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Electronic health records (EHRs) have been widely adopted in recent years, but often

include a high proportion of missing data, which can create difficulties in implementing

machine learning and other tools of personalized medicine. Completed datasets are

preferred for a number of analysis methods, and successful imputation of missing EHR

data can improve interpretation and increase our power to predict health outcomes.

However, use of the most popular imputation methods mainly require scripting skills,

and are implemented using various packages and syntax. Thus, the implementation of

a full suite of methods is generally out of reach to all except experienced data scientists.

Moreover, imputation is often considered as a separate exercise from exploratory

data analysis, but should be considered as art of the data exploration process. We

have created a new graphical tool, ImputEHR, that is based on a Python base and

allows implementation of a range of simple and sophisticated (e.g., gradient-boosted

tree-based and neural network) data imputation approaches. In addition to imputation,

the tool enables data exploration for informed decision-making, as well as implementing

machine learning prediction tools for response data selected by the user. Although

the approach works for any missing data problem, the tool is primarily motivated by

problems encountered for EHR and other biomedical data. We illustrate the tool using

multiple real datasets, providing performance measures of imputation and downstream

predictive analysis.

Keywords: electronic health records, imputation, gradient boosting, prediction, decision trees

1. INTRODUCTION

Recently, hospitals in the United States have made a concerted effort to transition their health
records from paper to digital, the proportion of which has dramatically increased, from 9.4% in
2008 to 75.5% in 2014 (Charles et al., 2013). Although we are seeing improvements in the overall
quality of EHR-derived datasets, data missingness remains a substantial and unavoidable issue
(Chan et al., 2010; Weiskopf and Weng, 2013). Missing EHR data could be caused by a lack of
collection or a lack of documentation (Wells et al., 2013), and it could be missing at random or not
at random (Hu et al., 2017). Researchers have noted the problems posed by missing data and are
developing strategies to address it (Haukoos and Newgard, 2007; Newgard and Haukoos, 2007), as
EHR systems become more relevant and adopted worldwide.
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The expectation of collecting real-world data without
missingness is unrealistic. Even the most detailed protocols for
data collection cannot guarantee that every subject will have a
record at each observation. Missing data present a challenge
for analysts, as it can introduce a substantial amount of bias,
makes the handling and analysis of the data more arduous, and
creates reductions in efficiency (Barnard and Meng, 1999). Many
standard analysis methods, including regression, are defeated
by even a single missing value from among many potential
predictors. Thus, it is possible that standard analysis may
essentially “throw away” large portions of the data, even though
a small fraction of the data may actually be missing. Ultimately,
data missingness decreases our ability to discern the deeper
structures and relationships underlying the observations, causing
a significant negative impact on scientific research (McKnight
et al., 2007). Many important scientific and business decisions
are based on results from data analyses, and so dealing with
missing data in an appropriate manner is recognized as a
crucial step.

The process of data imputation (artificially replacing missing
data with an estimated value) offers a practical work-around
so that many downstream data handling steps become feasible.
This process preserves all observations by replacing missing data
with an estimated value based on other available information.
Once all missing values have been imputed, datasets can
then be analyzed using standard techniques for complete data
(Gelman and Hill, 2006). Many advanced analysis methods,
such as machine learning, require a complete dataset, so
imputing missing data enables researchers to apply statistical
and computational association methods that would otherwise
be unavailable. Missing data imputation methods are considered
standard in areas such as genetic association (Schurz et al., 2019)
and proteomics (Jin et al., 2021), where correlation structures are
strong. For electronic health records, the need for imputation
methods have more recently realized (Jazayeri et al., 2020), and
the use of imputation shown to improve prediction accuracy
(Beaulieu-Jones et al., 2017). However, use of many of these
methods requires purpose-built scripting pipelines (Hu et al.,
2017), while we aim in this paper to provide a variety of tools
using a very simple interface.

When imputation is performed, issues of bias and correct
handling of variability/uncertainty arise (Rubin, 2003),
depending on the imputation accuracy. Much of the traditional
statistical literature on handling missing data has dealt with
likelihood inference for low-dimensional problems (Rubin,
1976), or resampling techniques such as multiple imputation,
which can mimic and account for imputation uncertainty.
However, our focus here is on the practical impact of imputation
for downstream analysis, such as EHR-based prediction of
important health measures. For such efforts, the emphasis is
placed on the success of machine-learning methods, which
themselves may involve penalization techniques and estimation
known to be biased. Thus, we consider imputation as a possibly
essential pre-processing step to serve a larger goal, and it should
be judged accordingly. Machine-learning methods have reached
a high degree of sophistication in biology and genomics (Le and
Huynh, 2019; Le et al., 2019), but for electronic health records,

which tend to be less structured, a variety of approaches must be
considered. In this work, we evaluate the effectiveness of various
imputation methods on EHR and other real-world datasets, and
proposed a practical and fast imputation method as a hybrid of
existing methods.

2. DATASETS

2.1. MIMIC-III
The Medical Information Mart for Intensive Care III (MIMIC-
III) is a large database comprising de-identified health-related
data associated with over 40,000 patients who stayed in ICUs
at the Beth Israel Deaconess Medical Center between 2001
and 2012 (Johnson et al., 2016). MIMIC-III is freely available
on PhysioNet (https://mimic.physionet.org). The database
includes information such as demographics, hourly vital sign
measurements, laboratory test results, procedures, medications,
caregiver notes, imaging reports, and mortality (including
post-hospital discharge).

MIMIC-III is disseminated as a relational database consisting
of 26 tables containingmany categorical and continuous features.
We extracted ICD-9 codes from the “DIAGNOSES_ICD”
table, demographics and discharge time or time of death
from the “ADMISSIONS” table, and laboratory measurements
from the “LABEVENTS” table with <30% missing, totaling
603 features. ICD-9 is the actual code corresponding to
the diagnosis assigned to the patient. However, it is often
unclear whether a negative value indicates that the patient
does not have a specific code, or the code is truly missing.
The laboratory measurements are continuous values for 726
unique items. The missing proportion of laboratory tests
can be as high as 90%, which significantly impacts any
downstream analysis of these data. Therefore, it is important
to study the appropriate missing data imputation methods for
laboratory tests.

2.2. Datasets From the UCI Machine
Learning Repository
The UCI Machine Learning Repository is a collection of datasets
that are used by researchers for the empirical analysis of machine
learning algorithms (Dua and Graff, 2017). Although these
datasets are largely complete, we can effectively evaluate our
imputation under complete missing at random assumptions
by artificially masking individual observations and recording
the imputation accuracy. Datasets are maintained on their
website (https://archive.ics.uci.edu/ml/index.php). We selected
the following four datasets for imputation testing: (1) “Boston,”
information for predicting the value of house prices (Harrison
and Rubinfeld, 1978); (2) “Spam,” attributes to determine
whether e-mails were spam (Cranor and LaMacchia, 1998),
(3) “Letter,” character image features to identify a letter of
the alphabet (Frey and Slate, 1991), and (4) “Breast Cancer,”
numerical features of cell images for tumor diagnosis in
357 malignant and 212 benign samples (Street et al., 1993).
These datasets have varying numbers of samples and features,
with both continuous and categorical data, as summarized
in Table 1.
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3. METHODS

ImputEHR is designed to provide several existing imputation
methods in easy-to-use interface, as described below. In addition,
we have noted that tree-based imputation has been relatively
under-represented, and we propose some novel enhancements
here in order to provide effective tree-based imputations
with reasonable computational burden. Gradient boosted trees
are an effective machine learning algorithm that iteratively
combines decision trees in order to make predictions. In
Python, we modified the MissForest algorithm (Stekhoven
and Bühlmann, 2012), which imputes missing values using
random forests (Liaw and Wiener, 2002), by applying the
LightGBM module, a gradient boosting framework known for
its light computational burden and better performance than
previous decision tree-based algorithms (Ke et al., 2017), in
the missingpy Python library for missing data imputation.
Pseudocode for the ImputeEHR1 algorithm is shown in Table 2.
The ImputeEHR2 approach is using the XGBoost (Extreme
Gradient Boosting) module (Chen et al., 2015), a common
boosting algorithm, in the missingpy library. The performance
of ImputeEHR was validated using MIMIC-III and the four
repository datasets.

3.1. Imputing Missing Data
We compared our proposed ImputeEHR1, ImputeEHR2, and
five state-of-the-art imputation methods in Python: MissForest,
MICE (Buuren and Groothuis-Oudshoorn, 2010), KNNImputer
(Troyanskaya et al., 2001), SoftImpute (Mazumder et al.,
2010), and GAIN (Yoon et al., 2018). In addition, we also
performed simple feature-mean and feature-median replacement
as the most basic and simple imputation method. KNNImputer
is based on k-nearest neighbors algorithm. GAIN adapts
the generative adversarial nets framework. The MICE and
SoftImpute methods are implemented in the fancyimpute Python
library. SoftImpute uses an iterative soft-thresholded SVD
algorithm and MICE uses chained equations to impute missing
values. We used default parameter settings for each method,
and parameters for the two ImputeEHR methods are listed
in Supplementary Table 1.

In each dataset, we generated missing data (missing
completely at random), with rates from 10 to 90% in increments
of 10% by randomly removing data and ran the imputation
methods. The Root Mean Squared Error (RMSE) was then
calculated at each missingness rate in comparison of the values

between the real and imputed data. We ran 10 iterations in order
to obtain average RMSEs.

Supplementary Tables 2–5 show the average RMSEs for
each dataset, with the lowest RMSE at each missingness
rate highlighted. Overall, our proposed method significantly
outperforms all of the state-of-the-art models. ImputeEHR has
the lowest RMSE in 24 out of a possible 36 comparisons, followed
by MICE and MissForest methods having 6 and 3, respectively.

3.2. Testing Runtimes Between Methods
We evaluated the speeds of ImputeEHR1, ImputeEHR2, and
MissForest method, since they are each tree-based learning
algorithms, using the scikit-learn Python library (Pedregosa et al.,
2011). We set the number of trees at 100, and used default
values for the remaining parameter settings. Figure 1 shows the
runtimes by missingness rate in each dataset. Our experiments
show that both ImputeEHR1 and ImputeEHR2 can accelerate
the imputation process 20–25 times faster than MissForest
while achieving lower RMSEs. Moreover, ImputeEHR1 is faster
than ImputeEHR2 for the largest dataset. We performed this
experiment on a desktop computer with Windows 10, Intel(R)
Xenon CPU E5-2687W v4@3.00 GHz CPU, 128 GB RAM and
GeForce GTX 1080, 8 GB.

TABLE 2 | Pseudocode of the ImputeEHR algorithm.

Algorithm: ImputeEHR algorithm

Require: X is n×m -dimensional data matrix, with stopping criterion γ

1. Make initial guess using mean or median imputation for missing values;

2. k← A sorted indices vector according to t he amount of missing values of

column X;

w.r.t. increasing amount of missing values;

3. While not γ do

4. X
imp
old ← Store previously imputed matrix;

5. for s in k do

6. Fit a LightGBM or Xgboost : y
(s)
obs ∼ X

(s)
obs;

7. Predict y
(s)
miss using X

(s)
miss;

8. X
imp
new ← update imputed matrix from y

(s)
miss;

9. end for

10. Update γ

11. end while

12. Return Matrix X;

TABLE 1 | The Boston data have information for predicting the value of house prices; the spam data contain the attributes to determine whether e-mails spam; the letter

data have character image features to identify a letter of the alphabet; the breast cancer data gathered the numerical features of cell images for tumor diagnosis.

Dataset Download link # Sample # Features Attribute type

Boston https://archive.ics.uci.edu/ml/machine-learning-databases/housing 506 13 Both

Spam https://archive.ics.uci.edu/ml/datasets/Spambase 4,601 57 Continuous

Letter https://archive.ics.uci.edu/ml/datasets/Letter+Recognition 20,000 16 Categorical

Breast cancer https://archieve.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 569 30 Continuous
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FIGURE 1 | Running time of ImputeEHR1 (blue), MissForest (orange), and ImputeEHR2 (gray) for each dataset.

FIGURE 2 | Our pipeline of the MIMIC-III data imputation and prediction.

3.3. Evaluating Predictive Performance for
a Variable of Interest, After Imputation
We attempted to predict the mortality for ICU patients in
the MIMIC-III database. Figure 2 provides an illustration of
our pipeline. First, we aggregated the laboratory tests in the
“LABEVENTS” table by averaging the values taken within
the first 24 h of a patient’s first admission to ICU. After
removing laboratory tests which are >70% missing, 64 items
remained. Then, we selected patients with complete records
for the 64 laboratory tests, resulting in 714 patients. So
our filtered “LABEVENTS” data have dimension 714 patients

× 64 laboratory tests, which we used as input for each
imputation method.

Then, we combined the imputed “LABEVENTS” data with
the ICD-9 codes from the “DIAGNOSIS_ICD” table and the
demographics and mortality outcome from the “ADMISSIONS”
table into a model matrix and applied lasso regression
(Tibshirani, 1996) with five-fold cross-validation. This process
involves randomly splitting the samples into five groups, keeping
four groups as a training set, so the model can predict the
outcomes for samples in the fifth group. This process was run five
times so outcomes are predicted in all samples. The area under
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FIGURE 3 | (Left) Receiver operating characteristic curve (ROC) comparison between our pipeline and the method (Sharafoddini et al., 2019) on the mortality

prediction of the MIMIC-III data. (Right) Precision recall curve comparison.

FIGURE 4 | Illustration of the web app for visualization.

the curve (AUC) is the metric we used to compare the predicted
vs. the actual outcomes. The ImputeEHR method has the highest
AUC 0.91, and the tree-based algorithms perform better than
other methods. Our pipeline provides the highest prediction
accuracy comparing the historical mortality prediction in the
literature (Sharafoddini et al., 2019), which reached the best AUC
0.80 (Figure 3). Both receiver operating characteristic curve and
precision recall curve show that our pipeline provides the best
prediction of mortality.

4. WEB APPLICATION

The web application (ImputEHR app), available as a scikit-learn
package in Python, allows users to apply our pre-processing,
feature engineering, and prediction methods on their dataset,
and to visualize the results. Below we briefly describe the six
major components of the web app, illustrated in Figure 4, and
show its capabilities by presenting results of our implementation,
using the “Breast Cancer” dataset from the UC Irvine Machine
Learning Repository as an example.

4.1. Percentage of Missing Rate and
Correlation Features Information
Users can obtain initial information about the missing rates of
each feature in their dataset. Supplementary Figure 1 shows the
percentage of missing values in our example. Since the breast
cancer dataset in Table 1 (Street et al., 1993) does not have
missing values, we randomly set 35–45% of the values as missing
and continue to use it as the toy example for our ImputEHR app.

In addition, the app has the option for users to plot the
correlation between any two features (factors). It also helps
the users to decide if they need to include these factors that
might be highly correlated with each. If the dataset has missing
values, users can show the scatterplot before imputing, removing
the missing values. Three parameters to better visualize the
scatterplot are the color, size, and clarity of the data points
(Supplementary Figure 2).

4.2. Visualization of Missingness Patterns
As an optional feature in our app, the missingness patterns can
be checked by users via the black/white image plot, in which
black is for missing values. The user can also hover mouse around
the Dendrogram and zoom in to check the information for the
grouped factors due to the missingness. Supplementary Figure 3
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FIGURE 5 | Visualization of patterns in the imputed dataset. User has the option to use the number of cluster and dimension reduction method.

FIGURE 6 | Visualization of the important features selected by the four methods.
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FIGURE 7 | Pipeline of the predictive model.

includes the visualization of Dendrogram onmissingness pattern
based on the toy data.

4.3. Imputation Algorithm
Within the app, the nine imputation methods listed in
section 3.1 are available: ImputeEHR1, ImputeEHR2,
MissForest, MICE, KNNImputer, SoftImpute, GAIN, mean,
and median. Supplementary Table 6 provides the important
parameters’ selection for the toy example via ImputeEHR1 and
ImputeEHR2 methods.

Some methods have their own hyperparameters. For
KNNImputer, we set k = 5, which is considered the default
number of nearest neighbors. Four parameters, “batch_size,”
“hint_rate,” “alpha,” and “iteration,” are embedded for the
GAIN method. The “batch_size” defines the number of training
samples present in a single batch. The “hint_rate” reveals the
discriminator partial information about the missingness of the
original sample. The “alpha” is a hyperparameter, and “iteration”
describes the number of times a batch of data passes through the
algorithm to update its parameters.

4.4. Visualization From Combining
Dimensional Reduction Algorithms and
K-Means Clustering
ImputEHR makes it easy for users to visualize patterns in their
imputed dataset. Principal component analysis (PCA) Pearson
(1901) and t-distributed stochastic neighbor embedding (t-SNE)
(Van der Maaten and Hinton, 2008) methods are embedded for
dimension reduction. Users can plot the result of either method,
partitioning the observations into k clusters. Our ImputEHR
app suggests the number of optimal clusters using the Elbow
method (Syakur et al., 2018), which runs k-means clustering
on the imputed dataset for a range of values for k between
1 and 9. For the visualization purpose, the green line in
Supplementary Figure 4 indicates the best choice of k plot on
the toy example. Three parameters considered for the t-SNE
method are “learning rate,” “n_iter” (number of iterations), and
“perplexity.” Perplexity defines the number of close neighbors
at each point, and learning rate affects the convergence of
the embedding. In Figure 5 and Supplementary Figure 5, we

applied k-means method with different numbers of clusters on
the outcome of the PCA and t-SNE methods. In our app, user
can also mouse over the point and see which variable it is.

4.5. Visualization of the Important Features
A very useful feature of our app is that it helps users to nail
down the most important features for further investigation. We
provide the users four methods for feature selection from the
imputed dataset: LightGBM (Ke et al., 2017), lasso (Tibshirani,
1996), ridge (Hoerl and Kennard, 1970), and elastic net (Zou and
Hastie, 2005) (Figure 6). Users can decide how many important
features to visualize.

4.6. Visualization of the Phenotype
Prediction
When performing imputation, if downstream prediction is
intended, then the response variable should be removed from
the imputation process to avoid overtraining datasets in which
cross-validation for prediction of the response must be used.
Accordingly, ImputEHR enables the user to select a response
variable to be excluded from the imputation process. We also
provide the author the visualization of the correlation between
the imputed value and the masked 5% non-missing data for each
variable (Supplementary Figure 4).

Important features from an imputed dataset are selected as
input to predict the phenotype, illustrated in Figure 7, using five-
fold cross-validation to avoid overfitting. Users can select from
a suite of prediction methods including random forests, lasso,
LightGBM, and KNN.

The running time for a job depends largely on the size
of dataset, the missing rate, and the computer hardware. All
analyses were performed in Python 3.6.

5. CONCLUSIONS

ImputeEHR can quickly and accurately impute missing data,
implementing a variety of methods. The ease of performing
imputation can lead to better predictive performance, as many
methods are made feasible by imputation. We have created a
tool covering a range of imputation options, including novel
and fast tree-based methods. We have also included a variety
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of basic phenotype prediction methods, although the user can
easily output the imputed dataset for import into other prediction
routines. As with any imputation tools, the accuracy will be
limited by the correlation structures, and in general the number
of features relative to the sample size. For these and other reasons,
this tool is not designed for genomic imputation (Schurz et al.,
2019) or for proteomics data (Jin et al., 2021), or other areas with
well-understood biological correlation structures. However, the
ease of use and seamless interface for using multiple imputation
methods makes our approach a useful approach in a variety of
analysis pipelines.
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