKB cohort.
To make sure that the identified associations are not due to an
arbitrary case-control definition, we investigated multiple T1D
definitions, corroborating the results.

The known association of T1D with the HLA-DR/DQ
haplotype was robustly replicated here, as seven classical
HLA class II genes were detected in at least two of the
applied association tests (Figure 2B), most of them with
genome-wide significance in all three tests (Tables 1, 2,
Supplementary Table 6) and also with alternative T1D
definitions (Table 1). In line with previous results (Hu
et al., 2015; Bycroft et al., 2018), an allele-based association
test applied on our dataset identified the HLA allele
DQB1∗0302 as most strongly associated with NDR-defined
T1D (Supplementary Table 7). A SNV (6:32664911:T:G) coding
for the D57A substitution in HLA-DQB1 has been found
enriched in T1D patients already before the era of GWAS (Todd
et al., 1987). Its genetic association with T1D has later been
inferred from imputed HLA alleles (Hu et al., 2015), but a direct
association has neither been reported in the GWAS Catalog
(Buniello et al., 2019), nor in UKB repositories (Zhou et al., 2018;
McInnes et al., 2019; Zhao et al., 2020). Here, we directly detect
this multi-allelic SNV to be associated with NDR-defined T1D.
This illustrates that relevant common SNVs in the HLA region
are often excluded from GWAS most likely by standard quality
control procedures as filtering for Hardy-Weinberg-equilibrium
(HWE), despite that deviations from HWE are evolutionary
common in the HLA region (Kennedy et al., 2017).
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Another feature complicating the analysis of the data on
protein level is the high rate of polymorphism in the HLA
region, as the functional impact of a single SNV can depend on
additional variation in the same codon. For example, our dataset
contains six SNVs within the codon for HLA-DRB1 β13 that
could theoretically result in 24 different combinations coding for
10 different amino acids at that position. This could well explain
the lack of significant associations for the individual SNVs here,
although variation at amino acid position HLA-DRB1 β13 has
been shown to be associated with T1D (Hu et al., 2015).

Besides the clear role of classical HLA alleles for T1D, recent
work has shown the impact of SNVs in non-classical HLA genes
on their function in antigen presentation (Sirota et al., 2009;
Alvaro-Benito et al., 2018; Graves et al., 2020) and animal models
suggested a role in susceptibility to T1D (Yi et al., 2010; Morgan
et al., 2013). Although we analyzed WES data, we did not detect
SNVs or exons coding for the mature protein domains of the
non-classical HLA genes HLA-DM and -DO as associated with
NDR-defined T1D. The low minor allele frequencies (MAFs) of
SNVs in these genes (Alvaro-Benito et al., 2016) in combination
with the low case counts likely resulted in a lack of statistical
power. This might also apply to the V142I variation in HLA-
DM that is characteristic for the HLA-DMA∗01:02 allele shown
to have a protective association with T1D (Cucchi-Mouillot et al.,
1998). In our dataset, this variant was not significantly associated
after Bonferroni correction but showed protective odds ratios
[OR (95% CI) = 0.52 (0.30; 0.92), p-value = 2.3·10−2]. We did
however detect the gene HLA-DO and its exon1 to be associated
with T1D. As HLA-DO exon1 codes for the signal peptide, the
variation might result in impaired protein sorting leading to a
dosage effect on protein level.

Besides the HLA genes, we also identified the non-HLA
genes AL669918.1, CLIC1, CYP21A2, HSPA1A, PRRT1, TAP1,
TAP2, TNXB, TSBP1, and VWA7 to be associated with NDR-
defined T1D in two of our association tests (Figure 2B)
and with alternative phenotype definitions (Table 1). EHMT2
was found associated in addition, when focusing on rare
variants. Associations of AL669918.1, TAP2 and TSBP1-AS1
with T1D have been reported previously (Tomer et al., 2015;
Buniello et al., 2019). SNVs in the genes CLIC1, CYP21A2,
HSPA1A, PRRT1, TNXB, VWA7, and EHMT2 have only
been reported in association with T1D in UKB repositories
(Zhou et al., 2018; McInnes et al., 2019; Zhao et al., 2020).
As mentioned above, the strong LD in the HLA region
might lead to associations dependent on HLA-DR/DQ loci.
Supplementary Figure 3 illustrates that long-range LD in the
∼1.2Mb region harboring these genes is detectable, but strongest
LD occurs in much smaller blocks. Indeed, conditional on
a HLA-DQB1 SNV (6:32660935:C:T), HLA-DO, TAP1, TAP2,
AL669918.1 in the vicinity of HLA-DR/DQ as well as PRRT1
were not associated anymore in the gene-based test. The other
genes’ association appears to be independent from the HLA-
DR/DQ locus.

In terms of biological plausibility, some of the associated genes
have already been linked to diabetes. CLIC1, a nuclear chloride
ion channel, has been suggested to be involved in pancreatic
β-cell mass expansion during pregnancy (Horn et al., 2016)

and to be a target of the T2D drug metformin (Gritti et al.,
2014). The chaperone HSPA1A (Hsp70) has been implicated
in selecting pro-insulin antigens for HLA presentation (Kolb
and Burkart, 2019). A top candidate for a functionally relevant
association with T1D is EHMT2 that has been shown to regulate
T cell development and differentiation (Scheer and Zaph, 2017)
in its function as methyltransferase that di-methylates lysine
9 of histone 3 (H3K9), a signal for transcriptional repression.
Here, we found EHMT2 exon2 significantly associated with
T1D when focusing on rare variants. Exon2 harbors the SNV
(6:31896761:G:A; MAF = 0.02; coding for S58F) with the lowest
p-value [2.53·10−05, OR = 3.40 (1.92;6.00), heterozygous in
13 out of 97 T1D cases] within the EHMT2 gene. This low-
frequency SNV has been found to be associated with T2D
independent ofHLA-DQA1 (Bonas-Guarch et al., 2018). Here, we
confirm that variation in EHMT2 is not in LD with HLA-DR/DQ
loci (Supplementary Figures 3, 4). The association with T2D
might be explained by EHMT2’s function in insulin-dependent
regulation of transcription (Arai et al., 2015). In case of T1D,
another pathway might be involved: Inhibition of EHMT2
has been shown to enhance CTLA4 and FOXP3 expression
in regulatory T cells (Ding et al., 2019), both are markers of
regulatory T cell function needed to maintain tolerance and
prevent autoimmunity. As CTLA4 is known to be associated
with T1D (Pociot and Lernmark, 2016), alterations in EHMT2
expression and/or function owing to natural variations may as
well be linked to autoimmunity.

In summary, using a combination of single-SNV, exon- and
gene-based analyses using WES data of the HLA region, we
replicate known associations of HLA class II genes with T1D
and suggest EHMT2 as candidate for a functionally relevant
association. We believe that this study justifies a follow-up in
functional analyses of EHMT2 protein variants. Furthermore, an
analysis of whole genome sequencing data of the HLA region,
as soon as available in UK Biobank, could gain additional
insight into a potential association with non-coding SNVs.
Genetic variations represent unpreventable causal components
of disease development but they can improve our understanding
of the underlying mechanism. This knowledge can translate
into the identification of drug targets (Okada et al., 2014).
In case of T1D, it might help to understand if and how
the destruction of insulin-producing β-cells could possibly be
stopped or prevented.
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