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There has been a growing interest in the genetic improvement of carcass traits as
an important and primary breeding goal in the beef cattle industry over the last
few decades. The use of correlated traits and molecular information can aid in
obtaining more accurate estimates of breeding values. This study aimed to assess
the improvement in the accuracy of genetic predictions for carcass traits by using
ultrasound measurements and yearling weight along with genomic information in
Hanwoo beef cattle by comparing four evaluation models using the estimators of
the recently developed linear regression method. We compared the performance of
single-trait pedigree best linear unbiased prediction [ST-BLUP and single-step genomic
(ST-ssGBLUP)], as well as multi-trait (MT-BLUP and MT-ssGBLUP) models for the
studied traits at birth and yearling date of steers. The data comprised of 15,796
phenotypic records for yearling weight and ultrasound traits as well as 5,622 records for
carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score),
resulting in 43,949 single-nucleotide polymorphisms from 4,284 steers and 2,332 bulls.
Our results indicated that averaged across all traits, the accuracy of ssGBLUP models
(0.52) was higher than that of pedigree-based BLUP (0.34), regardless of the use of
single- or multi-trait models. On average, the accuracy of prediction can be further
improved by implementing yearling weight and ultrasound data in the MT-ssGBLUP
model (0.56) for the corresponding carcass traits compared to the ST-ssGBLUP model
(0.49). Moreover, this study has shown the impact of genomic information and correlated
traits on predictions at the yearling date (0.61) using MT-ssGBLUP models, which was
advantageous compared to predictions at birth date (0.51) in terms of accuracy. Thus,
using genomic information and high genetically correlated traits in the multi-trait model
is a promising approach for practical genomic selection in Hanwoo cattle, especially for
traits that are difficult to measure.

Keywords: single-step GBLUP, genomic prediction, accuracy, ultrasound measurement, genetic correlation,
Hanwoo

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 692356

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.692356
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.692356
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.692356&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/articles/10.3389/fgene.2021.692356/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-692356 July 26, 2021 Time: 18:7 # 2

Mehrban et al. Multi-Trait Single-Step GBLUP in Hanwoo

INTRODUCTION

There is a growing interest in improving economically important
traits in beef cattle breeding programs worldwide because it
has a substantial effect on the overall profitability of the meat
production system. Carcass traits are a comprehensive term that
constitutes a major set of target traits for genetic evaluation and
selection in beef cattle. In the Korean beef industry, Hanwoo
cattle has been intensively bred for meat over the last four
decades, and its beef is well known for its marbled fat, tenderness,
juiciness, flavor (Jo et al., 2012), and is regarded as a healthy food
option (Joo et al., 2017). Presently, the selection index in Hanwoo
breeding programs mainly focuses on carcass traits, including
backfat thickness (BFT), carcass weight (CW), eye muscle area
(EMA), and marbling score (MS), which are major selection
criteria in attempts to improve both the quantity and quality of
meat (Kim et al., 2017). However, measurement of these traits
for genetic evaluation is expensive and difficult, as it requires
the animals to be slaughtered to record their phenotypes. An
efficient way to evaluate carcass traits is the use of ultrasound
measurements at yearling age, which has the potential to improve
the rate of genetic progress and reduce the time and expenses
of slaughter tests (Jansen et al., 1985; Wilson, 1992). Previous
studies have reported high positive genetic correlations between
ultrasound measurements in yearling bulls and heifers and the
corresponding traits measured in the carcass of progeny (Moser
et al., 1998; Reverter et al., 2000; Crews and Kemp, 2002; Kemp
et al., 2002; Crews et al., 2003; Lee and Kim, 2004; MacNeil
et al., 2010; Yokoo et al., 2015; Elzo et al., 2017). In other words,
the evaluation of animals based on ultrasounds of yearlings
would be an alternative to anticipate the decision-making about
selection for carcass traits. Thus, the inclusion of ultrasound
data as correlated traits along with genomic information can
result in improved accuracy in the estimation of breeding values
for carcass traits.

In recent decades, with the advent of high-throughput
single nucleotide polymorphism (SNP) genotyping technologies,
genomic selection has become an appealing tool for accelerating
genetic improvement in many breeding programs throughout
the world (Meuwissen et al., 2001). Genomic selection allows
for a better prediction of EBVs than the classical methods,
especially for young animals without performance. Several
genomic methods have been developed and applied, among
which single-step genomic BLUP (ssGBLUP) has been widely
used in routine genomic evaluation (Legarra et al., 2009; Misztal
et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010).
A single-step genomic BLUP is a modification of the GBLUP
method, in which phenotypes of genotyped and non-genotyped
individuals are used simultaneously along with an H matrix
that combines the pedigree-based numerator relationship matrix

Abbreviations: HIC, Hanwoo Improvement Center; ST-BLUP, Single-trait
pedigree best linear unbiased prediction; MT-BLUP, Multi-trait pedigree best
linear unbiased prediction; GBLUP, Genomic best linear unbiased prediction;
ssGBLUP, Single-step genomic best linear unbiased prediction; SNP, Single
nucleotide polymorphism; GEBV, Genomic estimated breeding value; BFT, Backfat
thickness; CW, Carcass weight; EMA, Eye muscle area; MS, Marbling score; YW,
Yearling body weight; UBFT, Ultrasound backfat thickness; UEMA, Ultrasound
eye muscle area; UIMF, Ultrasound intramuscular fat; LR, Linear regression.

(A) and a genomic relationship matrix (G) (Legarra et al.,
2009; Aguilar et al., 2010; Christensen and Lund, 2010). Several
studies have indicated that this single-step method leads to
higher accuracy than the pedigree-based BLUP or genomic BLUP
(GBLUP) in Hanwoo cattle (Lee et al., 2017; Mehrban et al.,
2019; Lopez et al., 2020; Naserkheil et al., 2020) and other beef
cattle (Onogi et al., 2014; Lourenco et al., 2015; Elzo et al.,
2017). Most of these studies have been based on single-trait
analyses, although this method is suitable for multi-trait analyses.
Previously, it has been shown that a multi-trait genomic model
for genetically correlated traits can increase the accuracy of
breeding values compared to single-trait genomic models using
simulated (Calus and Veerkamp, 2011; Guo et al., 2014) and real
data (Jia and Jannink, 2012; Ismael et al., 2017; Mehrban et al.,
2019; Song et al., 2019). In our previous study (Mehrban et al.,
2019), the strong positive genetic correlation between yearling
weight and CW resulted in an improvement in the accuracy
of genomic prediction for CW in Hanwoo when using multi-
trait genetic analyses. Furthermore, based on the literature, it
is expected that the use of yearling weight and ultrasound data
can improve the accuracy of genomic prediction for carcass
traits while simultaneously reducing the generation interval (Elzo
et al., 2017; Mehrban et al., 2019). Nonetheless, utilizing all
available yearling ultrasound measurements to further increase
the accuracy of genomic prediction for corresponding carcass
traits in Hanwoo cattle has not yet been investigated. Hence,
the objective of this study was to assess the improvement in the
accuracy of genetic predictions for carcass traits by using yearling
measurements on weight and ultrasound traits as well as genomic
information in Hanwoo beef cattle. To this aim four models:
pedigree-based single-trait BLUP (ST-BLUP), pedigree-based
multi-trait BLUP (MT-BLUP), single-trait single-step genomic
BLUP (ST-ssGBLUP), and multi-trait single-step genomic BLUP
(MT-ssGBLUP) were compared, based on bias, dispersion, and
accuracy of breeding values for carcass traits using a linear
regression (LR) method (Legarra and Reverter, 2018).

MATERIALS AND METHODS

Animals and Phenotypes
The phenotypic measurements used in this study were derived
from 10,114 bulls and 5,682 Hanwoo steers born between 1997
and 2017 at Hanwoo Experiment Station (Seosan, South Korea).

The records of body weight at 12 months of age for 15,796
animals, yearling ultrasound traits of 8,945 animals, carcass
traits of 5,622 steers, and a pedigree consisting of 54,284
animals were used.

The eight traits analyzed were yearling body weight (YW),
ultrasound backfat thickness (UBFT), ultrasound eye muscle area
(UEMA), ultrasound intramuscular fat (UIMF), BFT, CW, EMA,
and MS. Briefly, carcass traits were measured according to the
Korean carcass grading system in steers at approximately 24
months of age, ribbed between the 13th rib and the first lumbar
vertebrae after chilling for approximately 24 h postmortem. The
MS was graded using a 9-point scale following the Korean Beef
Marbling Standard (1 = trace, 9 = very abundant). The ultrasound
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TABLE 1 | Descriptive statistics for the ultrasound at 12 months of age, carcass
traits, and yearling weight in Hanwoo cattle.

Trait (unit) n Mean (SE) min max SD CV (%)

UIMF (%) 8943 2.57 (0.02) 0.10 13.40 1.43 55.57

UEMA (cm2) 8945 54.11 (0.08) 24.20 88.70 7.90 14.59

UBFT (mm) 8945 3.68 (0.01) 1.10 9.10 1.05 28.55

BFT (mm) 5622 9.92 (0.05) 1.00 35.00 3.95 39.83

CW (kg) 5619 370.48 (0.57) 213.00 562.00 42.80 11.55

EMA(cm2) 5617 81.62 (0.12) 50.00 121.00 8.98 11.00

MS (score) 5622 3.53 (0.02) 1.00 9.00 1.64 46.50

YW (kg) 15796 357.13 (0.35) 190.49 547.65 44.07 12.34

UIMF, ultrasound of intramuscular fat; UEMA, ultrasound of EMA; UBFT, ultrasound
BFT; BFT, backfat thickness; CW, carcass weight; EMA, eye muscle area; MS,
marbling score; YW, yearling weight. SE: standard error; SD: standard deviation;
CV: coefficient of variation.

carcass traits were collected by an experienced technician using
a B-mode real-time ultrasound device (HS-2000, FHK Co. Ltd,
Japan) with an 18 cm, 3.5 MHz linear probe. The animals were
scanned for the longissimus muscle area between the 13th rib
and the first lumbar UBFT over the longissimus muscle at point
three-fourths the length ventrally of the longissimus muscle area,
and UIMF was the percentage intramuscular fat. Phenotypic
data for UBFT, UEMA, and UIMF were obtained by analyzing
the ultrasonic images with scanning software developed by HIC
based on the CUP Lab at Iowa State University1. The yearling
weight for each animal was determined from the weight at the
termination of the test (body weight at ∼12 months) and the
previous weight recorded at a time point before the termination
(body weight at∼6 months), according to the equation described
by Park et al. (2013). Descriptive statistics are shown for each trait
in Table 1.

Genotypes
A total of 6,616 animals were genotyped (animal and SNP
call rate > 90%) with the Illumina Bovine SNP50 BeadChip
(Illumina, San Diego, CA, United States). These genotyping
data were from animals (4,284 steers and 2,332 bulls) with at
least one observation for the interest of traits or as a sire in
the pedigree. Missing genotypes of SNPs were imputed using
FImpute V3 software (Sargolzaei et al., 2014), and 52,791 SNPs
on the 29 chromosomes were obtained. Markers with minor
allele frequencies lower than 0.01 (8,819 SNPs), and a maximum
difference between the observed and expected frequency of
0.15, as a departure of heterozygous from the Hardy-Weinberg
equilibrium (23 SNPs) were excluded. After quality control, the
number of SNPs remaining for subsequent analyses was 43,949.

Statistical Analyses
Estimation of Variance-Covariance Components
The Bayesian multi-trait pedigree-based animal model was
applied to obtain variance-covariance components for YW,
ultrasound, and carcass traits using the gibbsf90test software
(Misztal et al., 2015) as follows:

y = Xb + Zu + e (1)

1https://www.cuplab.com

where y is the vector of observations for the trait of interest; b
is the vector of fixed effects, including batch-sex-technician (108
levels), birth place (103 levels), and age of recording as a covariate
for ultrasound traits; batch-sex (87 levels) and birth place (109
levels) for YW, slaughter date (274 levels), and slaughter age (days
from birth to slaughter) was considered as a covariate for carcass
traits; u is the vector of random genetic additive effects; e is the
vector of random residual effects; X and Z are incidence matrices
related to fixed and random genetic additive effects, respectively.
Var(u) = G

⊗
A and Var(e) = R

⊗
I were assumed, where A is the

numerator relationship matrix, I is the identity matrix, and G and
R are additive genetic and residual covariance, respectively, for
the eight traits.

The Markov Chain Monte Carlo (MCMC) method was used to
estimate variance components and heritabilities in 550,000 cycles
with a thinning interval of 50 and 50,000 iterations as burn-in.
The convergence of the chain was verified by visual inspection
of trace plots. The variance components and correlations were
estimated as the posterior means of the corresponding sampled
values. Furthermore, the estimated variance components from
the multi-trait model were compared with those obtained using
a single-trait animal model, which assumes zero for genetic and
residual covariance among the traits.

Modeling Methods
Pedigree-Based BLUP
Pedigree-based evaluations were performed to estimate breeding
values for each trait based on ST-BLUP and MT-BLUP models.
The model is defined in equation (1). Furthermore, the genetic
and residual covariances for the eight traits were assumed to be
zero for the ST-BLUP model.

Single-Step GBLUP
The ssGBLUP analyses using both ST-ssGBLUP and MT-
ssGBLUP models were applied for genetic evaluations, which
combined pedigree and genomic information. The ssGBLUP has
the same model as BLUP, except for the inverse of numerator
relationship matrix A − 1, which was replaced by matrix H − 1.
This matrix was obtained using the following equation (Aguilar
et al., 2010, 2011) with preGSf90 software (Aguilar et al., 2014):

H−1
= A−1

+

[
0 0
0 (0.95G+ 0.05A22)

−1
− A−1

22

]
(2)

where A is the numerator relationship matrix, G is the genomic
relationship matrix (VanRaden, 2008), and A22 is the numerator
relationship matrix for genotyped animals.

Variance components used in the MT-BLUP (ST-BLUP)
and MT-ssGBLUP (ST-ssGBLUP) were estimated using the
pedigree-based multi-trait (single-trait) animal model (Equation
1). Breeding values in all models were obtained using BLUPF90
software (Misztal et al., 2015).

Genetic Evaluation at Birth and Yearling Date
Genetic evaluation of animals can be performed at two stages of
birth or yearling dates (Kim et al., 2017), regardless of whether
single- or multi-trait models are considered and with or without
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genomic information. Note that the phenotype data of steers
obtained at slaughter date (around two years of age), but the body
weight and ultrasound measurements were also recorded at the
yearling date for each animal. In traditional BLUP evaluations,
the EBV of carcass traits for a steer can be expressed as the parent
average EBV at birth date and the composition of parent average
and the yield deviation (due to correlated traits) at the yearling
date (Mrode, 2014). In addition, genomic information contains
direct genomic value and pedigree prediction derived from A22
(Aguilar et al., 2010). Hence, the extra source of information to
estimate breeding values at the yearling date relative to the birth
date is the part of the yield deviation, regardless of the model.
By comparing the two evaluations at birth and yearling dates,
increases in accuracy due to including correlated traits (yearling
measurement of weight and ultrasound) of focal animals in the
models can be observed.

Assessment of Accuracy, Bias, and Dispersion
There are several validation methods to evaluate genetic
prediction (Legarra and Reverter, 2018); however, a validation
method that can support any model and any data structure
is preferable. Recently, Legarra and Reverter (2018) described
the ability of the LR method to validate the results obtained
from genetic evaluations. In this method, estimates of bias,
dispersion, and accuracy of EBV/GEBV derived from a dataset
containing old (“partial”) compared with a dataset containing
both old and new records (“whole”) for the same individuals.
The validation population was defined as animals born in 2016
and 2017; therefore, the EBV/GEBV were estimated for focal
animals in either the whole and partial dataset using different
models. In the partial dataset, the phenotypes of focal animals
were assumed to be unknown, and only the genotypes and
pedigree information were retained. The number of steers in the
focal population was 803 for carcass traits, 815 for ultrasound
traits, and 817 for YW. The expectation of EBV/GEBV accuracy

from the partial dataset is ρw,p =

√
cov(ûw,ûp)

(1+F̄+2f̄)σ2
u,∞

, where F̄ is

the average inbreeding coefficient, 2f̄ is the average relationship
between individuals, σ2

u,∞ is the genetic variance at equilibrium
in a population under selection, which is estimated using Gibbs
sampling technique described by Sorensen et al. (2001), and
ûw(ûp) is the vector of estimated breeding value for focal
animals using the whole (partial) dataset (Legarra and Reverter,
2018). Estimator 1

ρpi,pMT−ssGBLUP
represents the relative increase

in accuracy from the ith method to MT-ssGBLUP in the partial
data (Legarra and Reverter, 2018). Thus, 1

ρpi,pMT−ssGBLUP
− 1 is

the superiority of accuracy using MT-ssGBLUP compared to the
ith method in all traits under study when partial data were used.
This value confirms the extent to which the inclusion of genomic
information and correlated traits in the MT-ssGBLUP method
increases the accuracy of predictions for steers.

The expected bias is estimated from the difference between
the mean estimated breeding value in partial and whole data,
µw,p = ûp − ûw. The expected value of this estimator is zero
if the evaluation is unbiased. The estimator of dispersion of
the breeding value is the regression of ûw on ûp, bw,p =

cov(ûw,ûp)

var(ûp)
. In the absence of over- or under-dispersion of

breeding values, the expected value of this estimator is one
(Legarra and Reverter, 2018).

RESULTS

Estimates of Genetic Parameters
The variance components and heritability estimates were similar
for both single and multi-traits except for CW, in which
the magnitude of genetic variance in the multi-trait model
was significantly higher than in the single-trait, which led
to increasing heritability in the former (0.42) relative to the
latter (0.31) model. The estimated heritabilities were moderate
for the ultrasound and YW ranged from 0.19 to 0.33, while
the heritabilities were high for BFT, EMA, and MS traits
ranged from 0.48 to 0.59 (Supplementary Table 1). The lowest
and highest heritability values were obtained for UIMF and
MS, respectively, regardless of whether a single- or multi-
trait model was used.

Favorable and high genetic correlations were estimated
between UIMF and MS (0.78), UBFT and BFT (0.63), and
UEMA and EMA (0.65). In addition, the estimated genetic
correlation between YW and CW was positive and high
(0.84) and relatively moderate between YW and EMA (0.43)
(Supplementary Table 2). The phenotypic correlations were
generally lower than the genetic correlations between UIMF and
MS (0.42), UBFT and BFT (0.40), UEMA and EMA (0.48), and
YW and CW (0.78) (Supplementary Table 2).

Genetic Evaluation of Steers
Predictive accuracies for carcass traits at birth and yearling
dates of steers obtained with the four models (ST-BLUP, MT-
BLUP, ST-ssGBLUP, and MT-SSBLUP) are presented in Figures 1
and 2. Our results indicate that averaged across all traits, the
accuracy of ssGBLUP methods (0.52) was higher than that of
pedigree-based BLUP (0.34), regardless of the use of single-
or multi-trait models. On average, the accuracy of prediction
can be further improved by implementing yearling weight
and ultrasound data in the MT-ssGBLUP model (0.56) for
the corresponding carcass traits compared to the ST-ssGBLUP
model (0.49).

Genetic Evaluation of Steers at Birth
Date
The results showed that the accuracies of estimated breeding
values from single-step genomic BLUP methods were
substantially higher than those of conventional BLUP for
all traits, regardless of the single or multi-trait models. When
information on the correlated traits was included in the
prediction of breeding values in the multi-trait analyses, the
accuracy increased for BFT, CW, and EMA, whereas a trivial
gain in accuracy was observed for MS by changing from a
single-trait to a multi-trait model (Figure 1). Our results
show that the MT-ssGBLUP approximately doubled (100
% improvement) the accuracy of breeding values compared
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FIGURE 1 | Accuracy of breeding values obtained using BLUP (ST-BLUP, MT-BLUP) and ssGBLUP (ST-ssGBLUP, MT-ssGBLUP) models. 1
ρpi ,pMT−ssGBLUP

: the relative

increase of accuracy from ith model to MT-ssGBLUP in the partial data for steers at birth date. ST and MT are single-trait and multi-trait analyses, respectively. BFT,
backfat thickness; CW, carcass weight; EMA, eye muscle area; MS, marbling score; YW, yearling weight.

FIGURE 2 | Accuracy of breeding values obtained using BLUP (ST-BLUP, MT-BLUP) and ssGBLUP (ST-ssGBLUP, MT-ssGBLUP) models. 1
ρpi ,pMT−ssGBLUP

: the relative

increase of accuracy from ith model to MT-ssGBLUP in the partial data for steers at yearling date. ST and MT are single-trait and multi-trait analyses, respectively.
BFT, backfat thickness; CW, carcass weight; EMA, eye muscle area; MS, marbling score; YW, yearling weight.

with the ST-BLUP model, and the superiority over MT-BLUP
was obvious for BFT (69%), CW (68%), EMA (77%), and
MS (77%) in the present study. Moreover, the accuracy was

improved by 7% for BFT, 18% for CW, 13% for EMA, and
4% for MS by using the MT-ssGBLUP method rather than
the ST-ssGBLUP (Figure 1). Concerning the bias, for genetic
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predictions of validation animals, pedigree BLUP methods
showed less bias than predictions from ssGBLUP methods
for BFT, while bias for MS was small and similar in pedigree
and genomic methods. The smallest and largest biases for
CW were observed with the MT-BLUP and MT-ssGBLUP
methods, respectively. The prediction obtained with ST-BLUP
for EMA was marginally more biased compared with the other
three models (Figure 3). For all traits, the average value for
the estimator of dispersion varied from 0.72 to 1.13 (average
absolute deviation 0.99) for ST-BLUP, from 0.85 to 0.99 (average
absolute deviation 0.92) for MT-BLUP, from 0.92 to 1.15 (average
absolute deviation 0.98) for ST-ssGBLUP, and from 0.85 to
1.12 (average absolute deviation 0.94) for the MT-ssGBLUP
method (Figure 3).

Genetic Evaluation of Steers at Yearling
Date
Figure 2 compares the results obtained with ST-BLUP, MT-
BLUP, ST-ssGBLUP, and MT-ssGBLUP for carcass traits when
predictions were based on data of the correlated traits at the
yearling age of steers. Accuracies ranged from 0.24 to 0.30
(average 0.28) for ST-BLUP, from 0.41 to 0.61 (average 0.49) for
MT-BLUP, from 0.45 to 0.53 (average 0.49) for ST-ssGBLUP, and
from 0.53 to 0.75 (average 0.61) for the MT-ssGBLUP method.
Across the studied traits, the multi-trait models substantially
outperformed the single-trait models in both pedigree and
genomic evaluations. The highest accuracies were obtained when
using MT-ssGBLUP for all traits at the yearling date. The results
show that the relative gain in accuracy of GEBV using MT-
ssGBLUP was twice as high as that estimated with ST-BLUP

for BFT, EMA, and MS, whereas for CW it was approximately
triple. In addition, the MT-ssGBLUP method was superior to
MT-BLUP with an increase or relative gain of 34% for BFT,
17% for CW, 26% for EMA, and 39% for MS. In addition,
using the MT-ssGBLUP model led to an increase in accuracy of
20, 53, 37, and 13% for BFT, CW, EMA, and MS, respectively,
compared with the ST-ssBLUP model (Figure 2). In terms of
the GEBV bias of the validation individuals at the yearling
date, the MT-ssGBLUP had the lowest bias for CW and EMA,
while the pedigree-based BLUP methods showed the lowest bias
for the BFT trait (Figure 4). The bias estimates for MS were
not very different among the models except for MT-BLUP, in
which the highest bias was observed (Figure 4). Across the
studied traits, the value of dispersion ranged from 0.72 to 1.13
(average absolute deviation 0.99) for ST-BLUP, from 0.95 to 1.08
(average absolute deviation 1.02) for MT-BLUP, from 0.92 to
1.15 (average absolute deviation 0.98) for ST-ssGBLUP, and from
0.90 to 1.06 (average absolute deviation 0.98) for MT-ssGBLUP
method (Figure 4).

Comparisons of Accuracy, Bias, and
Dispersion Between Evaluation at Birth
and Yearling Date of Steers
The results of evaluations at birth date were comparable with
those obtained from the yearling date in terms of accuracy, bias,
and dispersion of predictions. When additional information of
the correlated traits at the yearling date was used, prediction
accuracies were higher than those of birth date for all traits
(Figures 1, 2). The results showed that the accuracies of
EBV/GEBV at the yearling date were higher than those derived

FIGURE 3 | Bias and Dispersion of breeding values obtained using BLUP (ST-BLUP, MT-BLUP) and ssGBLUP (ST-ssGBLUP, MT-ssGBLUP) models for steers at
birth date. ST and MT are single-trait and multi-trait analyses, respectively. BFT, backfat thickness; CW, carcass weight; EMA, eye muscle area; MS, marbling score;
YW, yearling weight.
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FIGURE 4 | Bias and Dispersion of breeding values obtained using BLUP (ST-BLUP, MT-BLUP) and ssGBLUP (ST-ssGBLUP, MT-ssGBLUP) models for steers at
yearling date. ST and MT are single-trait and multi-trait analyses, respectively. BFT, backfat thickness; CW, carcass weight; EMA, eye muscle area; MS, marbling
score; YW, yearling weight.

from multi-trait models at birth. The population accuracy
of GEBVs at yearling date compared with birth date were
0.56 vs. 0.48 for BFT, 0.75 vs. 0.58 for CW, 0.58 vs. 0.48
for EMA, and 0.53 vs. 0.49 for MS using the MT-ssGBLUP
method. In other words, this study showed the impact of
genomic information and the correlated traits on predictions
at yearling date (average 0.61) using the MT-ssGBLUP model,
which was advantageous compared to predictions at birth date
(average 0.51) in terms of accuracy. In addition, the results
of the MT-BLUP model at yearling (birth) date were 0.45
(0.29), 0.61 (0.35), 0.50 (0.33), and 0.41 (0.30) for BFT, CW,
EMA, and MS, respectively (Figures 1, 2). Regarding the bias,
predictions based on genomic information and the correlated
traits at the yearling date using multi-trait models appeared
to have less bias than predictions at birth date, except for
CW in the MT-BLUP model (Figures 3, 4). The results of
dispersion using multi-trait models showed values close to 1
at the yearling date for all traits when compared to birth date
(Figures 3, 4).

DISCUSSION

Based on the observed results, the yearling ultrasound and
carcass traits were moderate to high heritable traits, which
were comparable to those reported in Brangus (Moser et al.,
1998), Angus (Reverter et al., 2000), Simmental (Crews et al.,
2003), Nellore (Yokoo et al., 2015; Silva et al., 2021), multi-
breed Angus-Brahman (Elzo et al., 2017), and Hanwoo cattle

(Lee and Kim, 2004; Hwang et al., 2014; Choi et al., 2015).
Moreover, the heritability estimates for carcass traits and
yearling weight in our study corresponded to those obtained
by Mehrban et al. (2019) in Hanwoo cattle. Furthermore, our
results showed moderate to strong positive genetic correlations
between yearling ultrasound and corresponding carcass traits,
which were within the range of values estimated in the
literature (Moser et al., 1998; Reverter et al., 2000; Kemp
et al., 2002; Crews et al., 2003; Lee and Kim, 2004; Elzo
et al., 2017; Su et al., 2017). These results indicate that better
responses to selection for carcass traits can be expected when
the corresponding carcass traits are measured by ultrasound
at yearling age.

The results of this study showed that the accuracies of breeding
values obtained from ssGBLUP were substantially higher than
those of the traditional BLUP model for all traits at birth and
yearling date, regardless of using single- or multi-trait genomic
models. The observed gain in accuracy is due to additional
variation in genomic information capture in Mendelian sampling
by a realized relationship matrix (Christensen et al., 2012).
Hence, it was noted that the gain in accuracy from pedigree
to genomic predictions can be explained by better relationships
(VanRaden, 2008; Hayes et al., 2009). Consequently, the inclusion
of genomic information in the single-trait analyses led to an
average increase of accuracy from 0.28 to 0.49 by changing
the method from ST-BLUP to ST-ssGBLUP across all carcass
traits at birth or yearling date. Similarly, results of the multi-
trait methods showed an increase in accuracy of 0.32 to 0.51
at birth date and from 0.49 to 0.61 at yearling date by moving
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the method from MT-BLUP to MT-ssGBLUP for all the carcass
traits. Many studies have reported the superiority of ssGBLUP
over pedigree-based methods in both single (Tsuruta et al., 2011;
Carillier et al., 2014; Onogi et al., 2014; Koivula et al., 2015;
Lourenco et al., 2015; Lee et al., 2017; Teissier et al., 2018;
Oget et al., 2019; Lopez et al., 2020; Mehrban et al., 2021) and
multi-trait models (Mehrban et al., 2019; Karaman et al., 2020;
Lopez et al., 2020).

The accuracies of ST-BLUP models for carcass traits were
similar to those previously reported for Hanwoo beef cattle
(Lee et al., 2017; Mehrban et al., 2019; Lopez et al., 2020;
Mehrban et al., 2021); however, the accuracies derived from
ST-ssGBLUP models were lower than those obtained by Lopez
et al. (2020) and higher than those obtained by Lee et al. (2017)
and Mehrban et al. (2019). One of the main reasons for this
difference between the studies could be the difference in the
proportion of genotyped individuals as a reference population
(Goddard and Hayes, 2009; VanRaden et al., 2009). The number
of genotyped steers for carcass traits in previous studies in the
same breed was 988 (Lee et al., 2017), 1,151 (Mehrban et al.,
2019), and 16,892 (Lopez et al., 2020), while in this study it
was 4,284. Moreover, the accuracies of the ST-ssGBLUP model
for carcass traits were higher than those obtained by Mehrban
et al. (2021), except for CW using the same dataset. This
difference between the results of the two studies is due to the
cross-validation method. Mehrban et al. (2021) used fold-cross
validation with precorrected data that could be biased (Legarra
and Reverter, 2018). The LR method was addressed in this
study, without pre-corrected data. This method is independent
of heritability and errors in estimates of fixed effects (Legarra
and Reverter, 2018), in addition to the application of any
statistical model and any data structure (Misztal et al., 2020).
For instance, Bermann et al. (2021) applied the LR method to
analyze mortality in broiler chickens using a threshold model
and showed that this method is a useful tool for predicting
improvement in the accuracy of breeding values due to the
inclusion of genomic information.

One effective strategy to improve the accuracy of evaluations
for carcass traits that are difficult or expensive to measure is the
use of a multi-trait model with indicator traits that are easier or
cheaper to measure. One of the main benefits of the multi-trait
model is the simultaneous use of information from relatives and
genetically correlated traits, mostly for the candidate animals and
their offspring without any phenotypes (e.g., the pre-selection of
young bulls for progeny testing).

The results demonstrated that multi-trait models generally
yielded higher accuracies than single-trait models in both
pedigree and genomic evaluations. Based on our results, the
average improvement of the accuracies for carcass traits was
+4 percentage points (from 0.28 to 0.32%) using MT-BLUP
instead of ST-BLUP, and +2 percentage points (from 0.49
to 0.51) by changing the model from ST-ssGBLUP to MT-
ssGBLUP when using the information of correlated traits from
relatives at the birth date of steers. Similar to predictions at the
birth date, accuracies using multi-trait models were higher than
single-trait models for all traits at the yearling date because of
the additional information of correlated traits (yearling weight

and ultrasound traits) recorded from steers. In other words,
when the data for yearling ultrasound of steers as correlated
traits were available at yearling age, the average gain in accuracy
for carcass traits obtained +21 percentage points (from 0.28
to 0.49) by changing the model from ST-BLUP to MT-BLUP,
and +12 percentage points (from 0.49 to 0.61) by moving the
model from ST-ssGBLUP to MT-ssGBLUP. Consistent with our
results, several previous studies have shown that multi-trait
genomic prediction is superior to single-trait genomic analyses
using simulated (Calus and Veerkamp, 2011; Guo et al., 2014)
and real data (Jia and Jannink, 2012; Schulthess et al., 2016;
Ismael et al., 2017; Mehrban et al., 2019; Song et al., 2019;
Karaman et al., 2020).

In general, the advantage of using multi-trait models for
improving the prediction accuracies at the yearling date was
more obvious than those obtained at the birth date for all
the considered traits. These results can be attributed to the
use of phenotypic records from YW and ultrasound traits
of steers (in the validation population) in addition to their
relatives’ information at the yearling date, whereas information
from the correlated traits (YW and ultrasound traits) is not
available for focal animals at birth, and only information
from their relatives was included in the multi-trait models.
In this line, (Ismael et al., 2017) revealed that using a multi-
trait model improved the reliability of breeding values for an
interval from calving to first high activity, while no gain was
observed for calving to first insemination, resulting in the
number of phenotypic records being higher for those calving
to first insemination (1,472,313) than those calving to first
high activity (36,504). Similarly, Song et al. (2019) reported
that the ssGBLUP model performed better than both the
pedigree-based BLUP or GBLUP for seven body measurement
traits in pigs. They demonstrated an improvement in accuracy
from a two-trait ssGBLUP model compared to ST-ssGBLUP
when a high genetic correlation between traits was observed.
Moreover, a similar conclusion was drawn by Sun et al. (2010),
who reported that the reliability of EBV for fertility traits
(low heritability) was increased with the multi-trait traditional
BLUP model when information regarding milk yield traits
(high heritability) as a genetically correlated trait was used
in Danish Holstein cattle. Similar to the findings of Mehrban
et al. (2019), the prediction accuracy was improved for CW
and EMA by switching from a single-trait to multi-trait model;
however, for two other traits (BFT and MS), the results of
that study disagree with our findings using the multi-trait
model. This difference can be explained by the existence of a
high genetic correlation between BFT and UBFT (0.63), and
MS and UIMF (0.78), along with the inclusion of ultrasound
measurements on the candidate animals in the multi-trait
model. Lopez et al. (2020) indicated that accuracies from single-
trait and multi-trait models were similar for carcass traits,
which is inconsistent with the results of the present study.
However, they did not consider YW and ultrasound traits in
the model and found low to moderate genetic correlations
among carcass traits. Consequently, the results of the current
study demonstrated that the genetic gain in carcass traits
can be improved at birth and yearling date when yearling
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weight and ultrasound traits are included as correlated traits in a
multi-trait model.

CONCLUSION

The findings revealed that using genomic information along
with including high genetically correlated traits, such as yearling
weight and ultrasound traits, in the multi-trait model can be
useful in ongoing Hanwoo cattle breeding programs, especially
for traits that are difficult to measure, such as carcass traits.
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