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The poor performance of single-gene lists for prognostic predictions in independent
cohorts has limited their clinical use. Here, we employed a pathway-based approach
using embedded biological features to identify reproducible prognostic markers as an
alternative. We used pathway activity score, sure independence screening, and K-means
clustering analyses to identify and cluster colorectal cancer patients into two distinct
subgroups, G2 (aggressive) and G1 (moderate). The differences between these two
groups with respect to survival, somatic mutation, pathway activity, and tumor-infiltration
by immunocytes were compared. These comparisons revealed that the survival rates in the
G2 subgroup were significantly reduced compared to that in the G1 subgroup; further, the
mutational burden rates in several oncogenes, including KRAS, DCLK1, and EPHA5, were
significantly higher in the G2 subgroup than in the G1 subgroup. The enhanced activity of
the critical pathways such as MYC and epithelial-mesenchymal transition may also lead to
the progression of colorectal cancer. Taken together, we established a novel prognostic
classification system that offers meritorious insights into the hallmarks of colorectal cancer.
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INTRODUCTION

Colorectal cancer is the third most common form of cancer and the second leading cause of cancer-
related deaths worldwide (Bray et al., 2018). Currently, the TNM staging system is widely used to
predict the prognosis of colorectal cancer patients; however, even patients within the same TNM
stage often present with distinct prognosis outcomes in clinical practice. For instance, patients with
stage I and II colorectal cancer generally exhibit a favorable prognosis and are treated with surgical
resection alone. Unfortunately, approximately 10–30% of stage I and II colorectal cancer patients
experience tumor recurrence within 5 years of curative surgery and require more intense treatment,
such as adjuvant chemotherapy (Lin et al., 2017; Guraya, 2019). Therefore, more precise prognostic
tools for colorectal cancer will enable individualized therapy and improve patient prognosis.

Bioinformatic subtyping methods are generally based on gene expression data. There are two
examples of these systems for colorectal cancer, where subtypes are established based on their
molecular features, with these subtypes often demonstrating significant differences in clinical
outcomes (Luo et al., 2020; Yang et al., 2020). Recently, several research groups have indicated
that pathway analysis may be helpful in extracting more stable and interpretable features for risk
prediction (Alcaraz et al., 2017; Sheng et al., 2019; Su et al., 2021). Several efforts have been made to
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decode cancer at the gene, protein, and metabolite levels, and
with the help of predefined pathways available from various
biological databases, including Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa et al., 2016), Reactome
(Fabregat et al., 2018), and Gene-Set Enrichment Analysis
(GSEA) (He et al., 2018a), more stable and interpretable
characteristics could be obtained. Usually we calculate the
pathway activity difference based the differentially expressed
genes calculated based on the comparison of two groups, this
method was used to compare the pathway difference between
two groups and reveal novel mechanisms, but not suitable for
model construction. (Alcaraz et al., 2017). Notably,
PARADIGM and Pathifier are exceptions (Vaske et al.,
2010; Drier et al., 2013). The Pathifier algorithm only
needs the gene expression data from each pathway to
produce a coarse-grained score, which represents the
degree of dysregulation within related pathways. This
means that this algorithm can produce a useful score for
evaluating disease subtypes and has been used for subtyping
tumors and predicting prognosis in cancer patients (Livshits
et al., 2015; Huang et al., 2016; Fa et al., 2019). PARADIGM
has been used to infer patient-specific pathway activities from
multidimensional cancer genomics data, and could be helpful
in integrating multi-omics data and facilitating biomarker
discovery in specific diseases (Han et al., 2021; Park et al.,
2021). However, since most of the pathways share genes
between them, which we call “crosstalk,” the specificity of
the pathway activity score (PAS) is compromised. Taking
intersection genes among pathways into account on PAS
quantification will help identify disease-specific features.
Thus, developing new prognostic classifier of colorectal
cancer based on crosstalk eliminated PAS would be valuable.

Here we developed a new PAS estimation method based on
crosstalk factorization, and established a novel pathway-level-
feature-based signature for colorectal cancer that can be used to
predict overall survival (OS) outcomes, and serve as a
complement to the currently available staging system.

MATERIAL AND METHODS

Data Sources
Both mRNA normalized level 3 expression and colorectal cancer
clinical data were downloaded from the TCGA portal (https://
portal.gdc.cancer.gov/). The microarray data and clinical
information from GSE17537, GSE29623, and GSE87211 were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). After removing samples without survival data, 613, 55,
65, and 196 samples were retained in these four datasets,
respectively.

Pathway Activity Score
The pathway activity score (PAS) for each dataset was
calculated based on the method proposed by Bhandari
et al. (2019). We downloaded all pathways from the gene
oncology (GO) database (http://geneontology.org/) and
generated a new mRNA expression matrix that contains

only genes exist in it for each pathway. After that, for each
gene, based on its expression level, we classified the tumors
into two subgroups, the samples in the higher group were
scored +1, while the others were scored −1. Finally, we
averaged all gene scores in this pathway as the pathway
activity score for each tumor sample. A higher PAS
indicates a higher pathway activity in the sample, and
otherwise, a lower score means lower activity in the sample.

Overall Design and Construction of the
Prediction Pipeline
The overall methodology used to define the cancer survival
risk subtypes identified in this study is shown in Figure 1.
Given a series of data sets, based on PASs and survival
information, we calculated the log-rank pvalue for each
pathway by regression analysis. The pathways were then
ranked based on the log-rank pvalue. Then we applied sure
independence screening (SIS) to identify the main pathways
associated with overall survival in each cohort at a critical
threshold of 100. This value was much larger than the default
n/log(n) for each cohort, where n is the sample size. We then
used these 100 survival-related pathways (Supplementary
Table S1) to evaluate the impact of crosstalk between
these pathways on different datasets. The crosstalk
between the two pathways can be divided into three
categories: Pi ∩ j, representing the overlapping genes
between pathways i and j; Pi –(Pi ∩ j), representing the
genes specific to pathway i; and Pj –(Pi ∩ j), representing
the genes specific to pathway j. We only retained the
crosstalk results where each pathway included at least
three genes in the Pi ∩ j category. We then recalculated the
PAS for each sub-pathway and calculated their survival risk
p-value using the Cox-PH model. After correction, important
(FDR p-value < 0.01) pathways/sub-pathways were
determined for each of the three cohorts, and the common
pathways/sub-pathways in each data set were used as sample
features for further analysis.

We then divided the TCGA data into a training set and a
test set using a 4:1 ratio. We then used the activity matrix for
each sample to complete a K-means clustering evaluation on
the training set and defined the number of clusters as n (2 ≤
n ≤6) and then used this evaluation to divide the samples into
several subgroups. The optimal number of clusters was
determined using three parameters: The C index for the
prognostic differences, the Silhouette index, and the
Calinski–Harabasz criterion (Supplementary Table S4).
This analysis allowed us to classify these samples into two
distinct subgroups which were redefined as G1 and G2. We
then went on to evaluate these two subgroups in other
datasets, using various machine-learning frameworks, such
as SVM, Adaboost, knearest neighbor (KNN), and Gaussian,
and used the pathway activity matrix to build a novel
classification model. These algorithms were applied to our
frameworks via the Python package “sklearn,” which
integrated many classification and regression algorithms,
using default parameters. We were able to use a
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comparison of these predictions to produce an optimal
algorithm which was then applied to our final model. We
finally settled on the KNN classification algorithm and this
was used for further implementation (Supplementary Table
S2). The number of neighbors was set to 5, the leaf size passed
to the classification tree was set to 30, and the power
parameter for the Minkowski metric was set to 2.

Evaluation Metrics for Model
We trained our novel classification model using 10-fold cross-
validation of the TCGA training dataset and used this to
determine the best machine learning framework, as described
above. We then went on to evaluate the performance of this
classification method using the TCGA test dataset as well as the
three GEO datasets. We combined the C-index, Brier score, and
log-rank p-value with a deep learning-based study to reflect the
prediction accuracy of these methods. The application of these
metrics allowed us to quantify the proportion of patient pairs
whose prediction was consistent with their OS outcome (Harrell
et al., 1996). The C-index was determined using the R “survcomp”
package (Schröder et al., 2011), and the Brier score was used to
measure the accuracy of the probabilistic predictions.
Kaplan–Meier and log-rank analyses were used to compare the
survival differences between the groups (R survival package
available from http://CRAN.R-project.org/package�survival)
and the mean differences between the predicted and observed
survival rates at specific time points were determined using the
survival analyses metrics, and this score was negatively associated
with accuracy and determined using the R “survcomp” package.

Differentially Expressed Genes and GSEA
Analyses
Differentially expressed genes between the G2 and G1 subgroups
were identified using the DESeq2 package (Love et al., 2014) and
GSEA analyses were used to compare the differences between
these two subgroups at the hallmark pathway level (Mootha et al.,
2003; Subramanian et al., 2005).

Clinical Covariate and Somatic Mutation
Analyses
We compared the somatic mutation rates between the G2 and G1
subgroups in the TCGA training cohort using Fisher’s exact test
and compared the distributions of various clinicopathological
features, such as tumor stage, new tumor event, and sex in each of
these subgroups using Fisher exact tests.

RESULTS

Identification of Prognostic Subtypes in
Colorectal Cancer
The overall methodology used to identify the different cancer
survival risk subtypes defined in this study is shown in Figure 1.
We produced four curated colorectal cancer datasets (TCGA,
GSE17537, GSE29623, and GSE87211) using the survival
information from the TCGA and GEO databases (Table 1).
We then used the gene expression matrix from these datasets

FIGURE 1 | Overall workflow describing the design and validation processes used in this study.
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to calculated the PAS for each pathway identified using the
KEGG and Gene Ontology Resource databases and then
extracted the pathways most closely associated with overall
survival. These were then evaluated using the SIS method to
identify the central pathways associated with overall survival
when using a critical threshold of 100 (Supplementary Table
S1). We then explored the impact of crosstalk between these
pathways on each of the datasets and selected the most
important sub-pathways (FDR p-value < 0.01) for each.

These analyses identified 11 central features
(Supplementary Table S3) which were then used to
perform a K-means clustering analysis which produced
two subgroups: G1 and G2 (Figures 2A,B; Supplementary
Table S4). Patients from the G2 subgroup displayed

significantly worse overall survival than those in the G1
subgroup (Figure 2C; p � 0.0015, log-rank test).

Evaluating the Performance of
Pathway-Based Prognosis
The AUC values for the training and test datasets were 0.9305 and
0.8909, respectively, and the ROC curves are shown in
Supplementary Figure S1. In addition, we observed a
considerable performance in prediction accuracy when using
the PAS features as evidenced by the C-index value and
significant differences in OS between G1 and G2, as evidenced
by the log-rank p-value test (Figure 3; Table 2). We also noted
that this model produced outcomes with low Brier error rates.

TABLE 1 | Clinicopathological features for each of the enrolled cohorts.

Parameters TCGA training
(n = 510)

TCGA testing
(n = 128)

GSE17537 (n = 55) GSE29623 (n = 65) GSE87211 (n = 196)

Age <60 152 (29.8%) 31 (24.22%) 24 (43.64%) 0 (0%) 73 (37.24%)
≥60 358 (70.2%) 97 (75.78%) 31 (56.36%) 0 (0%) 123 (62.76%)
Not reported 0 (0%) 0 (0%) 0 (0%) 65 (100%) 0 (0%)

Gender Male 272 (53.33%) 65 (50.78%) 26 (47.27%) 40 (61.54%) 136 (69.39%)
Female 237 (46.47%) 61 (47.66%) 29 (52.73%) 25 (38.46%) 60 (30.61%)
Not reported 1 (0.2%) 2 (1.56%) 0 (0%) 0 (0%) 0 (0%)

OS Alive 386 (75.69%) 101 (78.91%) 35 (63.64%) 40 (61.54%) 168 (85.71%)
Dead 104 (20.39%) 22 (17.19%) 20 (36.36%) 25 (38.46%) 28 (14.29%)
Not reported 20 (3.92%) 5 (3.91%) 0 (0%) 0 (0%) 0 (0%)

OS, overall survival; TCGA, the Cancer Genome Atlas; n, number.

FIGURE 2 | Subtyping analysis of the Cancer Genome Atlas-colorectal cancer (TCGA-CRC) patients. (A) K-means clustering analysis split these patients into two
subgroups. The optimal number of clusters was determined using three parameters: The C index for prognostic differences, the Silhouette index, and the
Calinski–Harabasz criterion. (B) Performance of K-means clustering when k was set at 2. (C) There were significant differences in survival rates between these two CRC
subtypes.
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The test data from the TCGA-COADREAD samples produced a
high C-index (0.626), low Brier score (0.229), and significant
average log-rank p-value (2.90e-3) when evaluated for differences

in survival. We then validated this model using three external
cohorts (Supplementary Table S5). The log-rank and Kaplan-
Meier analyses of the GSE17537, GSE29623, and GSE87211

FIGURE 3 | Four test cohorts demonstrating significant differences in survival rates. (A) The Cancer Genome Atlas (TCGA) test cohort, (B) GSE17537 cohort, (C)
GSE29623 cohort, (D) GSE87211 cohort. G2: aggressive (higher-risk survival) subtype; G1: moderate (lower-risk survival) subtype.

TABLE 2 | Performance of the gene signature in the test TCGA cohort and three external validation cohorts using all 11 features.

Cohort Omics type Sample number C-index Brier score Log-rank P-value

TCGA RNA-Seq 123 0.626 0.229 2.90E-03
GSE17537 Microarray 55 0.651 0.227 6.57E-03
GSE29623 Microarray 65 0.747 0.301 3.56E-07
GSE87211 Microarray 196 0.658 0.15 7.91E-04

TCGA, the Cancer Genome Atlas.
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FIGURE 4 | The Oncoprint demonstrating the differences between G2 and G1 subgroups at the genetic level. G2: aggressive (higher-risk survival) subtype; G1:
moderate (lower-risk survival) subtype. The p values from the Fisher-exact test are displayed on the right as a bar plot. The red line indicates p � 0.05.

FIGURE 5 | The differentially expressed genes between G1 and G2 subgroups. (A) Volcano plot displaying the differentially expressed genes between G2 and G1
subgroups. (B) Principal component analysis (PCA) analysis describing the differences in clustering between the G1 and G2 subgroups. Hallmark (C) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (D) analyses for the differentially expressed genes. G2: aggressive (higher-risk survival) subtype; G1: moderate (lower-risk
survival) subtype.
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cohorts produced similar results to the TCGA cohort (log-
rank p-value < 0.05, Figure 3; Table 2) indicating that the
model was stable. Taken together, these results indicate that
this newly developed method can accurately predict OS
outcomes in colorectal cancer patients.

Associations Between Different Survival
Subtypes and Genomic Features
We then used a Fisher’s exact test to evaluate differences
between the two survival subtypes identified in the TCGA
cohort. These evaluations revealed that KRAS mutations were
significantly more frequent in the aggressive subgroup G2
(OR � 1.573, 95%CI: 1.004–2.470, FDR � 0.039, Figure 4;
Supplementary Table S6). This was also shown to be true in
several other oncogenes including ASH1L, DCLK1, EPHA5,
MYO1F, ZNF835, LOXL4, C11orf63, GDF5, MCAM,
B4GALNT3, FAM63A, AKR1B10, HOMEZ, HRSP12,
IFI35, LHX6, NARF, OR1J2, OR5P3, PBX1, TEAD2, UXS1,
WIPI2, WNT10B, BTBD10, EEF1A1, ERGIC3, GZMB,
MAGEH1, MOGAT3, MRPL19, OR13A1, PCDHGC3,
RNF19B, SELPLG, and SEMG1 (all p < 0.05). Differentially
expressed genes from each subtype were identified using the
DESeq2 package in R and evaluated using a cutoff value of |
log2 fold change| > 1 and FDR P-value < 0.05 (Love et al.,
2014). These analyses identified 155 upregulated and 2,224
downregulated genes in the aggressive G2 subgroup
(Figure 5; Supplementary Table S7). Of the upregulated
genes, several were found to be associated with survival
and pathogenesis in other studies including one study
which found that ectopic expression of HBE1 decreased
the production of radiation-induced intracellular reactive
oxygen species (ROS) and cell mortality (Park et al., 2019);
similarly, ORM1 serves as a prognostic factor and can be used
to predict therapeutic response in advanced extranodal NK/
T cell lymphoma patients treated with pegaspargase/
gemcitabine (Zhou et al., 2016). We also tested the
correlations between the two survival subtypes (G1 and
G2) and the clinicopathological characteristics of the
patients in the TCGA cohort and found no significant
differences in age, sex, clinical stage or new tumor event
subgroups (Supplementary Figure S2).

The Distribution of Tumor-Infiltrating
Immune Cells in G1 and G2 Patients
Differences in the distribution of 22 subpopulations of TIICs in
the G1 and G2 subgroups were determined using the
CIBERSORT algorithm and the information from the TCGA
dataset and the results of this evaluation are summarized in
Supplementary Figure S3. We evaluated the average proportion
of each immune cell type in both the G1 and G2 subgroups and
demonstrated that there were no significant differences in TIIC
distribution between these two subgroups. These results suggest
that the differences in G1 and G2 survival are not reflected in the
TIIC population in these patients.

Hallmark Analyses Compared the
Differences Between G2 and G1 Subgroups
We used GSEA analyses to compare the G2 and G1 subgroups to
identify the critical pathways involved in the progression of
colorectal cancer. This hallmark pathway enrichment analysis
revealed that the differences between these two groups were
concentrated in the coagulation, MYC targets v2, epithelial-
mesenchymal transition, bile acid metabolism, and peroxisome
pathways (FDR p-value < 0.05, Supplementary Figure S4;
Supplementary Table S8). This is supported by the fact that
most basic research suggests that there is a close connection
between hemostatic components and cancer biology as they
interact in multiple ways. The coagulation system can be
activated by cancer cells, and hemostatic factors can promote
tumor progression. In the case of both the MYC (Sikora et al.,
1987; Arango et al., 2003; Castell and Larsson, 2015; Boudjadi and
Beaulieu, 2016; He et al., 2018b) and EMT (Bates et al., 2007; Vu
and Datta, 2017a; Vu and Datta, 2017b; Lamprecht et al., 2018;
Ieda et al., 2019; Huang et al., 2020) pathways, many studies have
investigated their role in colorectal cancer. We also analyzed the
KEGG and Reactome GSEA analyses, and the detailed results are
presented in Supplementary Tables S9, S10. These evaluations
identified several pathways that are significantly associated with
tumor progression and resistance to drug treatment.We also used
a GSEA-Reactome analysis to compare the G2 and G1 subgroups,
and noted the appearance of several significantly enriched
pathways including 3’UTR Mediated Translational Regulation,
Bile Acid, and Bile Salt Metabolism, Translation, Cytochrome
P450 Arranged by Substrate Type, CDK-Mediated
Phosphorylation and Removal of CDC6, P53 dependent G1
DNA damage response, P53 independent G1 S DNA damage
checkpoint, S phase, and base excision repair. These results
suggest that the oncogenic role of these critical pathways may
promote colorectal cancer progression.

DISCUSSION

Here, we classified colorectal cancer patients into different risk
categories based on the results of our pathway activity score with
crosstalk evaluations. Our pathway-level features produced
satisfactory outcomes in the TCGA training and three external
validation cohorts derived from the GEO database. These results
were then used to separate the colorectal cancer patients into
aggressive (G2) and moderate (G1) subgroups in the TCGA
cohort and the other three colorectal cancer datasets
(GSE17537, GSE29623, and GSE87211) with reasonable
accuracy. We then went on to evaluate these subtype
distinctions in terms of other clinicopathological criteria and
revealed that while vastly different in terms of survival there were
no significant differences in their clinical presentation. However,
when we compared the somatic mutation landscape between
these two subgroups we found that the mutation rate in oncogene
KRAS was significantly higher in the G2 group, which may
explain why these patients were seen as experiencing a more
aggressive progression than the G1 group. Strategies to improve
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outcomes for patients with KRASmutations should be developed.
Taken together our data suggests that evaluating the specific
genes governing these important features may provide valuable
insights into the hallmarks of colorectal cancer and that these may
be combined to produce specific prognostic signatures.

RAS is one of the most investigated proto-oncogenes in the
world with gain-of-function mutations in this gene being
identified in approximately 30% of all human cancers (Artale
et al., 2008; Liu et al., 2019). Furthermore, KRAS mutations are
associated with poor prognosis in several cancers, and there is still
a lack of effective targeted therapeutics designed to counteract the
effects of this mutation. Phipps et al. (2013) enrolled 1,989
colorectal patients in their study which was designed to
investigate the association between KRAS mutation and
survival, and their results suggested that 31% of these patients
had KRAS mutations and that these mutations were closely
associated with unfavorable outcomes when compared to the
wild type (HR � 1.37, 95%CI: 1.13–1.66). Kim et al. (2016)
evaluated the impact of KRAS mutations on time to
recurrence (TTR) and overall survival (OS) in patients with
metastatic colorectal cancer who underwent curative surgery
with perioperative chemotherapy. They found that 37.8% of
these patients has a KRAS mutation but that these mutations
were not associated with TTR or OS (log-rank p � 0.425 for TTR;
log-rank p � 0.137 for OS). In addition, several KRAS positive
patients from a set of clinical trials did not respond to treatment
with epidermal growth factor receptor inhibitors, cetuximab, or
panitumumab (Artale et al., 2008; Van Cutsem et al., 2008)
suggesting that these mutations may also be implicated in
therapeutic response. Notably, the National Comprehensive
Cancer Network guidelines suggest that every colorectal cancer
patient, once confirmed to have developed liver metastases,
should be screened for KRAS mutations. KRAS mutations
serve as a predictor of unfavorable prognosis for colorectal
cancer patients in both stage II and III tissues and indicate
that these patients could benefit from postoperative FOLFOX
chemotherapy (Deng et al., 2015). Given this more studies should
investigate the underlying mechanisms of KRAS mutation-
mediated effects on chemo- and immunotherapy.

We used GSEA analyses to compare the differences between
G2 and G1 at the hallmark pathway level. Of the significantly
enriched pathways, we found that coagulation, Myc-Target-V2,
and epithelial-mesenchymal transition (EMT) were the most
significantly correlated with the G2 group, which included
patients with poorer outcomes than the G1 group. Most
cancer patients demonstrate some biochemical evidence of the
systematic activation of coagulation at diagnosis, and hemostatic

changes may disappear after curative treatment. Iversen and
Thorlacius-Ussing (2003) reported coagulation reactivation in
response to cancer recurrence which was demonstrated by
significantly increased plasma thrombin antithrombin III
complex and Serum ferritin expression. Mandoj et al. (2018)
established a risk predicting signature for OS which was shown to
be closely associated with age (p � 0.043), tumor size (p � 0.001),
levels of D-dimer (p � 0.029), and factor VIII (p � 0.087) when
evaluated using a multivariate model. Coagulation abnormalities
in cancer patients increase the tendency of these patients to
develop both hemorrhages and thrombosis (Falanga et al.,
2013) and evidence from basic research suggests that
hemostatic components and cancer biology interact in
multiple ways.

In summary, the PAS-based features and crosstalk evaluation
provide an accurate and robust stratification of colorectal cancer
patients. This stratification can be clearly linked to prognosis and
the signature holds the promise of facilitating precision medicine
for colorectal cancer patients.
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