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Recently, many studies have investigated the role of gene-signature on the prognostic
assessment of breast cancer (BC), however, the tumor heterogeneity and sequencing
noise have limited the clinical usage of these models. Pathway-based approaches are
more stable to the perturbation of certain gene expression. In this study, we constructed a
prognostic classifier based on survival-related pathway crosstalk analysis. We estimated
pathway’s deregulation scores (PDSs) for samples collected from public databases to
select survival-related pathways. After pathway crosstalk analysis, we conducted
K-means clustering analysis to cluster the patients into G1 and G2 subgroups. The
survival outcome of the G2 subgroup was significantly worse than the G1 subgroup.
Internal and external dataset exhibits high consistency with the training dataset. Significant
differences were found between G2 and G1 subgroups on pathway activity, gene
mutation, immune cell infiltration levels, and in particular immune cells/pathway’s
activities were significantly negatively associated with BC patient’s outcomes. In
conclusion, we established a novel classifier reflecting the overall survival risk of BC
and successfully validated its clinical usage on multiple BC datasets, which could offer
clinicians inspiration in formulating the clinical treatment plan.
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INTRODUCTION

As a highly metastatic and invasive malignant tumor with high incidence, breast cancer (BC)
seriously threatens women’s health and quality of life (Veronesi et al., 2005; Siegel et al., 2019;
Rüschoff et al., 2020). BC occupied a quarter of all malignant tumors, which has received numerous
clinical attention worldwide (Ferlay et al., 2015). At present, the primary treatment options for BC
are chemotherapy, surgery, and radiotherapy (Shi et al., 2019). However, BCs tend to exhibit drug
resistance and high recurrence rates on account of heterogeneity, making the therapeutic effects and
prognosis of the disease unsatisfactory (Natarajan et al., 2012). Screening biomarkers for BC has a
significant effect on reducing mortality, early diagnosis, and the improvement of prognosis in BC.

With the development of RNA-Seq high-throughput sequencing technology, various gene
expression profiles of BC have been accumulated. Plenty of excellent models have been
constructed to decode BC, the majority of them were built based on a single gene list. For
example, van de Vijver et al. (2002) established a 70-gene prognosis profile to classify 295 BC
patients, which is a powerful predictor for monitoring the prognosis of young BC patients. Tekpli
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et al. (2019) identified clinically relevant immune clusters by
integrating 15 BC cohorts, and discovered that patients with pro-
tumorigenic immune infiltration were associated with poor
prognosis. PAM50 (Parker et al., 2009) gene signature is a
well-known molecular subtyping signature for BC, which
could classify the BC into five molecular intrinsic subtypes:
Normal-like, Basal-like, HER2+, Luminal A, and Luminal B.
These efforts have helped us gain a deeper understanding of
BC. Nevertheless, studies have found that due to the tumor
heterogeneity and sequencing noise, gene-based signatures
were highly unstable and the identified biomarkers were
dramatically affected by the selection of training datasets
(Michiels et al., 2005; Domany, 2014). In recent years many
researchers indicated pathways could be helpful to extract more
stable and interpretable features for risk prediction. Efforts have
been made to decode cancer at levels of predefined pathways
available in biological databases, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2016), Reactome
(Fabregat et al., 2018), and Gene-Set Enrichment Analysis
(GSEA) (He et al., 2018). However, most existing pathways
are general rather than disease-specific, and disease
progression can only be partially affected by them. For
pathway pairs with many common genes, we call it crosstalk.
Taking the impact of overlapping genes on the pathway activity
score (PAS) quantification of the two pathways into
consideration can help identify disease-related features.
Although it is intuitively believed that pathways will influence
each other, especially when genes are shared, the existence of this
phenomenon has not been studied in PAS estimation. And few
studies have explored the PAS in cancer with crosstalk
accommodated among well-established pathways to identify
cancer-specific sub-pathways that could be used to predict the
prognosis of cancer patients. Therefore, subtyping patients based
on PAS and pathway crosstalk analysis is essential to promote
personalized medicine.

In this study, we constructed a novel classifier reflecting the
overall survival risk of BC based on survival-related pathway
crosstalk analysis. We calculated the PAS for each pathway
obtained from KEGG and GO resources based on the
expression matrix. And then investigated the influence of
crosstalk between these selected pathways on different cohorts
to select the most critical 100 sub-pathways among all cohorts. we
further conducted a K-means clustering analysis to cluster the
patients into G1 (moderate) and G2 (aggressive) subgroups.
Internal and external dataset exhibits high consistency with
the training dataset.

MATERIALS AND METHODS

Data Source
We collected BC gene expression profiles from TCGA and GEO
datasets, and the dataset with less than 20 samples or without
overall survival information was excluded from our selection.
TCGA mRNA expression data (level 3) and clinical features were
downloaded from the UCSC Xena webserver (https://
xenabrowser.net/datapages), while GSE16446, GSE42568,

GSE7390, GSE20711, GSE1456A, GSE1456B and GSE20685
microarray data and relevant clinical information were
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/gds/). After removing normal and non-survival
information samples, we finally obtained 1,090 (TCGA), 107
(GSE16446), 104 (GSE42568), 198 (GSE7390), 88 (GSE20711),
159 (GSE1456A), 159 (GSE1456B) and 327 (GSE20685) BC
samples for each dataset.

Pathway Activity Score
The pathway activity score (PAS) for each dataset was calculated
based on the method proposed by Bhandari et al. (Bhandari et al.,
2019).We downloaded all pathways from the gene ontology (GO)
database (http://geneontology.org/) and generated a new mRNA
expression matrix that contains only genes that exist in it for each
pathway. After that, for each gene, based on its expression level,
we classified the tumors into two subgroups, the samples in the
higher group were scored +1, while the others were scored −1.
Finally, we averaged all gene scores in this pathway as the
pathway activity score for each tumor sample. A higher PAS
indicates a higher pathway activity in the sample, and otherwise, a
lower score means lower activity in the sample.

Selection of Survival-Related
Sub-Pathways
Based on PASs and survival information, we calculated the log-
rank p-value for each pathway by regression analysis. The
pathways were then ranked based on the log-rank p-value. To
minimize the false positive rate, we used the common significant
pathways of these three large breast cancer cohorts, instead of
using any single data set. The combined rank of each pathway was
determined by the sure independence screening (SIS) method.
We further selected the top n pathways for pathway crosstalk
analysis. The threshold n was set to 100, which is much bigger
than N/log(N), where N is the sample size of each cohort.

Different pathways often share some of the same genes, which
can lead to crosstalk in the prognostic associations of different
pathways. Considering the influence of overlapping genes on the
PAS quantification of the two pathways can help identify cancer-
related features. We further identified the crosstalk among the
100 selected survival-related pathways to define sub-pathways
related to survival. The crosstalk between two pathways with at
least three genes in common could be classified into three types.
The overlapped genes between pathway A and pathway B could
be defined as PA∩PB, while the unique genes that specifically exist
in pathway A or pathway B were defined as PA–(PA∩PB) and
PB–(PA∩PB). Based on this classifier, each pathway pair could
generate three sub-pathways.

To make sure each sub-pathway contains enough genes for
further analysis, we obtained sub-pathways that consist of at least
three genes. The Cox-PHmodel was used to calculate the survival
risk p-value based on the recalculated PAS for each sub-pathway.
After Bonferroni correction, we identified critical survival-related
pathways and sub-pathways (FDR p-value < 0.01) for each
dataset, and the overlapped pathways were finally adopted for
further modeling.
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Model Construction and Evaluation
With the pathways generated above, we constructed a pathway
activity matrix with the row names are sub-pathways and the
column names are sample IDs for each dataset. We performed
consensus clustering with the pathway features acquired above to
classify the TCGA samples and obtained the best cluster number
as 2 based on three metrics, including C-index, Brier score, and
log-rank p-value to redefine the samples as G1 and G2 subgroups.
To predict these two subgroups for other datasets, we used several
machine learning methods, including SVM, Adaboost, and
Gaussian, to build a prediction model and obtained the best
performance based on the pathway activity matrix. The
robustness of the model was evaluated in the TCGA testing
dataset and several external individual GEO datasets. We
further built a classification model using several machine
learning methods, including SVM, Adaboost, and Gaussian,
based on these labels. We used the grid search to slightly turn
the hyperparameters of the classifier. In the cross-validation
procedure, TCGA samples were divided into training and
testing datasets in a 4:1 ratio, and the training dataset was
used to perform 10-fold cross-validation. To predict the GEO
dataset, we used all TCGA samples to build the
classification model.

We then compared three metrics, including C-index, Brier
score, and log-rank p-value, to evaluate the model’s performance.
These metrics can quantify the proportion of patient pairs in a
cohort whose risk prediction is highly consistent with survival
outcomes. Usually, a higher C-index indicates more precise
prediction performance, and 1 means perfect prediction, while
0.5 means the prediction performance is similar to random
prediction. To calculate the C-index, we built a Cox-PH model
based on the clustering labels and the patient’s survival
information in the TCGA training dataset and predicted the
survival rate in the testing dataset, which was calculated by the R
“survcomp” package. Brier score reflects the mean difference
between observed and predicted survival after a certain period in
survival analysis, and a lower score means good performance.
Log-rank p-value was calculated by the R “survival” package to
show the survival difference between the two groups, and a lower
score means a more significant survival difference.

Survival Analysis
The log-rank test compares the survival difference of two groups
at each observed event time was performed by R “survival”
package. Kaplan-Meier analysis was applied to obtain a
survival-curve plot of BRCA subtypes. Multivariate Cox
regression analysis determined the independent role of this
newly established predictor. Besides, we adopted Fisher’s exact
test to compare the census gene mutation differences between G2
and G1 subgroups in the TCGA cohort. We also compared the
distributions of G2 and G1 in different clinicopathological
features, such as tumor stage, new tumor event, and sex, by
using Fisher exact tests.

We used the “DESeq2” R package (Love et al., 2014) to real the
differential expressed genes between G2 and G1 subgroup; the
significant DEGs were identified as |LogFoldChange| > 1 and false
discovery rate (FDR) < 0.05.

Gene Set Enrichment Analysis
GSEA analysis was used to compare the pathway activity
difference between G2 and G1, in which the R
“ClusterProfier” package was performed. We adopted Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways to
perform GSEA analysis and the top 20 significant pathways
were displayed.

Mutation Analysis
The R “maftools” package was utilized to analyze and visualize the
mutation data. The mutation data were compared between one
group and the other groups using the chi-square test. A p-value of
less than 0.05 was considered significant.

RESULTS

Identification of Overall Survival Risk
Subtypes in BC
We obtained seven BC datasets (TCGA, GSE1456A, GSE1456B,
GSE7390, GSE16446, GSE20685, GSE20711, and GSE42568)
gene expression profiles and available clinical survival
information from the TCGA and GEO databases. After
calculating the PAS for each pathway obtained from KEGG
and GO resources and selecting the survival-related pathways,
we investigated the influence of crosstalk between these selected
pathways on different cohorts, and then the most critical 100 sub-
pathways among all cohorts were identified (Supplementary
Table S1). K-means clustering analysis was used to divide the
TCGA patients into two subgroups, defined as group 1 (G1,
moderate) and group 2 (G2, aggressive) (Supplementary Figure
S1A, and Supplementary Table S2). Notably, patients from the
G2 subgroup show significantly worse clinical outcomes (overall
survival and relapse-free survival) compared to the G1 subgroup
(Supplementary Figures S1B,C; p � 0.0053 and p � 0.0031,
respectively; log-rank test). We further built a classifier based on
the TCGA training dataset with the label defined by k-means
clustering analysis (Materials and Methods).

Evaluation of the Performance
To evaluate the robustness of OS risk prediction of the model, we
tested the model performance on the TCGA testing dataset and
several external GEO datasets, including GSE1456A, GSE7390,
GSE16446, GSE20685, GSE20711, and GSE42568. As shown in
Figure 1 and Table 1, the model was stable and exhibited
excellent classification capability, indicated by C-index and
log-rank p-values between G2 and G1. The TCGA test cohort
generated a high C-index (0.661), low Brier score (0.179), and
significant average log-rank p-value (p � 0.00123) on survival
difference. In different datasets, our classifier can significantly
divide the samples into a good prognostic group and a poor
prognostic group, which suggested that the newly developed
classifier is able to universally predict the overall survival
outcomes for patients with BC.

In order to compare the risk prediction capabilities of our
predictor with some other clinical information, we performed
univariate cox regression analysis for each clinical information
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(including age, tumor stage, and PAM50 subtyping) in the TCGA
dataset as well as the external validation datasets. As shown in
Figure 2, our classifier has a more general prognostic ability than

other clinical information (p < 0.05 in all datasets). We further
introduced several published transcriptomic-based predictors as
previous study (Lee et al., 2021), including the proliferation index

FIGURE 1 | Kaplan-Meier analysis to determine the survival differences between group 2 (G2) and group 1 (G1).

TABLE 1 | Cross-validation based performance robustness of classifier on TCGA training and testing cohorts.

Cohorts Omics type Samples C-index Brier score Log-rank p

TCGA_test RNA-Seq 218 0.661 0.179 1.23E-03
GSE1456A Microarray 159 0.600 0.122 3.35E-03
GSE1456B Microarray 159 0.599 0.121 6.78E-03
GSE16446 Microarray 107 0.646 0.112 4.30E-03
GSE20685 Microarray 327 0.579 0.153 3.96E-03
GSE20711 Microarray 88 0.656 0.189 1.49E-03
GSE42568 Microarray 104 0.679 0.195 6.27E-05
GSE7390 Microarray 198 0.597 0.180 1.03E-02

TCGA, The Cancer Genome Atlas.
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(Whitfield et al., 2006), interferon-γ (IFNγ) signature score
(Ayers et al., 2017) as well as cytolytic activity score (Rooney
et al., 2015), and performed amultivariate Cox regression analysis
with age, tumor stage, and our classifier (Supplementary Figure
S2). In this analysis, the proliferation index and the IFNγ
signature score were estimated as ssGSEA score (Yi et al.,
2020a) of each gene signature, respectively, and the cytolytic
activity score was calculated as the mean expression level of
GZMA and PRF1 (Rooney et al., 2015). As shown in

Supplementary Figure S2, the proliferation index and IFNy
signature score show higher predictive power (hizard ratios
were 2.13 and 0.27, respectively), but also have larger
confidence intervals and p-values, which suggesting that they
cannot be used as independent prognostic factors of BRCA.
Reassuringly, our classifier had a more stable hizard ratioa
near statistically significant p-value. In addition, we also test
the risk prediction performance in different subgroups of age
and tumor stage (Supplementary Figure S3). This result suggests

FIGURE 2 | Univariate Cox analysis of the classifier as well as regular clinical classification (Age, PAM50 and tumor stage) in TCGA and other extermal validation
cohorts.

FIGURE 3 | Census mutation landscape between group 2 (G2) and group 1 (G1). Only cancer census genes in the COSMIC database are shown in the plot. The
significance of the difference in gene mutation frequency between the two groups is shown in the barplot on the right (fisher’s exact test).
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that our classifier can be used essentially for the typing of different
clinical subgroups, although in the low-age group and low-level
group of TCGA the p-values did not reach significance.

Association Between Different Survival
Subtypes and Genomic Feature
We found that the mutation rates of PI3KCA and CDH1 were
significantly higher in the G1 group than G2 group (PI3KCA:
OR � 0.655, 95%CI: 0.471–0.907, p � 0.00951; CDH1: OR �
0.389, 95%CI: 0.220–0.660, p � 0.000195, Figure 3, and
Supplementary Table S3, Fisher’s exact test). Other
significant differentially mutated genes between the two
groups, including ATR, ALK, TBX3, AKAP9, TPR, KDM6A,
CREBBP, AMER1, CRNKL1, TRIM24, ZNF429, AFF3,
IGF2BP2, and LIFR (Supplementary Table S3, all p < 0.05).
No significant tumor mutation burden (TMB) level difference
was found between G1 and G2 subgroups (Supplementary
Figure S4). PI3KCA and CDH1 are two frequently mutated
genes in many cancers, including breast cancer, gastric cancer,
colorectal carcinoma, and head and neck squamous cell
carcinoma (Hansford et al., 2015; Millis et al., 2016; Zhang
et al., 2017; An et al., 2018). However, the association of
PIK3CA mutation and prognosis has not been clarified

clearly, PI3KCA mutation can be associated with a better
prognosis (Barbareschi et al., 2007; Maruyama et al., 2007;
Pérez-Tenorio et al., 2007; Kalinsky et al., 2009) or a worse
prognosis (Li et al., 2006; Lerma et al., 2008). In some studies,
PIK3CA mutation even has no obvious relationship with the
prognosis (Saal et al., 2005; Lai et al., 2008; Stemke-Hale et al.,
2008; Michelucci et al., 2009; Loi et al., 2010; Boyault et al.,
2012). A similar phenomenon was found for CDH1 mutation
as well (Corso et al., 2018).

We then performed differential expression analysis between
G2 and G1 subgroups, and identified 290 upregulated and 824
downregulated genes (|log2fold change| > 1 and FDR p-value >
0.05) (Figures 4A,B, and Supplementary Table S4) based on the
TCGA cohort. KEGG pathway analysis indicated that these
upregulated genes were mostly enriched in neuroactive
ligand−receptor interaction, cholinergic synapse and estrogen
signaling pathways (Figure 4C). The downregulated genes
were mostly enriched in immune-related pathways, such as
cytokine−cytokine receptor interaction, hematopoietic cell
lineage, graft−versus−host disease, and Th17 cell
differentiation (Figure 4D). These results prompted that the
G1 subgroup might be immune activated subtype, which could
be associated with its better overall survival. We also tested the
correlations between the two survival subtypes (G2 and G1) and

FIGURE 4 | Analysis of differentially expressed genes and their corresponding pathways. (A)Gene expression differences between group 2 (G2) and group 1 (G1).
(B) PCA analysis shows the clustering results of group 2 (G2) and group 1 (G1). (C) and (D) KEGG pathway enrichment analysis for the up- (up panel) and down-
regulated (down panel) genes between G2 and G1 subgroups.
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clinicopathological characteristics from the TCGA cohort and
found that no significant differences were revealed in age, sex,
tumor stage, metastasis coded, estrogen receptor status,
progesterone receptor status, and histological type subgroups,
instead of PAM50 subtype (Supplementary Figure S5,
Supplementary Table S5).

We then performed GSEA analysis to compare the G2 and G1
subgroups, aiming to identify critical pathways that displayed
different activities between the G1 and G2 subgroups
(Supplementary Figure S6, Supplementary Tables S6–S8).
Hallmark pathway enrichment analysis showed that immune-
related pathways including the inflammatory response, allograft
rejection, interferon-gamma response and TNFA-signaling via

NFκB were enriched in the G1 subgroup, while metabolic-related
pathways such as oxidative phosphorylation signaling were
activated in the G2 subgroup (Supplementary Table S6).
Pathway enrichment analysis indicated that the differences
between these two groups were concentrated in the KEGG
pathways of “Graft vs. host disease”, “primary
immunodeficiency”, and “allograft rejection” (Supplementary
Table S7) and Reactome pathways related to co-stimulation
by the CD28 family, generation of second messenger
molecules, and cytokine signaling in the immune system
(Supplementary Table S8). Previous studies have proved that
metabolic pathway activities like oxidative phosphorylation
signaling were negatively correlated with immune infiltration

FIGURE 5 | Tumor microenvironment differences between group 2 (G2) and group 1 (G1) subgroups. (A) Comparison of each immune cell component between
G1 and G2. (B)Comparison of stroma score between G1 and G2. (C)Comparison of immune score between G1 and G2. (D)Comparison of ESTIMATE score between
G1 and G2.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 6897157

Liu et al. Pathway-Based Biomarkers for Breast Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


and contributed to a worse prognosis in TNBC (Gong et al.,
2021), which is consistent with our results.

Comparison of Tumor Microenvironment
Between G2 and G1
We further employed the CIBERSORT algorithm to investigate the
distributions of infiltrated immune cells between the G2 and G1
subgroups (Supplementary Figure S7). The result revealed that
significant differences were obtained between two groups in
CD8+T cells, CD4+T memory cells (resting), CD4+T memory
(activated), γδ T cells, Macrophages M0, Macrophages M1,
Macrophages M2, Dendritic cells (resting), and Mast cells (resting)
(Figure 5A). Among macrophages, Macrophages M1 accounts for a
higher proportion of the G1 subgroup, while theG2 subgroup consists
of a higher proportion of Macrophages M2. Macrophages M2 was
found to be dominant in BC and associated with poor clinical
outcomes of BC (Bao et al., 2021), which could be the reason that
the G2 subgroup patients have a worse overall survival.

Considering that the tumor tissue has tumor cells, stromal
cells and immune cells, we measured stromal score and immune
score based on specific gene expression signature to represent the
level of immune infiltration and stroma infiltration of each tumor
following the previous reported method-ESTIMATE (Yoshihara
et al., 2013). Also, an ESTIMATE score also calculated which
reflects the overall level of both immune infiltration and stromal
infiltration. As shown in Figures 5B–D, G1 presented a higher
stromal score, immune score and ESTIMATE score compared
with G2. These results consistent with the previous definition that
the G1 subgroup might be immune activated subtype, there was
abundant crosstalk in the tumor microenvironment of this type of
tumor, which could benefit from immunotherapy.

DISCUSSION

In the era of personalized medicine, there is an urgent need for a
molecular marker-based approach to predict the prognostic outcomes
of cancer patients accurately. Previous studies have reported many
gene-based signatures to subtype BC (van de Vijver et al., 2002; Pu
et al., 2020) (Tekpli et al., 2019) (Parker et al., 2009). Here, we
constructed an overall survival risk model to classify samples into two
subgroups. Internal and external datasets validation exhibits high
consistency with the training dataset. Significant differences were
found between the G2 and G1 subgroups including pathway
activity, gene mutation, immune cell infiltration levels. In
particular, immune cells/pathway’s activities were significantly
negatively associated with BC patient’s outcomes.

In order to test whether our classifier is applicable to all ages and
tumor grades, we performed prognostic association analysis for
different clinical subgroups. For a data set with sufficient samples
(more than 20 samples for each subgroup), our classifier can basically
distinguish patients with different overall survival periods, although
the high-age group and the low-stage group of TCGA have not
reached statistical significance. Although the p-value of the high-age
group of TCGA does not reach statistical significance (0.076), a clear
trend can still be seen. However, it is challenging to explain why our

classifier is unable to distinguish OS in the low-stage samples of
TCGA with prognostic significance, though it performed well in the
other two verification sets (Supplementary Figures S3M,O).

We found a significant mutation rate difference of PI3KCA
and CDH1 gene between the G1 and G2 subgroups. It is not yet
clear whether PIK3CA mutation is associated with clinical
outcome, PI3KCA mutation can be associated with a better
prognosis (Barbareschi et al., 2007; Maruyama et al., 2007;
Pérez-Tenorio et al., 2007; Kalinsky et al., 2009) or a worse
prognosis (Li et al., 2006; Lerma et al., 2008). In some studies,
PIK3CA mutation even has no obvious relationship with the
prognosis (Saal et al., 2005; Lai et al., 2008; Stemke-Hale et al.,
2008; Michelucci et al., 2009; Loi et al., 2010; Boyault et al., 2012).
A similar phenomenon was found for CDH1 mutation as well
(Corso et al., 2018). Our results suggested that mutations of
PI3KCA are positively associated with a favorable prognosis, but
future studies are needed to investigate the potential mechanisms.

We also found that the G1 subgroup displayed significant
higher level of immune infiltration, stromal infiltration level than
the G2 subgroup. As reported, Th1 and cytotoxic types of
memory T cells and CD8+ T cells can predict better prognosis
in diverse cancers (Wei et al., 2018; Yi et al., 2020b; St. Paul and
Ohashi, 2020). Several studies showed that the existence of
mature antigen-presenting dendritic cells (DCs) could infiltrate
colon cancer and theoretically increase immune response, which
are correlated with improved survival as well (Schwaab et al.,
2001). Other immune cells such as macrophages always produce
plenty of factors influencing tumor cell’s survival and growth,
chemotaxis, cell invasion, angiogenesis, or repress T cell
responses (Pagès et al., 2010). Therefore, a high rate of tumor-
associated macrophages typically serves as a poor prognostic
factor. It is valuable to predict the efficacy of specific
therapies, especially immunotherapy. For example, Peng et al.
recently developed a computational method named TIDE to
accurately predict immunotherapy outcomes of melanoma
(Jiang et al., 2018). The level of immune infiltration was
significantly associated with the efficacy of immunotherapy
(Galon and Bruni, 2019). The significant immunological
differences between G1 and G2 suggest that our classifier may
be predictive of immunotherapy efficacy. We will collect relevant
data resources for more in-depth study in our future work.
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