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Adenosine to inosine (A-to-I) RNA editing, the most prevalent type of RNA editing in
metazoans, is carried out by adenosine deaminases (ADARs) in double-stranded RNA
regions. Several computational approaches have been recently developed to identify
A-to-I RNA editing sites from sequencing data, each addressing a particular issue.
Here, we present RNA Editing Sites Identification and Classification (RESIC), an efficient
pipeline that combines several approaches for the detection and classification of RNA
editing sites. The pipeline can be used for all organisms and can use any number of
RNA-sequencing datasets as input. RESIC provides (1) the detection of editing sites
in both repetitive and non-repetitive genomic regions; (2) the identification of hyper-
edited regions; and (3) optional exclusion of polymorphism sites to increase reliability,
based on DNA, and ADAR-mutant RNA sequencing datasets, or SNP databases. We
demonstrate the utility of RESIC by applying it to human, successfully overlapping
and extending the list of known putative editing sites. We further tested changes in
the patterns of A-to-I RNA editing, and RNA abundance of ADAR enzymes, following
SARS-CoV-2 infection in human cell lines. Our results suggest that upon SARS-CoV-
2 infection, compared to mock, the number of hyper editing sites is increased, and in
agreement, the activity of ADAR1, which catalyzes hyper-editing, is enhanced. These
results imply the involvement of A-to-I RNA editing in conceiving the unpredicted
phenotype of COVID-19 disease. RESIC code is open-source and is easily extendable.

Keywords: SARS-CoV-2, ADAR, epitranscriptome, interferon, hyper-editing

INTRODUCTION

The conversion of adenosine to inosine (A-to-I) in double-stranded RNA regions, by adenosine
deaminases (ADARs) enzymes, is the most common form of RNA editing in metazoans
(Bazak et al., 2014). This type of RNA editing is crucial for normal development of an
organism and has a major role in the innate immune response (Mannion et al., 2014;
Ganem and Lamm, 2017; Eisenberg and Levanon, 2018). It was shown that changes in
editing events are correlated with several types of diseases; including cancer (Maas et al.,
2006; Galeano et al., 2012; Gallo and Locatelli, 2012; Kung et al., 2018). Editing sites may
serve as biomarkers for cancer and ADAR enzymes are considered as promising gene therapy
agents to fight cancer (Ganem et al., 2017). In addition, ADARs are known to be involved
in regulation of innate immune response by blocking the interferon (IFN) response upon
viral infection (Quin et al., 2021). For these reasons, A-to-I RNA editing is an extensively
studied research field in many organisms, and identification of editing sites is of major interest.
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In recent years, many efforts have been invested in developing
computational approaches to detect A-to-I RNA editing sites
from sequencing data (Pinto and Levanon, 2019). Since inosine
is very similar in structure to guanosine, inosine is interpreted
as guanosine by polymerases during sequencing. This enables
the detection of editing sites by comparing between DNA
and RNA sequences, to track adenosine to guanosine (A-to-
G) mismatches. However, the detection should be carefully
performed to avoid false reports due to sequencing and alignment
mistakes, alterations in sequence originated from polymorphism,
somatic mutations, or other changes which are not the result
of editing events (Pinto and Levanon, 2019). The problem is
exacerbated by the fact that editing in humans frequently occurs
in repetitive regions (Athanasiadis et al., 2004; Blow et al., 2004;
Kim et al., 2004; Levanon et al., 2004, 2005; Barak et al., 2009;
Kleinberger and Eisenberg, 2010; Osenberg et al., 2010; Paz-
Yaacov et al., 2010; Wu J. et al., 2011), which tend to cause
alignment errors (Treangen and Salzberg, 2011).

Several tools developed to detect A-to-I RNA editing sites
are based on comparison between RNA-seq reads and DNA
reference genome. Among these tools are REDItools, which
suggest simple comparison using samtools (Picardi and Pesole,
2013), and GIREMI that focused on distinguishing between SNPs
and editing, relying on existing SNP databases and a given
RNA-seq data (Zhang and Xiao, 2015). Some tools support a
direct comparison between RNA-seq reads and DNA reads from
the same source, allowing editing site identification without the
need for previous knowledge (Picardi and Pesole, 2013; Lee
et al., 2015; Wang et al., 2016; Piechotta et al., 2017). A major
advantage in comparing between DNA and RNA sequences of
the same biological sample is the ability to increase accuracy by
excluding changes deriving from unpublished SNPs (Pinto and
Levanon, 2019). Another way to increase the results accuracy is
parallel comparison between several RNA-seq datasets of several
individuals, while taking into consideration that true editing sites
would appear in all or most samples (Ramaswami et al., 2013;
Wang et al., 2016; Goldstein et al., 2017).

Hyper-editing by ADAR enzymes, which is defined as multiple
A-to-I editing sites in a proximity, is a widespread phenomenon.
Since most tools designed to identify editing sites are based on the
detection of a limited number of mismatches in read alignments
(to reduce alignment errors and running time), hyper-editing
events, which result in multiple mismatches in a single read
(SR), are usually unexposed. Therefore, several recent methods
were specially oriented to track hyper-editing sites. Wu D. et al.
(2011) and Porath et al. (2014) developed methods that are based
on the conversion of unmapped read-sequences to a three-base
code genome and thus enable identification of hyper-editing
sites. Namely, all As are transformed to Gs in the reference
genome and in the RNA-seq reads that previously failed to
align, and realignment is then carried out. Following reversion
to original sequences, hyper-editing sites, which are rich with
A-to-G mismatches, can be located. In both studies, conversion
to a three-base code was repeated for all possible nucleotide
pairs. It was shown that A-to-G editing was enriched over the
other editing types.

Despite the efforts to develop computational tools for A-to-I
RNA editing site detection from sequencing data, to date there is

not a single platform enabling robust detection of editing sites of
different classes and their classification. Here, we present RNA
Editing Sites Identification and Classification (RESIC), which
enables detection and classification of A-to-I RNA editing sites
of different types in a single tool. We expanded the pipeline
we previously applied to identify editing sites in repetitive and
non-repetitive regions (Goldstein et al., 2017) and adopted the
method by Wu D. et al. (2011) and Porath et al. (2014) to
find hyper-editing sites. The tool includes an alignment-graph
of distinctive architecture and several filtration steps to reduce
false identifications. RESIC also enables distinguishing between
polymorphism and editing events to increase reliability, by using
DNA sequences, ADAR mutant RNA-sequencing datasets, or a
SNP database. We demonstrate the utility of RESIC by applying
it to mapping A-to-I RNA editing sites in 16 human tissues, from
the Illumina Human Body Map project, analyzed for a similar
purpose by others (Zhu et al., 2013; Bazak et al., 2014; Porath
et al., 2014). Our analysis reproduced known putative editing
sites, detected by others and included in the RADAR database
(Ramaswami and Li, 2014), and extended the list of known sites.

Since aberrant IFN and cytokine responses were observed in
COVID-19 patients (Moore and June, 2020) and ADAR1 was
shown to activate the IFN reaction (Baños-Lara et al., 2013),
we further interrogate the activity of A-to-I RNA editing upon
SARS-CoV-2 infection. We show that in SARS-CoV-2 infected
samples, compared to mock, ADAR1 is the only A-to-I RNA
editing enzyme that is differentially expressed, and the numbers
of A-to-I hyper editing sites are larger.

METHODS AND DEFINITIONS

RNA Editing Sites Identification and
Classification Algorithmic Definitions
RNA Editing Sites Identification and Classification enables the
user to supply DNA or RNA datasets that should exhibit
the desired editing phenomena and DNA or RNA sequencing
datasets that should not exhibit the desired editing phenomena.
The latter group is used to exclude changes deriving from SNPs.
Since nucleotide changes in the former sequencing datasets
correspond to positive evidence of that sites undergoing editing
and the latter datasets correspond to negative evidence, we term
these sets of datasets as positive and negative datasets. RESIC
is completely reference agnostic. The users provide whichever
reference file they wish to use for the alignment as well.

Ambiguous Read Filtering
For ambiguous read filtering, we adopted the method of Porath
et al. (2014). Briefly, we filtered out the reads that meet the next
criteria: one or more nucleotides represent over 60% or under
10% of the read sequence, more than 10% Ns (when a base call
could not be done), average Phred quality score < 25, and more
than 20 repeats of a single nucleotide in a row.

Alignment Scheme
We define an alignment scheme to be a 4-tuple S =

(
A, p, f1, f2

)
where A is an alignment algorithm, p is a list of alignment
parameters for A, f1 is a preprocessing function of the raw
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datasets and f2 is a postprocessing function for aligned and
misaligned reads. These seemingly verbose definitions enable
RESIC to decouple the choice of alignment algorithm from the
rest of the modules in RESIC.

Let S be an alignment scheme, L be a sequencing dataset and
R be a genome reference, we define PS,L,R and NS,L,Rto be the
aligned and misaligned read fractions resulting from running S
on L and R. We define S(L,R) = (PS,L,R,NS,L,R).

We say that a scheme is normal if f1 and f2 are identity
functions in said scheme. Pseudo code for calculating S(L,R):

def S(L,R):
L′,R′=f_1(L,R) # preprocessing the
sequencing

datasets
P′,N′=A(L′,R′,p) # Alighning the sequencing
datasets
P,N = f_2(P′,N′)# post processing results
return P,N

Graph Aligner
Given a directed acyclic graph G = (V,E) where nodes in V
are alignment schemes, L a sequencing dataset and R a reference
we define new alignment schemes Gv (L,R) for each v ∈ V to be
defined as follows:

Gv (L,R) =

{
v (L,R) In (v) = ∅

v
(
L′′,R

)
L
′′

= ∩u∨(u,v)∈E NGu,L,R

We define G (L,R) to be a set of aligned sequencing datasets{
PGv,L,R

∣∣ v ∈ V}. Simply put, we perform the alignment scheme
of node v on all read fragments that were misaligned in any
of v’s ancestors.

3nt Genome Alignment Scheme
Let X and Y be two distinct nucleotides. To be able mapping
hyper editing sites, we apply the 3nt alignment scheme by which
each appearance of either X or Y is transformed into X in both
the sequencing datasets (reads) and the reference genomes. That
was similarly done by others (Wu D. et al., 2011; Porath et al.,
2014). However, we present an advanced 3nt technique to map
hyper antisense reads as was not described elsewhere, to the best
of our knowledge. First, for each X and Y nucleotides pairs, we
first apply the scheme to the reads at the given node (see section
“Graph Aligner”) and to the reference sense strand. Next, in order
to identify hyper editing sites on the antisense strand, for each
X and Y nucleotides pairs, we create the complement reference
genome, based on the original reference, and reverse the reads
that were unmapped in the previous step, to achieve the 3′–5′
direction, same as the created reference. Then we reapply the
3nt alignment scheme while considering the manipulation of the
reference genome and reads when recording the mapped reads as
aligned to the antisense.

In each step, after mapping the reads, aligned and unaligned
reads are reverted to their original sequence via custom python
scripts. Supplementary Figure 1 illustrates in details the 3nt
genome alignment scheme. To conduct the 3nt scheme we use
awk (Aho et al., 1996) and sed (Free Software Foundation, 2019).

Site Filtering
After performing the graph alignment for each of the given
sequencing datasets, samtools (Li et al., 2009) is used to convert
the files into pileup format. Then, several filtering steps are
performed as detailed below. All parameters (l, k1, k2, u, r, and
c) are user defined.

First, sites with no nucleotide changes and sites covered by less
than l reads are discarded. We discarded sites from the positive
datasets if those same sites appeared in any negative dataset with
a nucleotide change.

Editing Percent Filtering
For each positive sequencing dataset, we filter out any site: (1)
whose most abundant nucleotide change constitutes less than
k1 percent or more than k2 percent of the reads mapped to
that site, (2) whose other nucleotide changes constitute over u
percent of the reads mapped to that site, and (3) whose most
abundant nucleotide change is in at least r reads. We term: k1,
the minimal editing percent threshold, k2, the maximal editing
percent threshold, r, the editing read threshold, and u, the editing
noise threshold.

Unique Site Filtering
We filter all sites that were defined as editing sites at the previous
step, under more than one editing category (e.g., non-repetitive
and hyper non-repetitive A to C), if they represented more
than one type of nucleotide change (e.g., once A to G and the
other time A to C).

Hyper Editing Filtering
Deriving from our method, it may be possible that under the
hyper editing categories, a non-hyper editing site would be
recorded. Namely, for each pair of nucleotides X and Y that we
perform the 3nt genome scheme, other nucleotide mismatches
than hyper X to Y or Y to X may be noted, enabled by the new
conditions created by the 3nt scheme. Therefore, we filter the
hyper editing files to include only X to Y or Y to X changes (see
an illustration in Supplementary Figure 1).

CONSENSUS

We filter out any sites that are not present in over c percent of
positive datasets.

A-to-I Editing Identification Pipe
We implemented a hyper editing alignment scheme and built an
alignment graph that could target any editing type. Specifically,
in the analysis described here we only applied RESIC to A-to-
I RNA editing.

A-to-I RNA Editing Alignment Graph
In our screen for A-to-I editing sites, we define two classes of
alignment schemes, non-repetitive alignment for reads that map
uniquely to the genome and repetitive for repetitive regions or
regions that cannot be differentiated by our reads via alignment.
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Our graph alignment, summarized in Supplementary Figure 2, is
as follows: we align sequencing datasets using the non-repetitive
normal scheme followed by the repetitive normal scheme. Then
we branch out and for each pair of distinct nucleotides X and
Y, we perform the non-repetitive 3nt genome scheme, and the
repetitive 3nt genome scheme.

RNA Editing Profiling of Illumina
BodyMap2 Transcriptome
RNA-seq datasets from 16 human tissues (Illumina Human Body
Map 2.0 Project; GEO accession number GSE30611) that were
sequenced at 75 SR, were downloaded from SRA. FastQC was
used to control the read quality and trimming was performed
accordingly. Reads were further collapsed and then taken for a
RESIC run. For the underlying sequencing algorithm, we used
Bowtie (Langmead et al., 2009) alignment tool. For the non-
repetitive and repetitive alignments, we configured bowtie to
align to fragments if they map to under 2, or 20 different genomic
locations, respectively, with at most 3 single base mismatches
and to consider matches for a read r as the set of alignment
results for r with the smallest alignment score (-m 2 -n 3 –
best –strata, - l 50 –chunkmbs 200, and -m 20 -n 3 –best –
strata - l 50 –chunkmbs 200, respectively). Similar alignment
was used in Goldstein et al. (2017). For the site filtration
steps, we choose l = 2 to be the coverage per site threshold,
k1 = 30 and k2 = 99 for the editing minimal and maximal
percent threshold, respectively, u = 3 for the noise thresholds,
r = 2 for the editing read threshold, and c = 0 for consensus
threshold. The site lists obtained for each tissue were filtered to
have only A-to-I sites, namely A-to-G, or T-to-C mismatches
in both strands.

The list of obtained editing sites was compared to the entire
list from RADAR database (Ramaswami and Li, 2014), We
considered as shared editing sites, sites that are included in the
RADAR list or sites that have gene annotations similar to the ones
appeared in the RADAR list.

Experimental Validation of Novel Editing
Sites
We investigated three novel candidate editing sites that
were found in brain tissue using RESIC. For validation
using Sanger sequencing, RNA from three sections of brain
glioblastoma sample (a kind gift from Dedi Meiri and Yaniv
Lerenthal) was used. RNA was treated with turbo DNase
I (Invitrogene) and then a reverse transcriptase reaction
was performed with Maxima First Strand cDNA Synthesis
Kit (Thermo Scientific), using primers that surrounded
the candidate editing sites (listed in the Supplementary
material). The amplification products were directly sequenced by
Sanger sequencing.

Profiling of SARS-CoV-2 Infected Calu-3
Cells
Raw RNA-seq data of Calu-3 human Lung adenocarcinoma cells
infected with SARS-CoV-2 virus or mock, were downloaded from

SRA, BioProject PRJNA615032. FastQC was used to control the
read quality and trimming was performed accordingly. Reads
were collapsed and first aligned to the SARS-CoV-2 reference
genome version NC_045512.2 using bowtie. Alignment to the
SARS-CoV-2 genome was made to exclude reads that are
originated from the virus for further analysis, and to validate
that in contrast to the mock samples, the SARS-CoV-2 samples
are infected with the virus. Indeed, few thousands of reads
were mapped to the SARS-CoV-2 genome, only for the SARS-
CoV-2 infected samples. We applied RESIC separately on the
unaligned reads of the mock and SARS-CoV-2 infected samples
(three biological replicates each) to identify changes in RNA
editing events upon coronavirus infection. For the underline
sequencing algorithm, we used Bowtie (Langmead et al., 2009)
alignment tool. For the non-repetitive and repetitive alignments,
we configured bowtie to align to fragments if they map to
under 2, or 100 different genomic locations, respectively, with
at most three single base mismatches (-m 2 -n 3 –best –strata,
- l 50 –chunkmbs 200, and -m 100 -n 3 –best –strata - l
50–chunkmbs 200, respectively). For the site filtration steps, we
choose l = 2 to be the coverage per site threshold, k1 = 30
and k2 = 99 for the editing minimal and maximal percent
threshold, respectively, u = 3 for the noise thresholds, and
r = 2 for the editing read threshold. The consensus module
was run with c = 0.5. We then filtered the site lists obtained
to have only A-to-I sites. Since the RNA library preparation
strategy was stranded (the sequenced strand must be from
the actual expressed strand), we filtered the files obtained to
include only actual A-to-G sites and not T-to-C. To test the
difference in the numbers of editing sites, under the non-
repetitive and hyper-non-repetitive classes, between all SARS-
CoV-2 and mock samples, we performed Two-tailed T-test with
equal variances (to determine equal variances Levene Test was
performed). For this test, we included the normalized (according
to the total read coverage per each class stage) numbers of
editing sites of six repeats for each sample type, originated
from 3 biological replicas that were evaluated twice for each
strand separately.

To perform differential expression analysis (DEA), we mapped
the same unaligned reads that were used for RESIC analysis
before, to the human transcriptome version GRCh37 (hg19)
using bowtie. Gene expression levels were evaluated by read
counts. We then compared our created gene counts to the already
processed counts downloaded from GEO: GSE147507. Although
read count values were not identical, as expected due to the use of
different alignment tools, the trend was the same.

We performed DEA, using DESeq2 (Love et al., 2014), with
lfcShrink function and apeglm shrinkage estimator type.

RNA Editing Sites Identification and
Classification Code Availability
RNA Editing Sites Identification and Classification is an open
source available at our GitHub repository1.

1https://github.com/Lammlab/Resic
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RESULTS AND DISCUSSION

RNA Editing Sites Identification and
Classification–A Comprehensive Tool for
Identification RNA Editing Sites
To have a complete identification of RNA editing sites, which
include sites in non-repetitive regions, sites in repetitive regions,
and sites in hyper-editing regions, we generated a novel tool
termed “RESIC.” RESIC composed of an enhanced alignment
graph model to identify and classify editing sites by their type,
multiple-step filtering process to increase result reliability in a
flexible manner (Figures 1A,B) and plots for data visualization
(see an example in Figure 2).

To use RESIC, the user should supply positive datasets, i.e.,
RNA-/DNA sequencing datasets that should exhibit the desired
editing phenomena, and a reference genome. The user may also
supply negative datasets, DNA or RNA sequencing datasets that
should not exhibit the desired editing phenomena, or a SNP
database, to contradict editing-site existence.

All datasets are first processed according to the graph
alignment (Figures 1A,B). The graph alignment was designed
to track editing sites of different types by aligning a given
set of reads to the reference genome in a specific parameter
configuration setup that represents each editing class. Namely, we
demanded unique or multiple alignment to detect non-repetitive
and repetitive sites, respectively, Next for sequences that did
not align, we converted read-sequences to a three-base code
to detect hyper editing sites for all possible nucleotide pairs,
as described by Wu D. et al. (2011) and Porath et al. (2014).
Our alignment-graph distinctive architecture enables the fluent
utilization of an unmapped read-set that was discarded in one
alignment level for defining editing sites of a different class in
the next level (Figure 1B). This enables the identification of
multiple editing-site classes in a single platform. While RESIC
was built to provide a way to consolidate the many ongoing efforts
at A-to-I editing site identification, our graph aligner model is
general and robust enough to stand on its own and contribute
to general identification of nucleotide changes. RESIC was based
on algorithms and scripts whose ability to correctly identify
editing sites was tested experimentally in Wu D. et al. (2011) and
Goldstein et al. (2017). Further validation is also presented below.

Following alignment, the candidate editing sites that were
identified are going through strict multi-stage filtering process
(Figure 1A). The filtering process’ aim is to increase the results’
reliability considering different types of possible errors. In one
type, sites in which there is more than one mismatch type
or sites showing low change ratio are suspicious as technical
errors likely to be formed during sequencing or alignment and
discarded due to low reliability. The user may easily modify the
limiting thresholds controlling these filtering steps (i.e., minimal
coverage per site, minimal change ratio, and maximal noise ratio).
For example, filtering out ambiguous reads to reduce alignment
errors as well as filtering low covered and noisy (with more than
one mismatch) sites. Also, reducing the maximal editing percent
threshold to less than 100% can reduce SNPs. In another type,
incorrect recognition of SNPs as editing sites can be prevented
by excluding sites that show the same nucleotide alterations in

both the DNA and the RNA sequences. The user may choose
(but it is not mandatory) to supplying DNA sequencing data of
the same individual used to detect editing sites, for enabling the
described DNA based exclusion. Another way in which SNPs can
be distinguished from editing sites is parallel comparison between
several samples of different individuals, by testing the consensus
level of editing sites. The rationale behind parallel comparison
of various individuals is that true editing sites would appear
in all or most samples (Ramaswami et al., 2013; Wang et al.,
2016; Goldstein et al., 2017). In addition, biological replicas can
eliminate changes that occurred because of sequencing errors.
Testing for consensus in editing sites among several samples is a
less favorable option to eliminate SNPs, in case DNA sequencing
dataset is supplied. The user may choose to neutralize the
consensus filtering step or modify the consensus threshold.

Our motivation was to build one tool that envelopes several
algorithms and enables prediction of all classes of editing
sites with as much flexibility as possible. Most of the current
bioinformatics tools as described in the introduction focus on one
class of editing sites identification (for example, only on hyper
editing sites as in Wu D. et al. (2011), with very limited flexibility
on the input data, and on the stringency of the detection.

RNA Editing Sites Identification and
Classification Enhanced the Number of
Identified A-to-I Editing Sites in Human
Tissues
In order to test the utility of the tool, we used RNA-seq datasets
from seven human tissues: adipose, adrenal, brain, breast, colon,
kidney, and heart (Illumina Human Body Map 2.0 Project; GEO
accession number GSE30611) that were sequenced at 75 SR.
These datasets were previously screened for editing sites by others
(Zhu et al., 2013; Bazak et al., 2014; Porath et al., 2014).

We used the latest GRCh37 SNP database (NCBI) to eliminate
changes that are not originated from A-to-I RNA editing,
but from genomic polymorphism. All datasets were processed
according to the graph alignment and went through all filtration
steps (for parameters setup, see “Methods and Definitions”).
Since each of the 16 samples is originated from a different tissue,
and editing sites may be tissue specific (Picardi et al., 2015), we
defined c = 0 for consensus threshold. To test the power of
RESIC to specifically identify A-to-I editing sites, we compared
the output of RESIC (Supplementary Table 1) to the collection
of A-to-I RNA editing sites, taken from RADAR (Ramaswami
and Li, 2014). It is indicated by our comparison (Table 1) that
over 75% of the non-repetitive sites RESIC identified, and over
65% of non-repetitive hyper sites are also included in the RADAR
collection. This large overlap is expected, since RADAR is based,
among others, on the same samples analyzed by us, and at the
same time strengthening the reliability of RESIC. Since hyper
editing sites are less frequently found by traditional tools, dictated
by the more common alignment parameter setup (Pinto and
Levanon, 2019) and tools that aimed for tracking hyper-editing
sites (Wu D. et al., 2011; Porath et al., 2014) are less abundant,
it is not surprising that a smaller overlap was obtained for
non-repetitive hyper sites, compared to non-repetitive.
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FIGURE 1 | RNA Editing Sites Identification and Classification (RESIC’s) schematic view. (A) Overall description of the RESIC pipeline. First all given sequencing
datasets are filtered for ambiguous reads and go through the graph alignment scheme to detect A-to-I editing sites of different classes. The RNA-seq datasets
intended for editing-sites identification are termed positive datasets, and the RNA and/or DNA sequencing datasets used to contradict editing-site existence are
termed negative datasets. Sam-files for each alignment node are created using a sequence aligner (Langmead et al., 2009) and converted into pileup files using
samtools (Li et al., 2009). The next stage includes several filtering steps for removing: (1) sites with no changes compared to the reference or low coverage sites; (2)
SNPs or mismatches that are not originated in RNA editing, based on comparison to the negative datasets or/and a SNP database (optional); (3) sites with more than
one prominent mismatch (large noise) or with low change ratio; and (4) sites that do not appear in over c% samples (optional). Finally, a list of editing sites divided into
classes are given as an output with descriptive plots. (B) Zoom in on the data flow illustration of the graph aligner model for the four-layer graph used in the study.

Among all classes defined viaRESIC, the “non-repetitive” class
yielded the largest overlap (75.4%, 65.4%, 27.0%, and 30.7%,
for non-repetitive, non-repetitive hyper, repetitive, and repetitive
hyper, respectively; Table 1). For repetitive site classes, smaller
overlap was obtained.

A substantial portion of sites detected by RESIC were not
identified by others. The explanation for the new identified
sites in this study may be the result of the usage of different
tools for alignment [i.e., Bowtie in our case and BWA, or a
combination of Bowtie, SOAP, and BWA in Zhu et al. (2013)
and Porath et al. (2014)], as well as various threshold parameters
and filtering criteria being set to consider sites as “editing
sites” across tools.

The distribution of the editing events divided into classes
can be shown in Figure 2, presenting for example the RESIC
results for an adrenal tissue sample (the plots obtained from
the rest of the samples can be found in the Supplementary
Figures 3–8. A-to-G and T-to-C are both considered as editing
changes because the data is not stranded. Over all classes being

identified according to the graph alignment, A-to-G and T-to-C
types were highly enriched, as expected (Figure 2). While non
A-to-G mismatches are expected to be uncommon (Li et al., 2011;
Kleinman and Majewski, 2012), RESIC still identified a certain
amount of sites of that type, although in a much lower extent.
This may be the result of rare SNPs that are uncovered by the
SNP database being used.

Overall, the unique characterization of RESIC enables the
detection of different classes of editing events, in one tool.
The specificity of RESIC can be seamlessly controlled by
modifying the running parameters, and by suppling datasets
to exclude SNPs.

Finally, we validated experimentally using sangar sequencing
a few of the most likely novel candidate editing sites that were
found using RESIC in the brain tissue. These sites, which were
not included in the RADAR collection, are in: chromosome
2, position 130737822, RAB6C gene; chromosome 14, position
28733993; chromosome 15, position 39889079, THBS1 gene.
For validation, we used RNA from three sections of brain
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FIGURE 2 | An example for RESIC editing percent distribution plot, obtained for an adrenal tissue sample. Blue arrow at the top of each bar shows the total number
of sites being identified for the class. The percentages on the bars present the total number of editing type out of all identified site in the class. The x-axis labels
represent the RNA editing classes. Norep: non-repetitive, rep: repetitive, norep_hyper: non-repetitive hyper, rep_hyper: repetitive hyper.

TABLE 1 | Overlap levels of the detected A-to-I editing sites with RADAR database.

RESIC editing class Non-repetitive Non-repetitive hyper Repetitive Repetitive hyper

Number of A-to-I editing sites by RESIC 23,194 12,496 1,225 895

Shared with RADAR database full list (%)1 75.4 65.4 27.0 30.7

Novel sites, non-shared with RADAR database full list (%) 24.6 34.6 73.0 69.3

1We considered sites as “shared with RADAR” if they were either included in the collection taken from RADAR, or their annotated genes are in RADAR’s collection.
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glioblastoma tissue. For two of the novel editing sites, in
chromosome 2 and chromosome 14, a high editing ratio was
clearly observed in sanger sequencing, for all tissue sections
(Supplementary Figure 9). For the third site on chromosome
15, no editing was observed. However, since not the same cells
were used for the bioinformatics analysis and the experimental
validation, this test does not disapprove of the existence of a real
editing site at that location. In addition, this sample was taken
from cancer cells, which were already shown to have differences
in editing levels (Ganem et al., 2017). Considering the biological
differences between the samples used for the bioinformatics
analysis and the experimental validation, the overall support of
the validation results in RESIC tool reliability is strong.

SARS CoV-2 Infection Results in an
Extensive A-to-I Hyper RNA Editing and
Upregulation of ADAR1 Enzyme
Systemic inflammatory responses to viral infection are triggered
by IFN-mediated innate immune response (Schneider et al.,
2014). Properly orchestrated, this type of immune response
leads to inhibition of virus replication, promotion of virus
clearance and induction of tissue repair. However, in some people
infected with COVID-19, unpredictably, the innate immune
response is exaggerated leading to Acute Respiratory Distress
Syndrome (ARDS) (Moore and June, 2020). The innate immune
response is regulated by ADAR enzymes, which modulate
the IFN response to viral infection and reduce the innate
immune response. ADAR1 was also shown to prevent Melanoma
Differentiation-Associated Protein 5 (MDA5) from sensing
dsRNA (Liddicoat et al., 2015) and activating both type I and
type III IFNs (Baños-Lara et al., 2013). Therefore, we wished to
interrogate the activity of ADAR enzymes following SARS-CoV-2
infection. For this purpose, we analyzed the data of Blanco-Melo
et al. (2020), of human Calu3 cells infected with SARS-CoV-
2 virus or mock, to examine the differences in A-to-I RNA
editing patterns.

To identify and classify RNA editing sites, we applied RESIC
on Calu3 cell lines that were infected with SARS-CoV-2 virus
or mock (see “Methods and Definitions”). Following RESIC
run, we assessed the numbers of the most prevalent classes
of A-to-I RNA editing types: non-repetitive, and hyper non-
repetitive. We compared between SARS-CoV-2 and mock editing
site numbers for each class following normalization, relying on
the total read processed in each node. A-to-I non-repetitive
hyper editing was significantly more frequent in SARS-CoV-2
infected cells compared to mock (P-value = 0.0371). Overall,
the number of hyper editing sites upon SARS-CoV-2 infection
was 36.45% greater than in mock (Figure 3). For the non-
repetitive class, the site numbers were relatively low for both
sample types. The number of non-repetitive editing sites was
larger as well in SARS-CoV-2, but the difference was not
significant (P-value = 0.0765). Overall, the number of non-
repetitive sites upon SARS-CoV-2 infection was 28.62% greater
than in mock (Figure 3).

We next wished to further validate the editing sites that
we found in human adenocarcinomic lung epithelial (Calu3)

cells that were infected with SARS-CoV-2, using a different
human cell line. For that aim, we used RNA-seq data from
human adenocarcinomic alveolar basal epithelial (A549) that
were infected with SARS-CoV-2 virus (Blanco-Melo et al., 2020)
and searched for RESIC predicted sites in these cells. Only two
biological replicas from A549 samples had enough sequencing
coverage to search for editing sites. Using these two samples, we
were able to detect (in A549 cell line) 52% of the non-repetitive
sites, and 37% of the hyper-non-repetitive sites that we found
in SARS-CoV-2 calu3 cells. This large overlap of editing sites,
which was obtained despite a low amount of RNA-seq reads
among the A549 analyzed samples and the comparison between
distinct types of cells (which are expected to have different editing
sites), is encouraging.

Another goal was to validate the novel editing sites found
by us, using the BodyMap2 dataset, that include seven different
tissues: adipose, adrenal, brain, breast, colon, kidney, and heart.
For that purpose, we searched for the new identified sites
(Supplementary Table 1) in mock, A549, and Calu3 cell lines.
Out of the full list of non-repetitive new editing sites that we
found, 26.9% were also detected under the same category (non-
repetitive) in A549 and Calu3 cells, although the cell lines are
originated from the lungs that were not represented in our
original analysis.

To understand whether the higher editing activity upon SRAS-
CoV-2 infection is manifested by a larger number of sites in
the same genes as in mock, or additional sites located in new
genes, we characterized the editing landscape with respect to site
locations and gene annotation.

We first tested the ratio of shared sites between SARS-CoV-2
and mock samples. For both non-repetitive and hyper non-
repetitive classes, almost ∼70% of the sites were unique among
samples infected with SARS-CoV-2, and about 60% of the sites
were unique for mock samples (Supplementary Table 2). We
next annotated the unique sites for each sample type, across
different classes. It was apparent that the answer for our initial
question is that among the unique editing sites following SARS-
CoV-2 infection, some of the sites were extended the editing in
baseline genes (considering the mock as the baseline), but most
of the sites were in new genes (Supplementary Table 2).

Interestingly, the gene APOBEC3C became hyper edited
following SARS-CoV-2 infection (Supplementary Table 3), while
in mock samples it was classified under the non-repetitive class.
The APOBEC family of enzymes edits C-to-U RNA modifications
and known to be involved in regulation of innate immune
response (Rosenberg et al., 2011; Schaefer et al., 2017). C-to-
U editing of antibody-coding genes in the host’s DNA leads to
diversification of the repertoire of antibodies produced against
viruses, called somatic hypermutation (SHM) (Cogné, 2013).
Therefore, hyper editing in APOBC genes may indicate for their
involvement in COVID-19 phenotype, as part of a complex
immune regulation system, controlling by A-to-I RNA editing.

To test if the sets of unique edited genes display shared
biological processes, we examined their biological process
enrichment, using the web-based tool GeneMANIA (Zuberi et al.,
2013). Submitting the list of hyper-non-repetitive unique edited
genes, upon SARS-CoV-2 infection, resulted in the enrichment
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FIGURE 3 | A-to-I hyper editing sites are more frequent in SARS-CoV-2 infected cells compared to mock. Presented here are the numbers of A-to-I RNA editing
sites detected in SARS-CoV-2 or Mock samples in total, normalized to total counts. Norep: non-repetitive editing sites, norep hyper: hyper non-repetitive editing
sites. The number of non-repetitive hyper editing sites is significantly higher in SARS-CoV-2 samples compared to mock (P-value = 0.0371), and the number of
non-repetitive sites is similar in both SARS-CoV-2 and mock (P-value > 0.05).

FIGURE 4 | Significant upregulation of ADAR1 isoforms, but not ADAR2, in cells infected with SARS-CoV-2 virus, compared to mock. (A) Log scale plot shows
normalized gene counts from mock cells against cells infected by SARS-CoV-2 virus. Every dot in the graph represents a gene: ADAR1 isoforms (red), ADAR2
isoforms (orange), and all other genes (gray). The black line is the regression line for all genes. The P-values were obtained using a Welch two-sample T-test on only
transcripts with coefficient variation > 1. (B) Zoom in on ADAR1 isoforms on the log scale plot. All 10 isoforms are closely located on the plot.

of processes related to the regulation of I-kappaB kinase/NF-
kappaB signaling (P-adjusted values of related pathways in the
range of 1.91E-03–3.50E-04; Supplementary Table 3). This result
is intriguing in the light of strong indications suggesting that NF-
kappaB pathway signaling has a critical role in controlling an
excessive immune activation and ARDS (Kircheis et al., 2020).
These indications, together with our result of hyper-editing in
genes participating in the NF-kappaB pathway, suggest that A-to-
I RNA editing activity may be critical to define the progression
of COVID-19 disease and the risk to develop ARDS. We next,

tested an enrichment for genes that were classified under the
non-repetitive class and were uniquely edited in SARS-CoV-2
samples. Strong enrichment was obtained for processes related to
IFN response (P-adjusted values of related pathways in the range
of 1.25E-06–1.03E-12; Supplementary Table 4), corroborating
previous evidence that ADARs control IFN activation under viral
infections (Baños-Lara et al., 2013), and suggests particularly that
in COVID-19, ADARs control the level of immune response. We
further run GeneMANIA for biological process enrichment with
the mock unique gene sets, as a control. No processes related
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to IFN or NF-kappaB signaling were enriched in FDR < 0.05
(Supplementary Tables 5, 6).

Given these observations, we reasoned that interrogating the
differences in ADAR RNA expression levels between SARS-CoV-
2 and mock treated samples, would help to complete the picture.
Therefore, we performed DEA, on the same data of Blanco-
Melo et al. (2020) used for RESIC. We first created the read
counts for both SARA-CoV-2 and mock Calu3 samples (see
“Methods and Definitions”). We then compared our created gene
counts to those reported by Blanco-Melo et al. (2020) GEO
accession number GSE147507. Although read count values were
not identical, as expected due to the use of different alignment
tools, the trend was the same.

We performed DEA to identify changes in the expression
of ADAR genes and A-to-I RNA editing, following SARS-
CoV-2 infection (Supplementary Table 7). We found that all
10 ADAR1 isoforms are significantly upregulated Figure 4,
P-value = 2.2e-16) in SARS-CoV-2 Calu3 infected cells. In
comparison, the expression of ADAR2 did not differ between
SARS-CoV-2 and mock samples (Figure 4, P-value > > 0.05).
We also found that IFIH1 (NM_022168.4), that encodes for
MDA5 is significantly up-regulated in the SARS-CoV-2 infected
samples (Supplementary Table 7, P-adjusted = 7.46e-137). This
is in line with findings indicating that the IFN response upon
SARS-CoV-2 infection is primarily regulated by MDA5 (Yin
et al., 2021). Since ADAR1 is known to prevent MDA5 from
sensing dsRNA (Liddicoat et al., 2015), this result strengthens
the conclusion that ADAR1 is largely involved in the immune
response following SARS-CoV-2.

Collectively, we suggest that upon SARS-CoV-2 infection,
compared to mock (1) the number of hyper editing sites is
increased; and (2) ADAR1 activity is enhanced. The combination
between these two observations goes together with the finding
that ADAR1 is the enzyme mostly catalyzing hyper editing sites
(Porath et al., 2014).

We tested if these results hold true for more in vitro
SARS-CoV-2 infected cell types created in the same study.
For that purpose, we downloaded from GEO the already
processed gene count data, for A549 and NHBE cells infected
with SARS-CoV-2 high-multiplicity of infection (MOI). We
chose downloading the already processed gene count data after
validating for Calu3 cells that the gene count values created
by us and the downloaded gene count from GEO (accession
number GSE147507) are of the same trend (see “Methods
and Definitions”). For A549 cells, with a vector expressing
human ACE2, indeed ADAR1, but not ADAR2, was significantly
upregulated following SARS-CoV-2 infection, corroborating our
previous results for Calu3 cells. However, for NHBE cells,
both ADAR1 and ADAR2 were not significantly changed after
SARS-CoV-2 infection (Supplementary Table 8). The non-
significant upregulation of ADAR1 in the last case may be
because of the different cell types used. In any event, we
concluded that unlike ADAR2 the expression of ADAR1 is
substantially different upon SARS-CoV-2 infection, at least in
some cell types.

Taken together, our results suggest that the catalyzation of
hyper editing sites by ADAR1 is enhanced following SARS-CoV-
2 infection. These results are intriguing in the context of ADAR1’s
role to block the IFN response, and particularly the role of hyper
editing events to suppress the IFN induction (Vitali and Scadden,
2010). We hypothesize that editing levels might be indicative of
the progression of COVID-19 disease and the risk to develop
ARDS, as holds true in autoimmune diseases, due to the editing
effect on the IFN response. Therefore, these results shed new
light on the involvement of A-to-I RNA editing mechanism
in COVID-19 disease. We note that supporting experimental
validation is required to assess our conclusions. Our analysis
encourages further exhaustive study of A-to-I RNA editing role
in COVID-19 disease.
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