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Characterization of genetic variations that are associated with gene expression levels is
essential to understand cellular mechanisms that underline human complex traits.
Expression quantitative trait loci (eQTL) mapping attempts to identify genetic variants,
such as single nucleotide polymorphisms (SNPs), that affect the expression of one or more
genes. With the availability of a large volume of gene expression data, it is necessary and
important to develop fast and efficient statistical and computational methods to perform
eQTL mapping for such large scale data. In this paper, we proposed a new method, the
low rank penalized regression method (LORSEN), for eQTL mapping. We evaluated and
compared the performance of LORSEN with two existing methods for eQTL mapping
using extensive simulations as well as real data from the HapMap3 project. Simulation
studies showed that our method outperformed two commonly used methods for eQTL
mapping, LORS and FastLORS, in many scenarios in terms of area under the curve (AUC).
We illustrated the usefulness of our method by applying it to SNP variants data and gene
expression levels on four chromosomes from the HapMap3 Project.
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1 INTRODUCTION

With rapid advancements in sequencing technologies and high-throughput technologies, a large
number of single nucleotide polymorphism (SNP) data and gene expression data have become
available. This allows us to investigate the associations between SNP genotypes and gene expression
levels. Expression quantitative trait loci (eQTLs) are those genetic variants that can explain variation
in gene expression levels and can help to elucidate the underlying genetic mechanisms of human
complex traits (Albert and Kruglyak, 2015). eQTL mapping aims to identify eQTLs associated with
genes of interest (Hu et al., 2015; Banerjee et al., 2021). In general, eQTLs are classified into two types:
cis-eQTLs (or local eQTLs) and trans-eQTLs (or distant eQTLs) (Cookson et al., 2009). cis-eQTLs
refer to the genetic variants that functionally act on local genes and are physically located close to the
target genes. trans-eQTLs are those genetic variants that functionally act on distant genes residing on
the same or different chromosome and are physically located far from the target genes. It is worth
mentioning that trans-eQTLs account for a large proportion of heritability of gene expression levels,
though trans effects are usually weaker than cis effects in humans (Cookson et al., 2009).

In fact, gene expression levels observed are not only regulated by genetic variants but also
influenced by non-genetic factors which are known or hidden, for example, batch effects. Therefore,
in eQTL mapping, how to account for confounding factors is an important issue and can influence
the detection power of eQTL mapping. Up to now, a number of methods have been proposed to

Edited by:
Qi Yan,

Columbia University, United States

Reviewed by:
Rong Zhang,

Amgen , United States
Chi-Yang Chiu,

University of Tennessee Health
Science Center (UTHSC),

United States

*Correspondence:
Kui Zhang

kuiz@mtu.edu

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 04 April 2021
Accepted: 08 October 2021

Published: 17 November 2021

Citation:
Gao C, Wei H and Zhang K (2021)
LORSEN: Fast and Efficient eQTL

Mapping With Low Rank
Penalized Regression.

Front. Genet. 12:690926.
doi: 10.3389/fgene.2021.690926

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 6909261

METHODS
published: 17 November 2021

doi: 10.3389/fgene.2021.690926

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.690926&domain=pdf&date_stamp=2021-11-17
https://www.frontiersin.org/articles/10.3389/fgene.2021.690926/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.690926/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.690926/full
http://creativecommons.org/licenses/by/4.0/
mailto:kuiz@mtu.edu
https://doi.org/10.3389/fgene.2021.690926
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.690926


account for confounding factors in eQTL mapping, for example,
PANAMA (Fusi et al., 2012), PEER (Stegle et al., 2010), LORS
(Yang et al., 2013), HEFT (Gao et al., 2014), LMM-EH-PS
(Listgarten et al., 2010) and ECCO (Yue et al., 2020). Another
challenge in eQTL mapping is that the number of SNPs involved
is usually very large (Yang et al., 2013). This not only results in
heavy computational burden for estimating model parameters
but also generally results in reduced detection power if all SNPs
are included in eQTL mapping. This is because the signal-to-
noise ratio (SNR) is very low, meaning only a very small portion
of SNPs that are actually associated with gene expression levels.
To overcome this problem, a number of SNP screening
procedures (Wang et al., 2011; Yang et al., 2013; Jeng et al.,
2020) and variable selection techniques (Fan and Lv, 2008) that
aim to reduce the number of SNPs and only keep informative
SNPs in eQTL mapping have been developed. More importantly,
a number of methods based on the penalized regression have been
developed to model such sparsity of eQTLs (Lee and Xing, 2012;
Yang et al., 2013; Cheng et al., 2014; Jeng et al., 2020).

LORS, a method based on the low rank sparse regression, was
proposed for eQTL mapping in (Yang et al., 2013). LORS is based
on a linear model with gene expression levels as response
variables and SNP genotypes as predictors. To model the
sparsity of regression coefficients, LORS poses the L1 penalty
on the regression coefficient matrix. In addition, LORS includes
one unknown matrix with the nuclear norm penalty to account
for variations caused by non-genetic factors. Yang et al. (2013)
applied the coordinate descent algorithm to optimize the
objective function and estimate the model parameters. A SNP
screening method, called LORS-Screening, was also developed to
reduce the number of SNPs involved in the subsequent joint
modeling, thus reduce the computational burden greatly. Similar
to LORS, FastLORS (Jeng et al., 2020) employs the same low rank
sparse regression model that is used in LORS. Different from
LORS, FastLORS uses generic proximal gradient algorithm to
optimize the objective function and estimate the model
parameters. Moreover, Jeng et al. (2020) proposed a SNP
screening method based on the Higher Criticism (HC)
statistic, called HC-Screening.

To improve the detection power of eQTL mapping, a number
of methods have been developed to incorporate the structure
information from SNP variants data and gene expression levels,
for example, clustering based on gene expression levels
(Kendziorski et al., 2006; Chun and Keles, 2009) and gene
regulatory networks (Rakitsch and Stegle, 2016), into eQTL
mapping. A number of studies have shown that such structure
information from SNP variants data and gene expression levels
can be effectively used in penalized regression to boost the
detection power of eQTL mapping (Chen et al., 2012; Kim
and Xing, 2012, 2009). For example, the graph-regularized
dual lasso (GDL) proposed by (Cheng et al., 2014) can
simultaneously integrate the correlation structures among
SNPs and gene expression levels. Through extensive
experimental evaluations, Cheng et al. (2014) showed that
GDL significantly outperformed the existing method for eQTL
mapping. Similar to GDL, the graph-guided fused lasso (GFlasso)
proposed by (Lee and Xing, 2012) can also consider the structure

of the genetic variants and the structure of the gene expression
levels. As a penalized regression method, GFlasso also inherits the
benefits from the group lasso. Lee and Xing (2012) showed that
GFlasso was able to detect weak association signals between the
genetic variants and the gene expression levels.

However, there are some drawbacks for most of the
aforementioned methods. First, if two SNPs are highly
correlated with each other, and one SNP is associated with
some genes, but the other SNP is not associated with them,
we should not expect that these two SNPs have similar
coefficients for those genes. Similarly, if some SNPs are
classified into one group, we should not expect that the SNPs
within the same group have similar coefficients for common
genes. Second, the group structures of SNP data and gene
expression data are usually identified by performing clustering
on the data, however, clustering is an unsupervised leaning
approach, the number of clusters is usually artificially
determined. When we use the resulting clusters of SNPs and
gene expressions to design the penalty term, it may lead to loss of
detection power and even spurious associations. Third,
complicated design of penalty term in penalized regression
modeling can result in untractable computational bottleneck,
especially when dealing with a large volume of data.

To overcome such limitations of existing methods for eQTL
mapping, we proposed a novel method, LOw Rank Sparse
regression with Elastic Net penalty, abbreviated as LORSEN.
Different from LORS (Yang et al., 2013) and FastLORS (Jeng
et al., 2020), we applied the Elastic Net penalty to the association
coefficients instead of the L1 penalty in LORSEN. In addition, we
used the low rank approximation to account for non-genetic
factors in LORSEN (Yang et al., 2013). There are several
advantages to use the Elastic Net penalty instead of the L1
penalty (Tibshirani, 1996). First, when the number of SNPs p
is much larger than the sample size n, theoretically, the methods
based on the L1 penalty can only yield at most n non-zero
coefficients. This can lead to the substantial loss of detection
power in eQTLmapping since the number of samples is generally
much smaller than the number of eQTLs in gene expression
studies. Second, when several eQTLs are in linkage disequilibrium
(LD), the methods based on the L1 penalty can only select one of
them. In theory, the Elastic Net penalty can overcome these two
drawbacks. For the estimation of the model parameters in
LORSEN, we developed an efficient optimization algorithm
based on the proximal gradient method (Parikh and Boyd,
2014). Our algorithm allows us to perform the eQTL mapping
for a large number of SNPs and genes. We evaluated and
compared the performance of LORSEN with LORS and
FastLORS using extensive simulation studies as well as the
HapMap3 data.

2 MATERIAL AND METHODS

2.1 Model
We assume that the genotypes for p SNPs and the gene expression
levels for q genes over n samples are collected. Let X denote the
n × pmatrix of SNP genotypes coded in an additive manner, and
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Y denote the n × qmatrix of gene expression levels. To model the
association between SNPs and gene expressions, we can use the
following multivariate linear model as proposed in (Yang et al.,
2013):

Y � XB + L + 1μT + e, (1)

where B is a p × q matrix for the regression coefficients, 1 is a
n-dimensional all-ones vector, μ is a q-dimensional vector for
the intercepts in the regression model, e is a n × q matrix for
the error terms and each element in e has a normal
distribution with zero mean and variance σ2, all eij are
independent, L is a n × q matrix which is introduced to
account for variations caused by non-genetic factors.

For the convenience of description, we first introduce the
following notations used in this paper. For a n-dimensional vector
v with the elements vi(i � 1, . . ., n): the L1 norm of v is defined as
‖v‖1 � Σn

i�1|vi| (the sum of absolute values of the elements) and
the L2 norm (also called the Euclidean norm) of v is defined as
‖v‖2 �

�����
Σn
i�1v2i

√
(the squared root of the sum of squares of the

elements), respectively. For a m × n matrix M with the elements
Mij(i � 1, . . .,m; j � 1, . . ., n), the Frobenius norm ofM is defined
as ‖M‖F �

����������
Σm
i�1Σn

j�1M
2
ij

√
(the squared root of the sum of squares

of the elements); the nuclear norm ‖M‖* � Σr
i�1σ i, where σ1, . . .,

σr are the singular values of M and r is the rank of M; and the L1
norm of M is defined as ‖M‖1 � Σm

i�1Σn
j�1|Mij| (the sum of

absolute values of the elements).

In this paper, we follow the same sparsity assumptions used in
(Yang et al., 2013). First, we assume that there are only a small
number of non-genetic factors that influence the gene expression
levels globally, not locally. Second, we assume that there are only a
small fraction of SNPs that influence the gene expression levels.
This assumption implies that the regression coefficient matrix B is
sparse. Yang et al. (2013) proposed the following LORS procedure
to estimate B, L, μ by solving the optimization problem

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ‖B‖1, (2)

where ρ and λ are regularization (tuning) parameters that
control the rank of L and the sparsity of B, respectively.
When L and μ are fixed, the optimization problem becomes
a least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996) problem with respect to B. As pointed
out in (Zou and Hastie, 2005), the Lasso has some
limitations that affect its usefulness. First, when n < p (the
number of samples is smaller than the number of SNPs), the
Lasso selects at most n SNPs. In the context of eQTL mapping,
there are usually a small number of samples available. Even
though the proportion of SNPs that are associated with the
gene expression levels is small, it is highly likely that the
number of SNPs associated with the gene expressions can
still be larger than the number of samples. In this case, the L1
penalty on B will fail to identify some SNPs that are associated
with the gene expressions. Second, the Lasso tends to select
only one variable among a group of highly correlated variables.
This can be problematic in eQTL mapping. For example, if
two SNPs are in high linkage disequilibrium and both of them

are associated with gene expressions, only one SNP will be
selected by the Lasso. Furthermore, if two SNPs are in high
linkage disequilibrium and only one of them is associated with
gene expressions, the selected SNP by the Lasso may not even
be associated with gene expressions.

The use of the Elastic Net penalty (Zou and Hastie, 2005)
instead of the L1 penalty on B can overcome the limitations of the
Lasso. Therefore, we propose the following optimization problem
to estimate B, L, μ:

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ1‖B‖1 + λ2

2
‖B‖2F, (3)

where ρ, λ1 and λ2 are non-negative tuning parameters. For real
data sets, it is quite possible that some entries in Y are unobserved
(missing). In such scenarios, the missing data will not be used in
(Eq. 3). As used in (Yang et al., 2013), we use Ω to index the
observed entries in Y. Specifically, Ω is a n × q matrix with the
entry

Ωij � 0, Yij missing
1, otherwise.

{ (4)

Then we define the projection of a matrix A onto Ω as
~A � PΩ(A) � Ω0A, where A has the same dimension as Ω
and0 represents Hadamard product, that is, ~Aij � Aij ×Ωij.
Based on the observed data, the optimization problem
becomes

min
B,L,μ

1
2
‖PΩ(Y −XB − L − 1μT)‖2F + ρ‖L‖* + λ1‖B‖1 + λ2

2
‖B‖2F.

(5)

2.2 Theory and Algorithm
To solve the optimization problem in (Eq. 5) efficiently, we
developed a fast and efficient algorithm based on proximal
gradient method (Parikh and Boyd, 2014).

We first describe the proximal gradient method for a general
optimization problem

min
x

f(x) � g(x) + h(x), (6)

where g(x) is a convex and differentiable function, h(x) is a closed
proper convex which means h(x) is a convex function, the
epigraph of h(x) is closed and h(x) < +∞ for at least one x
and h(x) > −∞ for every x. Furthermore, we assume that ∇g(x),
the gradient of g(x), is Lipschitz continuous with constant ℓ,
which implies that ∇2g(x)6ℓI. Two symmetric matrices of the
same dimensions A and B have the relationship A6B, if B − A is
positive semidefinite. Then we have

f(x) � g(x) + h(x)#g(x0) + 〈∇g(x0), x − x0〉 + 1
2t
‖x − x0‖2

+ h(x), t ∈ (0, 1
ℓ
], (7)

where x0 is an arbitrary point in the domain of f(x) and 〈·, ·〉
represents the inner product of two vectors. Instead of using
the optimization problem (Eq. 6), we focus on minimizing an
upper bound of the objective function, that is,
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min
x

g(x0) + 〈∇g(x0), x − x0〉 + 1
2t
‖x − x0‖2

+ h(x), t ∈ (0, 1
ℓ
], (8)

which can be interpreted as an application of majorization-
minimization algorithm (Parikh and Boyd, 2014). The
optimization problem in (Eq. 8) is equivalent to the
following optimization problem:

min
x

1
2t
‖x − (x0 − t∇g(x0))‖2 + h(x). (9)

Problem (Eq. 9) can be solved with an iterative procedure:
given the value of x at the k-th iteration, i.e., xk, the value of x at
the k + 1-th iteration, xk+1 can be updated by the following
formula

xk+1 � argmin
x

1
2t
‖x − (xk − t∇g(xk))‖2 + h(x)

� Proxt,h(xk − t∇g(xk)),
where Prox(·) is called proximal operator. The iterative process
is repeated until the stopping criterion is satisfied or the
maximum number of iterations is reached.

To solve the optimization problem (Eq. 5), we adopted an
alternating optimization approach that is similar to the method
in (Yang et al., 2013). Note that in the following part, tL, tB, and
tμ are like t used in problem (Eq. 9) and correspond to the
variables L, B, and μ, respectively.

First, for fixed B and μ, (Eq. 5) becomes

min
L

1
2
‖Y −XB − 1μT − L‖2F + ρ‖L‖*. (10)

In the setting of optimization problem (Eq. 10), 12‖Y −XB −
1μT − L‖2F plays the role of g(x) and ρ‖L‖* plays the role of h(x) in
(Eq. 6). By Lemma 1 (Appendix A), at the k + 1-th iteration, we
have

Lk+1 � ProxtL,ρ‖·‖*(Lk − tL(XBk + 1μTk + Lk − Y))
� StLρ(Lk − tL(XBk + 1μTk + Lk − Y)),

where StLρ(·) is the singular value shrinkage operator (please
refer to the Appendix A), tL is the step size which can be
constant or be determined by backtracking line search.

Second, for fixed L and μ, then (Eq. 5) becomes

min
B

1
2
‖Y −XB − L − 1μT‖2F + λ1‖B‖1 + λ2

2
‖B‖2F, (11)

where tB is the step size which can be constant or be determined
by backtracking line search. By Lemmas 2 and 3 and Theorem 1
(Appendix A), we can update Bk+1 accordingly:

Ba
k+1 � Bk − tBX

T(XBk + 1μTk + Lk+1 − Y)
Bb
k+1 � ProxtB,λ1‖·‖1(Ba

k+1)
� sign(Ba

k+1)0(|Ba
k+1| − λ1J)+

Bk+1[, j] � ProxtB,λ2‖·‖2(Bb
k+1[, j])

� {1 − λ2
max{‖Bb

k+1[, j]‖2, λ2}
}Bb

k+1[, j], j � 1, 2, . . . , q,

Algorithm 1 | FISTA with constant step size.
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where J is a all-ones p × q matrix, B[, j] is the j-th column of
matrix B and is a p-dimensional vector, c+ � max{c, 0}, the
maximum of c and 0, |Ba

k+1|, sign(Ba
k+1), and (|Ba

k+1| − λ1J)+ are
all elementwise operations.

Third, for fixed L and B, the proximal gradient method reduces
to the gradient descent method with respect to μ because there is
no penalty on μ. At the k + 1-th iteration, we have

μk+1 � μk − tμ(XBk+1 + 1μTk + Lk+1 − Y)T1.
To accelerate the computational speed, we used the accelerated

proximal gradient method. Specifically, we applied the fast iterative
shrinkage-thresholding algorithm (FISTA) (Beck and Teboulle,
2009) which keeps the simplicity of the iterative shrinkage-
thresholding algorithms (ISTA) but has an improved rate
O(1/k2), where k indexes the iteration. In FISTA, the step
size can be constant or be determined by backtracking line
search. The algorithm to solve LORSEN with FISTA is
described in Algorithm 1. For simplicity, here, only the
detailed algorithm with the constant step size is described,
but the algorithm using the step size determined by
backtracking line search is also provided in our R program
(https://github.com/gaochengPRC/LORSEN).

2.3 Parameter Tuning
For parameter tuning, we mainly followed the idea described
in (Yang et al., 2013). Specifically, we divided the entries of Ω
into training entries and testing entries such that training
entries and testing entries include roughly the same number of
1’s. We define two matrices Ω1 and Ω2 such that they have the
same dimensions as Ω, Ω1 contains all training entries and Ω2

contains all testing entries. Furthermore, we have Ω �Ω1 + Ω2

and Ω1 0Ω2 � 0. For the consistency, we re-parameterized λ1
and λ2 as λ · α and λ · (1 − α), respectively. So the optimization
problem (Eq. 5) becomes

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ α‖B‖1 + 1 − α

2
‖B‖2F( ).

(12)

This form is the same as that in glmnet (Friedman et al., 2010).
Given the values of parameters (ρ, α, λ), we solve the following

optimization problem

min
B,L,μ

1
2
‖PΩ1(Y −XB − L − 1μT)‖2F + ρ‖L‖*

+ λ α‖B‖1 + 1 − α

2
‖B‖2F( ). (13)

The solutions are B(ρ, α, λ), L(ρ, α, λ) and μ(ρ, α, λ), then we
evaluate the parameters by calculating the prediction error

Err(ρ, α, λ) � 1
2
‖PΩ2(Y −XB(ρ, α, λ) − L(ρ, α, λ)

− 1μ(ρ, α, λ)T)‖2F. (14)

The grid search over three parameters may be too
computationally intensive. Therefore, we first found an optimal
value for ρ, ρ̂, which minimizes the prediction error as shown in

(Yang et al., 2013) by means of Lemmas 1 and 4 (Appendix A).
Please refer to (Yang et al., 2013) to find the details about how to find
the optimal value of ρ, ρ̂. Once the optimal value of ρ, ρ̂ is obtained,
we selected a value of α from a sequence sequentially, thereafter, we
performed one-dimensional grid search for λ for each α. Specifically,
we generated a sequence of λ values with length nλ decreasing from
λmax(ρ̂, α) to ϵλmax(ρ̂, α) on the log scale with equal space, where
λmax(ρ̂, α) is defined as the smallest λ such that B(ρ̂, α, λ(ρ̂, α)) is a
zero matrix. λmax(ρ̂, α) is derived as 1

α max
i�1,2,...,p max

j�1,2,...,q |〈Xi,Yj〉|
from coordinate-descent algorithm (Friedman et al., 2007),
where Xi is the i-th column of X, and Yj the j-th column of Y. In
our R program, we set ϵ � 0.02, nλ � 50 and Sαd(0.2, 0.4, 0.6,
0.8, 0.9). The optimal parameters were (ρ̂, α, λ̂(ρ̂, α)) that
minimize the prediction error. The optimal feasible
solutions of B, L, and μ were then obtained based on the set
of optimal tuning parameters.

2.4 Single Nucleotide Polymorphism
Ranking and Joint Modeling
The procedure to select the set of optimal tuning parameters is
computationally intensive. Therefore, as it is discussed in
(Yang et al., 2013), it may not be computationally tractable
to directly apply such method to the large-scale data sets that
contain a large number of gene expression levels and SNPs. A
commonly used strategy to reduce such computational burden
is to choose a subset of SNPs and then only use them in the
subsequent eQTL analysis. In this paper, we used and
evaluated two existing methods for the pre-selection of
informative SNPs: LORS-Screening (Yang et al., 2013) and
Higher Criticism Screening (HC-Screening) (Jeng et al., 2020).
For LORS-Screening, we first obtained the initial estimate of
βi’s by solving

min
βi ,L,μ

1
2
‖Y −Xiβ

T
i − L − 1μT‖2F + ρ‖L‖*, (15)

where Xi is the i-th column of X, βi is a q-dimensional vector for the
coefficient of the i-th SNP on q genes, i � 1, 2, . . ., p. For each gene,
we selected the top n SNPs in terms of the absolute values of
association coefficients, then we obtained the union of selected SNPs
for each gene as the final set of SNPs to be involved in the joint
modeling. For HC-Screening, we first obtained association
coefficients as above, then calculated the standardized estimates
of coefficients. For each SNP, the Higher Criticism (HC) statistic
(Donoho and Jin, 2004) is calculated based on the standardized

TABLE 1 | Simulation scenarios.

Chromosome #Causal SNPs Scenario Method Screening

Chr 1 60 weak-dense FastLORS LORS
200 strong-sparse LORSEN HC
400 LORS

Chr 1 + Chr 21 45 + 15 weak-dense FastLORS LORS
150 + 50 strong-sparse LORSEN HC
300 + 100 LORS
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estimates of coefficients. Then we selected the top n SNPs in terms of
the p-values of HC statistics.

2.5 Simulation Design
Our simulation is similar to that described in (Jeng et al., 2020).We
first downloaded the genotype data of Chromosome 1 and
Chromosome 21 for CEU samples from HapMap3, the third
phase of the International HapMap Project (https://www.
genome.gov/10001688/international-hapmap-project). CEU
samples refer to Utah residents with Northern and Western
European ancestry from the CEPH collection. After the quality-
control (please refer to Real Data Analysis section), the genotype
data of 13,815 SNPs of Chromosome 1 and 2,607 SNPs of
Chromosome 21 for n � 165 samples were retained in analysis.
To simulate gene expression levels for q � 200 genes over n � 165
samples, we first simulated non-genetic effects of k � 15 hidden
factors. We randomly generated nk random numbers fromN(0, 1)
to form a n × k matrix H, then let Σ � HHT. Uj’s were simulated
from N(0, 0.1*Σ), j � 1, 2, . . ., q and stacked by column to form a
n × qmatrixU. ej’s were simulated fromN(0, I) as random noise for
j-th gene expression and combined by column to form a n × q
random noise matrix e. Then the expression data of q genes over n
samples were simulated by Y � XB + U + e, where X is the n × p
genotype data matrix. We set the total number of SNPs p � 2000,
the number of causal SNPs as 60, 200, or 400. Each causal SNP
randomly influences m � 10 (or 50) genes. We simulated nonzero
genetic effects from a uniform distribution. For the “weak-dense”
scenario, each causal SNP affects m � 50 randomly selected genes
and the corresponding values in B were simulated from a uniform

distribution between 0.25 and 0.75. For the “strong-sparse”
scenario, each causal SNP affects m � 10 randomly selected
genes and the corresponding values in B were simulated from a
uniform distribution between 1.5 and 2. The different simulation
scenarios are summarized in Table 1.

3 RESULTS

3.1 Simulation Results
The number of selected SNPs and the number of selected causal
SNPs from two screening methods under different simulation
scenarios are summarized in Table 2. Several conclusions
emerge from Table 2. First, when the number of samples is
much smaller than the number of SNPs and the number of
causal SNPs is larger than the number of samples, HC-Screening
is seemingly not an appropriate screening tool. This is because
the number of causal SNPs retained after the HC-Screening is
much smaller than the actual number of causal SNPs, resulting
in possible power loss in subsequent analysis. Second, even
when the number of causal SNPs is smaller than the number of
samples, from Table 2, we still observed that the
LORS-Screening retains more causal SNPs than the HC-
Screening. Of course, the HC-Screening reduces much
computational burden especially when the number of
samples is much smaller than the number of SNPs.

The area under the curve (AUC) was used to compare the
performance between LORSEN and two existing methods, LORS
(Yang et al., 2013) and FastLORS (Jeng et al., 2020). For each

TABLE 2 | Results of the HC-Screening and the LORS-Screening with ten replicates for each simulation scenario.

Chromosome #Causal Scenario Screening Average
#Slected SNPs

Average
#Selected Causal SNPsSNPs

Chr 1 60 weak-dense LORS 1,017 43
HC 165 7

strong-sparse LORS 1,023 60
HC 165 9

200 weak-dense LORS 1,036 130
HC 165 20

strong-sparse LORS 1,095 199
HC 165 28

400 weak-dense LORS 1,045 237
HC 165 39

strong-sparse LORS 1,142 346
HC 165 44

Chr 1 + Chr 21 45 + 15 weak-dense LORS 1,044 46
HC 165 7

strong-sparse LORS 1,065 60
HC 165 10

150 + 50 weak-dense LORS 1,064 136
HC 165 20

strong-sparse LORS 1,123 199
HC 165 28

300 + 100 weak-dense LORS 1,064 244
HC 165 37

strong-sparse LORS 1,188 361
HC 165 44
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scenario, we repeated the simulation ten times.We considered the
joint modeling of multiple SNPs and multiple gene expression
levels with the SNP screening and without the SNP screening. The
results without the SNP screening before the eQTL mapping
under different simulation scenarios are presented in Tables 3, 4.

From Tables 3, 4, we can see that the average AUC of LORSEN is
uniformly larger than those of LORS and FastLORS in the weak-
dense scenarios across different number of causal SNPs no matter
the SNPs are from single chromosome (Chr 1) or two
chromosomes (Chr 1 + Chr 21). For the strong-sparse

TABLE 3 | The average AUC and 95% confidence interval without the SNP screening with ten replicates for each simulation scenario. SNPs are only from chromosome 1. For
each simulation scenario, the highest AUC is in bold.

#Causal SNPsScenario Method

60 200 400

weak-dense FastLORS 0.514 (0.511, 0.517) 0.582 (0.580, 0.584) 0.581 (0.580, 0.582)
LORSEN 0.651 (0.648, 0.654) 0.649 (0.647, 0.651) 0.630 (0.629, 0.631)
LORS 0.502 (0.499, 0.505) 0.514 (0.512, 0.516) 0.515 (0.514, 0.516)

strong-sparse FastLORS 0.762 (0.755, 0.769) 0.840 (0.837, 0.843) 0.810 (0.807, 0.813)
LORSEN 0.823 (0.817, 0.829) 0.834 (0.831, 0.837) 0.774 (0.771, 0.777)
LORS 0.824 (0.818, 0.830) 0.819 (0.815, 0.823) 0.754 (0.751, 0.757)

TABLE 4 | The average AUC and 95% confidence interval without the SNP screening with ten replicates for each simulation scenario. SNPs are from chromosome 1 and
chromosome 21. For each simulation scenario, the highest AUC is in bold.

#Causal SNPsScenario Method

60 200 400

weak-dense FastLORS 0.530 (0.527, 0.533) 0.567 (0.565, 0.569) 0.575 (0.574, 0.576)
LORSEN 0.658 (0.655, 0.661) 0.679 (0.677, 0.681) 0.625 (0.624, 0.626)
LORS 0.503 (0.500, 0.506) 0.510 (0.508, 0.512) 0.514 (0.513, 0.515)

strong-sparse FastLORS 0.774 (0.767, 0.781) 0.826 (0.822, 0.830) 0.813 (0.810, 0.816)
LORSEN 0.814 (0.807, 0.821) 0.810 (0.806, 0.814) 0.788 (0.785, 0.791)
LORS 0.813 (0.806, 0.820) 0.801 (0.797, 0.805) 0.756 (0.753, 0.759)

TABLE 5 | The average AUC and 95% confidence interval with the SNP screening with ten replicates for each simulation scenario. SNPs are only from chromosome 1. For
each simulation scenario, the highest AUC is in bold.

ScreeningScenario #Causal SNPs Method

HC LORS

weak-dense 60 FastLORS 0.514 (0.511, 0.517) 0.596 (0.593, 0.599)
LORSEN 0.515 (0.512, 0.518) 0.618 (0.615, 0.621)
LORS 0.503 (0.500, 0.506) 0.541 (0.538, 0.544)

200 FastLORS 0.512 (0.510, 0.514) 0.583 (0.581, 0.585)
LORSEN 0.511 (0.509, 0.513) 0.592 (0.590, 0.594)
LORS 0.502 (0.500, 0.504) 0.519 (0.517, 0.521)

400 FastLORS 0.510 (0.509, 0.511) 0.557 (0.556, 0.558)
LORSEN 0.509 (0.508, 0.510) 0.547 (0.546, 0.548)
LORS 0.502 (0.501, 0.503) 0.511 (0.510, 0.512)

strong-sparse 60 FastLORS 0.565 (0.557, 0.573) 0.900 (0.895, 0.905)
LORSEN 0.558 (0.550, 0.566) 0.903 (0.898, 0.908)
LORS 0.560 (0.552, 0.568) 0.897 (0.892, 0.902)

200 FastLORS 0.552 (0.548, 0.556) 0.894 (0.891, 0.897)
LORSEN 0.544 (0.540, 0.548) 0.894 (0.891, 0.897)
LORS 0.543 (0.539, 0.547) 0.874 (0.871, 0.877)

400 FastLORS 0.536 (0.533, 0.539) 0.797 (0.794, 0.800)
LORSEN 0.523 (0.520, 0.526) 0.782 (0.779, 0.785)
LORS 0.528 (0.525, 0.531) 0.738 (0.735, 0.741)
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scenarios, FastLORS achieves the relatively larger AUC than
LORS and LORSEN. For a fixed number of causal SNPs, each
method achieves the larger AUC value in the stong-sparse
scenario than in the weak-dense scenario. For each method
under each simulation scenario, the AUCs in Tables 3, 4 are
similar, implying that each of three methods has the similar
power to detect cis-eQTLs and trans-eQTLs.

The results with the SNP screening before eQTL mapping
under different simulation scenarios are presented in Tables 5, 6.
As we have mentioned, the LORS-Screening keeps more SNPs in
the analysis, thus retains more causal SNPs than the HC-
Screening does. Each method with the LORS-Screening has
the larger AUC values than it with the HC-Screening. From
Tables 5, 6, we can see that the AUC values of methods with the
HC-Screening are quite close to 0.5, which indicates that the HC-
Screening can essentially lead to the loss of power of methods.
With the LORS-Screening, similar to the non-screening cases,
LORSEN has better performance than LORS and FastLORS in the
weak-dense scenarios and LORSEN and FastLORS perform
similarly and slightly better than LORS in the strong-sparse
scenarios. Finally, we find that for the weak-dense scenarios,
each method without the SNP screening before joint modeling
achieves the larger AUC values than it with the SNP screening.
However, for the strong-sparse scenarios, each method with the
LORS-Screening before joint modeling achieves the larger AUC
values than it without the SNP screening. This may be due to that
there are a large number of SNP-gene pairs with the weak
association effects in the weak-dense scenarios and many
causal SNPs may not be selected by the pre-screening
methods. So, in the weak-dense scenarios with the use of pre-
screening methods, the computational cost and the detection
power can be reduced at the same time. In the strong-sparse

scenarios, there are a smaller number of SNP-gene pairs with the
stronger association effects than in the weak-dense scenarios, and
it is expected that most of the causal SNPs will be selected by the
pre-screening methods. Therefore, for the strong-sparse
scenarios, the use of pre-screening methods reduce the
computational cost while still retain the high detection power.

Our simulation results showed that LORSEN is more powerful
to identify weak signals, while it does not have obvious advantage
in identifying strong signals compared to LORS. Therefore, we
performed additional simulation studies in which the causal
variants have mixed weak and strong effects. Specifically, the
half of the causal variants had the weak effects and their effects
were generated from a uniform distribution between 0.25 and
0.75, while the other half of the causal variants had the strong
effects and their effects were generated from a uniform
distribution between 1.5 and 2. The number of causal SNPs
was set as 60, 200, or 400. The number of genes affected by
one causal SNP was set as 50. The AUCs and corresponding 95%
confidence intervals are presented in Supplementary Table S1.
From the results in Supplementary Table S1, we can see that
LORSEN has the overall highest detection power when the
number of causal SNPs is large. It is well known that the rare
variants play an important role in the etiology of human complex
diseases. Therefore, it is necessary to assess the performance of
eQTL mapping methods when most of causal variants are rare.
We conducted simulations in which the proportion of rare causal
variants was set to be 50 and 75%. Here, the variants with minor
allel frequency (MAF) less than 0.03 were considered as the rare
variants. The number of causal variants was set as 200. The
results from different simulation scenarios (weak-dense and
strong-sparse) are presented in Supplementary Table S2. From
Supplementary Table S2, we can see that when the proportion

TABLE 6 | The average AUC and 95% confidence interval with the SNP screening with ten replicates for each simulation scenario. SNPs are from chromosome 1 and
chromosome 21. For each simulation scenario, the highest AUC is in bold.

ScreeningScenario #Causal SNPs Method

HC LORS

weak-dense 60 FastLORS 0.518 (0.515, 0.521) 0.606 (0.603, 0.609)
LORSEN 0.518 (0.515, 0.521) 0.629 (0.626, 0.632)
LORS 0.505 (0.502, 0.508) 0.544 (0.541, 0.547)

200 FastLORS 0.512 (0.510, 0.514) 0.591 (0.589, 0.593)
LORSEN 0.512 (0.510, 0.514) 0.615 (0.613, 0.617)
LORS 0.503 (0.501, 0.505) 0.524 (0.522, 0.526)

400 FastLORS 0.510 (0.509, 0.511) 0.563 (0.562, 0.564)
LORSEN 0.507 (0.506, 0.508) 0.556 (0.555, 0.557)
LORS 0.501 (0.500, 0.502) 0.511 (0.510, 0.512)

strong-sparse 60 FastLORS 0.570 (0.562, 0.578) 0.891 (0.886, 0.896)
LORSEN 0.563 (0.555, 0.571) 0.906 (0.901, 0.911)
LORS 0.564 (0.556, 0.572) 0.891 (0.886, 0.896)

200 FastLORS 0.553 (0.549, 0.557) 0.904 (0.901, 0.907)
LORSEN 0.547 (0.543, 0.551) 0.904 (0.901, 0.907)
LORS 0.544 (0.540, 0.548) 0.883 (0.880, 0.886)

400 FastLORS 0.534 (0.531, 0.537) 0.821 (0.818, 0.824)
LORSEN 0.524 (0.521, 0.527) 0.813 (0.810, 0.816)
LORS 0.525 (0.522, 0.528) 0.765 (0.762, 0.768)
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of causal rare variants is 50%, the AUCs of FastLORS are slightly
higher than the AUCs of LORSEN. However, when the
proportion of causal rare variants is 75%, the AUCs of
LORSEN are at least 10% higher AUCs than the AUCs of
FastLORS and about 20% higher than the AUCs of LORS.
Our results show that LORSEN has the higher power in
detecting rare causal variants. To see how the detection
power of LORSEN is affected by the positive and negative
effects, we conducted simulations in which the half of the
causal variants had the positive effects on genes and the
other half of the causal variants had the negative effects on
genes. The results from different simulation scenarios (weak-
dense and strong-sparse with 60, 200, and 400 causal variants)
are presented in Supplementary Table S3. From
Supplementary Table S3, we can see that LORSEN achieves
the highest AUCs in almost all simulation scenarios, which
implies that the detection power of LORSEN is not affected by
the effect directions of causal variants.

In addition to AUC, a commonly used measure to assess the
performance of methods for eQTL mapping, we also reported the
false positive rates (FPRs) based on four thresholds for the regression
coefficients: 0, 10–12, 10–6, 10–4. From the Supplementary Figures
S1–S3, we can see that FastLORS has the highest FPRs in almost all
scenarios, and the FPRs of FastLORS are quite sensitive to the
thresholds: the FPRs of FastLORS decrease dramatically for large
thresholds. LORS has the smallest FPRs in all simulation scenarios.
For LORSEN, it has the small and comparable FPRs with LORS
when the effects of the causal variants are all weak or are amixture of
weak and strong effects. LORSEN has the large FPRs when the
effects of the causal variants are all strong.

A number of conclusions emerge from the results based on our
extensive simulation studies. First, the HC-Screening method
retains much smaller number of SNPs than the LORS-Screening
method. Second, when all the SNPs are not filtered with the SNP
screeningmethod and are used in the analysis, LORSEN is themost
powerful method to identify weak signals, while it does not have

obvious advantage in identifying strong signals compared to LORS
and FastLORS. LORSEN still performs the best with the mixture of
the strong and weak effects when the number of causal variants is
large. Third, when the SNPs are first filtered with theHC-Screening
method, FastLORS performs the best in all simulation scenarios.
With the LORS-Screening method, LORSEN has the highest
detection power in most of simulation scenarios. Fourth,
LORSEN outperforms FastLORS and LORS when a large
portion of the causal SNPs are rare and when the causal
variants have a mixture of positive and negative effects.

3.2 Real Data Analysis Results
To illustrate our method in real data analysis, we also applied
LORS-LORSEN (LORSEN with the LORS-Screening), LORS-
LORS (LORS with the LORS-Screening) and HC-FastLORS

FIGURE 1 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 3.

FIGURE 2 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 15.

FIGURE 3 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 17.
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(FastLORSwith theHC-Screening) to theHapMap3 data. Here, we
focused on Asian samples (CHB and JPT) in the HapMap3 data and
selected four chromosomes for the analysis. SNP genotype data and
gene expression data are publicly available, and can be downloaded
from ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3_r3/
plink_format/and http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-264/, respectively. Because the set of samples with the
SNP genotype data and the set of samples with the gene expression
data are slightly different, we only kept the samples that have both
the SNP genotype data and the gene expression data in the analysis.
We removed SNPs with missing values, and performed the LD
pruning using PLINK with its default parameters (window size: 50;
moving window increment: five SNPs; cutoff value of R2: 0.5). After
the data pre-processing, a total of 160 samples (CHB: 79; JPT: 81)
were included in analysis. The number of SNPs and the number of
genes with the expression used in the analysis on chromosome 3 are
4,086 and 1,075, on chromosome 15 are 2,235 and 612, on
chromosome 17 are 2,226 and 1,098, on chromosome 20 are
1,863 and 606, respectively. Since the significance tests generally
cannot be performed for the penalization based regression models,
we focused on the top 100 SNP-probe pairs with the largest absolute
regression coefficients. From the Venn diagrams (Figures 1–4), we

FIGURE 4 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 20.

TABLE 7 | Top ten detected SNP-probe pairs for chromosome 3. The SNP-probe pairs that are confirmed in seeQTL database are in bold.

Method SNP Probe (gene) Association
coefficient

Distance Class

HC-FastLORS rs13084976 ILMN_1657373 (LEPREL1) 0.0430 188.72 mb distant
rs17029694 ILMN_1657373 (LEPREL1) 0.0424 188.49 mb distant
rs12494696 ILMN_1812093 (UTS2D) 0.0322 189.72 mb distant
rs2322212 ILMN_1756501 (ST6GAL1) 0.0310 184.74 mb distant
rs17029694 ILMN_1708743 (NT5DC2) 0.0303 49.86 mb distant
rs2322212 ILMN_1686920 (CCDC58) 0.0300 120.03 mb distant
rs7647780 ILMN_1762084 (DNASE1L3) 0.0292 57.51 mb distant
rs1516347 ILMN_1726020 (LOC652670) 0.0278 75.49 mb distant
rs13061928 ILMN_1692261 (EPHB1) 0.0273 133.55 mb distant
rs1377213 ILMN_1698934 (CMTM7) 0.0270 26.76 mb distant

LORS-LORSEN rs1505587 ILMN_1657373 (LEPREL1) 0.3336 127.69 mb distant
rs6807033 ILMN_1787750 (CD200) 0.2796 4.163 kb local
rs11914577 ILMN_1700967 (C3orf59) 0.2245 113.51 kb local
rs1403719 ILMN_1771599 (PLOD2) 0.1963 25.06 mb distant
rs628267 ILMN_1760509 (EOMES) 0.1941 302.30 kb
rs4016435 ILMN_1757350 (CTNNB1) 0.1908 27.772 kb local
rs16839507 ILMN_1761058 (ACAD11) 0.1856 117.942 kb local
rs693430 ILMN_1657708 (MGLL) 0.1796 86.074 kb local
rs693430 ILMN_1707310 (MGLL) 0.1710 47.617 kb local
rs1498090 ILMN_1793724 (C3orf31) 0.1662 58.605 kb local

LORS-LORS rs1505587 ILMN_1657373 (LEPREL1) 1.2549 127.69 mb distant
rs6807033 ILMN_1787750 (CD200) 0.5621 4.163 kb local
rs4857653 ILMN_1700967 (C3orf59) 0.3640 16.16 mb distant
rs11914577 ILMN_1700967 (C3orf59) 0.2984 113.514 kb local
rs1403719 ILMN_1771599 (PLOD2) 0.2824 25.06 mb distant
rs628267 ILMN_1760509 (EOMES) 0.2439 302.302 kb
rs4016435 ILMN_1757350 (CTNNB1) 0.2404 27.772 kb local
rs16839507 ILMN_1761058 (ACAD11) 0.2338 117.942 kb local
rs3773014 ILMN_1762084 (DNASE1L3) 0.2268 29.187 kb local
rs1799977 ILMN_1688392 (ZBED2) 0.2234 75.77 mb distant
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notice that there is a large overlap between the eQTLs identified by
LORS-LORS and LORS-LORSEN. However, there is a small overlap
between the eQTLs identified by HC-FastLORS and LORS-LORS
(or LORS-LORSEN). For example, among the top 100 SNP-probe
pairs identified on Chromosome 3 (Figure 1), LORS-LORS and
LORS-LORSEN share 77 SNP-probe pairs in common, while LORS-
LORSEN and HC-FastLORS only share four SNP-probe pairs in
common and LORS-LORS and HC-FastLORS share three SNP-
probe pairs in common. This observation is consistent with the
observation from (Jeng et al., 2020) which also noticed that there is a
small overlap between the SNP-probe pairs identified by LORS-
LORS and HC-FastLORS. Additionally, as adopted in (Jeng et al.,
2020), we classified the detected eQTL as local if the physical distance
between the SNP and the probe midpoint is less than 250 kb or as
distant if the distance is greater than 5mb following the criterion
described in (Westra et al., 2013). For each chromosome, we report
our findings on the top ten identified SNP-probe pairs in Table 7 and
Supplementary Tables S4–S6 (see Supplementary Material). From
Table 7, we can see that the SNPs in the top ten SNP-probe pairs
identified by HC-FastLORS are all trans-eQTLs. As a comparison,
seven SNPs in the top ten SNP-probe pairs identified by LORS-
LORSEN are cis-eQTLs and two SNPs are trans-eQTLs. Five SNPs in
the top ten SNP-probe pairs identified by LORS-LORS are cis-eQTLs
and four SNPs are trans-eQTLs. LORS-LORSEN and LORS-LORS
share seven SNP-probe pairs while LORS-LORSEN and LORS-LORS
do not share any SNP-probe pair withHC-FastLORS. In addition, the
coefficients obtained from HC-FastLORS are ten-fold smaller
than those obtained from LORS-LORSEN and LORS-LORS.
This indicates that the findings of LORS-LORSEN and LORS-
LORS may be more convincing.

To further validate our findings, we searched an existing
database called seeQTL (Xia et al., 2011). seeQTL (https://
seeqtl.org/) records the eQTLs identified from a meta-analysis
(consensus eQTLs) from the HapMap human lymphoblastoid
cell lines. A total of fourteen SNP-probe pairs were found in
seeQTL and were listed in Table 8. Among them, two SNP-probe
pairs were identified by HC-FastLORS only, three were identified
by LORS-LORSEN only, two were identified by LORS-LORS
only, seven were identified by both LORS-LORSEN and LORS-
LORS, and one was identified by all three methods. To further

validate these fourteen SNP-probe pairs, we searched the eQTL web-
browser (http://www.gtexportal.org/home/) built by the Genotype-
Tissue Expression Project (GTEx) (https://www.genome.gov/
Funded-Programs-Projects/Genotype-Tissue-Expression-Project) to
see if those SNP-probe (gene) pairs are listed as the eQTLs and/or
sQTLs (splicing quantitative trait locus). A total of seven SNP-probe
pairs were also found in GTEx and were presented in Table 8.
Among seven SNP-probe pairs found both in seeQTL andGTEx, one
SNP-probe pair was identified by all three methods, five SNP-probe
pairs were identified by both LORS-LORSEN and LORS-LORS, and
one SNP-probe pair was identified by LORS-LORSEN only.

A number of conclusions emerge from the results based on
HapMap3 data. First, there is a large overlap between the SNP-
probe pairs identified by LORS-LORS and LORS-LORSEN but
there is a small overlap between the SNP-probe pairs identified by
HC-FastLORS and LORS-LORS (or LORS-LORSEN). Second,
LORS-LORS and LORS-LORSEN perform similarly and have
higher detection power than HC-FastLORS since LORS-LORS
and LORS-LORSEN have identified more SNP-probe pairs that
are also found in seeQTL and GTEx. Third, five out of seven SNP-
probe pairs identified by both LORS-LORS and LORS-LORSEN
and found in seeQTL are also found in GTEx, thus it may be
beneficial to combine the results from multiple methods to
generate a list of SNP-probe pairs for further investigation.

4 DISCUSSION

As more human gene expression data become available, fast and
efficient statistical and computational methods are needed to fully
take advantage of such data to investigate the relationship
between genetic variants and gene expression levels to further
reveal the genetic mechanisms that underlie human complex
diseases. However, most existing methods are built on small-scale
samples and not applicable to human-size datasets. In this paper,
we proposed a new low rank penalized regression method
(LORSEN) to detect eQTLs. We developed a fast and efficient
algorithm to solve optimization problems arising from our
methods based on proximal gradient methods. Comprehensive
simulation studies showed that LORSEN outperformed two

TABLE 8 | The SNP-probe pairs found in seeQTL database out of the top ten SNP-probe pairs for chromosomes 3, 15, 17, and 20, respectively.

Chromosome SNP Probe (gene) Method Information from GTEx

3 rs4016435 ILMN_1757350 (CTNNB1) LORS-LORSEN, LORS-LORS Not found in GTEx
3 rs16839507 ILMN_1761058 (ACAD11) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
3 rs693430 ILMN_1657708 (MGLL) LORS-LORSEN Not found in GTEx
3 rs693430 ILMN_1657708 (MGLL) LORS-LORSEN Not found in GTEx
15 rs7162538 ILMN_1784364 (STARD5) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
15 rs1347069 ILMN_1795822 (DIS3L) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
15 rs2292114 ILMN_1795524 (C15orf44) LORS-LORS Not found in GTEx
17 rs4968140 ILMN_1706959 (TIMM22) HC-FastLORS Not found in GTEx
17 rs4251704 ILMN_1773352 (CCL5) LORS-LORSEN A single hit for sQTLs
17 rs17657522 ILMN_1697227 (USP36) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
17 rs4968140 ILMN_1706959 (TIMM22) LORS-LORSEN, LORS-LORS Not found in GTEx
17 rs9905601 ILMN_1750511 (NT5C3L) LORS-LORS Not found in GTEx
20 rs16989514 ILMN_1721128 (TOMM34) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
20 rs6041750 ILMN_1702237 (FKBP1A) HC-FastLORS, LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
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commonly used methods, LORS and FastLORS, in many
simulation scenarios. From our simulation results, we can
briefly conclude that, first, LORSEN is more powerful in
detecting eQTLs which are rare and/or have weak effects. This
is especially an appealing advantage since it is expected that a
portion of causal variants are rare and/or have the weak effects in
the real world. Second, LORSEN is more powerful when some
causal variants have the positive effects and the other causal
variants have the negative effects.

Since there are a large number of SNPs and genes to be included
in the eQTLmapping and it is expected that only a small portion of
SNPs will affect the gene expression levels, a number of pre-
screening methods have been developed. In this paper, we used
the LORS-Screening (Yang et al., 2013) and the HC-Screening
(Jeng et al., 2020). We found that the HC-Screening retained much
smaller number of SNPs than the LORS-Screening. Both the
LORS-Screening and the HC-Screening can reduce the
computational cost, but they may also reduce the detection
power in the eQTL mapping, depending on the association
patterns between SNPs and gene expression levels. Since we do
not know such association patterns in real studies, we should be
cautious to apply such pre-screening methods.

There are several limitations for LORSEN. First, as a method
based on the penalized regression model, we can rank the SNP-
gene pairs in terms of the regression coefficients obtained from
LORSEN, but cannot perform the significance test. Second, the
computational time of LORSEN depends on many factors such
as the number of candidate values of hyperparameters, the
initial values of hyperparameters, and the number of samples.
The computation was performed parallelly using software R
(verson 4.1.1) and 16 cores on a server with 64 Intel(R) Xeon(R)
Gold 6130 CPUs @ 2.10 GHz. From Supplementary Table S7,
we can see that, as expected, LORSEN costs much more time in

parameter tuning than other two methods due to the exhaustive
grid search. The grid search is easy to be implemented but is
computationally intensive. It may not be feasible for large scale
data. A more efficient strategy is desirable.

It has shown that the incorporation of the SNP correlation and the
gene interaction network can potentially increase the power of
detecting eQTLs (Kim and Xing, 2009; Chen et al., 2012; Kim and
Xing, 2012; Cheng et al., 2014). We expect that our method can be
improved if we use the prior knowledge of correlation structures of
SNPs and genes to refine the penalty terms in optimization problems.
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APPENDIX A

Lemma 1: For each τ P0 and Y ∈ Rn1×n2 , the solution of

min
X

1
2
‖X − Y‖2F + τ‖X‖* (16)

is Sτ(Y)dUSτ(Σ)VT(� Proxτ‖·‖*(Y)), where
Sτ(Σ) � diag({(σ i − τ)+}), Y � UΣVT, the singular value
decomposition of matrix Y, Σ � diag({σ i}1#i#r), r is the rank
of Y. Sτ(·) is called singular value shrinkage operator.

Proof: see (Cai et al., 2010) or (Mazumder et al., 2010).

Lemma 2: For each fixed non-negative λ and v ∈ Rn, the
solution of

min
x

1
2
‖x − v‖22 +

λ

2
‖x‖22 (17)

is (Proxλ
2‖·‖22(v))i � sign(vi)(|vi| − λ)+, i � 1, 2, . . ., n, known as

the (elementwise) soft thresholding operator.

Proof: see (Parikh and Boyd, 2014).

Lemma 3: For each fixed non-negative ρ and v ∈ Rn, the
solution of

min
x

1
2
‖x − v‖22 + ρ‖x‖1 (18)

is Proxρ‖·‖1(v) � (1 − ρ
max{‖v‖2 ,ρ})v.

Proof: see (Parikh and Boyd, 2014).

Lemma 4: (soft-impute algorithm)

For the optimization problem

min
X

1
2
‖PΩ(Y −X)‖2F + τ‖X‖*

� min
X

1
2
‖[PΩ(Y) + PΩ⊥(X)] −X‖2F + τ‖X‖*,

the optimization solution can be obtained via updating X using
X← Sτ(PΩ(Y) + PΩ⊥(X)) with an arbitrary initialization.

Proof: see (Mazumder et al., 2010).

Theorem 1: A sufficient condition for Proxf+g � Proxf◦Proxg is
∀ x ∈ H, zg(Proxf(x))J zg(x), whereH represents Hilbert space
and ◦ represents composition of two operators.

Proof: see (Yu, 2013).
Details of Confidence Interval of AUC
We followed the method used in (Hanley and McNeil,

1982) to calculate the 95% confidence interval (CI) of AUC.
Let AUĈ and Var(AUĈ) denote the sample mean and the
estimated variance of AUCs from ten replicates, respectively, the
95% CI of average AUC was calculated using the following formula:

AUĈ ± 1.96
������������
Var(AUĈ)/10

√
. (19)

We used the following formula (Hanley and McNeil, 1982) to
calculate Var(AUĈ):

Var(AUĈ) � q0 + (n1 − 1)q1 + (n2 − 1)q2
n1n2

, (20)

where q0 � AUĈ(1 − AUĈ), q1 � AUĈ
2−AUĈ − AUĈ

2
,

q2 � 2AUĈ
2

1+AUĈ − AUĈ
2
, n1 is the number of true positives, and n2

is the number of true negatives.
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