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Hybrid rice varieties can outyield the best inbred varieties by 15 – 30% with appropriate
management. However, hybrid rice requires more inputs and management than inbred
rice to realize a yield advantage in high-yielding environments. The development of
stress-tolerant hybrid rice with lowered input requirements could increase hybrid rice
yield relative to production costs. We used genomic prediction to evaluate the combining
abilities of 564 stress-tolerant lines used to develop Green Super Rice with 13 male
sterile lines of the International Rice Research Institute for yield-related traits. We also
evaluated the performance of their F1 hybrids. We identified male sterile lines with good
combining ability as well as F1 hybrids with potential further use in product development.
For yield per plant, accuracies of genomic predictions of hybrid genetic values ranged
from 0.490 to 0.822 in cross-validation if neither parent or up to both parents were
included in the training set, and both general and specific combining abilities were
modeled. The accuracy of phenotypic selection for hybrid yield per plant was 0.682.
The accuracy of genomic predictions of male GCA for yield per plant was 0.241, while
the accuracy of phenotypic selection was 0.562. At the observed accuracies, genomic
prediction of hybrid genetic value could allow improved identification of high-performing
single crosses. In a reciprocal recurrent genomic selection program with an accelerated
breeding cycle, observed male GCA genomic prediction accuracies would lead to similar
rates of genetic gain as phenotypic selection. It is likely that prediction accuracies of male
GCA could be improved further by targeted expansion of the training set. Additionally,
we tested the correlation of parental genetic distance with mid-parent heterosis in the
phenotyped hybrids. We found the average mid-parent heterosis for yield per plant
to be consistent with existing literature values at 32.0%. In the overall population of
study, parental genetic distance was significantly negatively correlated with mid-parent
heterosis for yield per plant (r = −0.131) and potential yield (r = −0.092), but within
female families the correlations were non-significant and near zero. As such, positive
parental genetic distance was not reliably associated with positive mid-parent heterosis.
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INTRODUCTION

Hybrid crop varieties are economically valued for increased vigor,
yield, yield stability, and uniformity in species including maize,
sugar beet, and cotton (Hochholdinger and Baldauf, 2018). Rice
(Oryza sativa L.) is a self-pollinated crop that has traditionally
been cultivated as an inbred, but the introduction of male sterility
into cultivated germplasm in the 1970s enabled hybrid breeding
(Virmani and Wan, 1988; Yuan et al., 1989; Nalley et al., 2017).
Public hybrid rice varietal development to date has resulted
primarily from identification of superior single crosses rather
than the systematic breeding of heterotic pools (Lu and Xu, 2010;
Spielman et al., 2013). Developing heterotic pools for rice by
reciprocal recurrent selection methods may increase the rate of
genetic gain for hybrid rice breeding compared to evaluating
random crosses, because reciprocal recurrent selection can
concurrently improve the additive value of the populations while
exploiting heterosis due to dominance (Comstock et al., 1949).

Existing hybrid rice varieties may outyield the best inbred
varieties by 10 to 30% with appropriate management (Spielman
et al., 2013). However, adoption of hybrid rice varieties is low
outside of China, in part because the hybrid yield advantage
of temperate japonica varieties used in China is much greater
than that observed in tropical indica varieties to date (Janaiah
and Xie, 2010; Longin et al., 2012; Spielman et al., 2013). In
some countries, socioeconomic factors such as lack of irrigation
systems, paved roads, certified seed suppliers, seed marketing,
farmer education, and available credit to purchase seed and
fertilizer have limited hybrid rice adoption (Mottaleb et al.,
2015; Abebrese et al., 2019). Of the agronomic factors that
influence hybrid rice adoption, poor grain quality has been a
longstanding challenge, but breeding progress since the early
2000s has produced some acceptable varieties (Spielman et al.,
2013). Surveys of farmers suggest that poor quality is not the
primary determinant of hybrid rice rejection (Spielman et al.,
2013; Feng et al., 2017). Farmers choose not to grow hybrid
rice for many reasons, including the high cost of seed, poor
seed quality, and lack of hybrid seed availability (Spielman
et al., 2013). However, the key agronomic reason for limited
adoption is that hybrid rice varieties require more intensive
management of irrigation, fertilizer, weeds, and other biotic
stressors to provide a yield advantage over inbred varieties in
otherwise high-yielding environments (Spielman et al., 2013;
Mottaleb et al., 2015; Nalley et al., 2016). Therefore, the
development of stress-tolerant hybrids with lowered input
requirements could spur hybrid adoption and unlock hybrid
yield advantages.

In this study, we evaluated the general combining abilities
(GCAs) of the existing male sterile lines of the International Rice
Research Institute (IRRI) with stress-tolerant germplasm used
in the development of Green Super Rice varieties, as well as
the performance, or genetic value, of their F1 hybrids (Sprague
and Tatum, 1942; Ali et al., 2018; Yu et al., 2020). The founders
of the Green Super Rice program were selected for multiple
stress tolerances, including salinity, submergence, tungro disease,
anaerobic germination conditions, and low water and nitrogen
inputs (Ali et al., 2018). We sought to identify any outstanding

F1 hybrids—which may be as stress-tolerant and yet higher-
yielding than existing Green Super Rice lines—to advance for
further testing for varietal release. We also sought to identify
male and female lines with superior GCA which could be used to
initiate the development of heterotic pools from IRRI germplasm,
presumably stacked with alleles conferring stress tolerance. In
addition to phenotypic evaluation, we used genomic prediction
to evaluate non-phenotyped parental lines and hybrid crosses.

We also tested whether parental genetic distance was
correlated with mid-parent heterosis using a large sample
of hybrids and genome-wide molecular markers. Mid-parent
heterosis due to dominance is expected to be positively correlated
with parental squared difference in allele frequency (SDAF)
by quantitative genetic theory (Falconer and Mackay, 1996;
Amuzu-Aweh et al., 2013). It has also been posited that genetic
divergence in founders of heterotic pools may lead to improved
gain in reciprocal recurrent selection programs, even though in
practice heterotic pools have been developed from closely related
germplasm in species such as maize (Melchinger, 1999; Tracy
and Chandler, 2006; Rembe et al., 2019). A previous study of
rice which used > 100k genome wide markers and six parental
lines found a curvilinear relationship of genetic distance and
mid-parent heterosis, with mid-parent heterosis increasing with
genetic distance to a point and then declining (Waters et al.,
2015). Due to past lack of availability of molecular markers,
other studies used fewer than 500 markers and found positive
correlations of genetic distance and heterosis using 10 or 22
parents (Xiao et al., 1996; Kwon et al., 2002). However, another
study using 319 markers found no correlation of genetic distance
and heterosis in progeny of 13 parents (Boeven et al., 2020). In
other species, such as wheat, whether parental genetic distance
is correlated with heterosis varies, with different findings among
studies and populations (Melchinger, 1999; Boeven et al., 2020).
We wished to test whether parents of hybrids with high SDAF
tended to produce hybrids with high mid-parent heterosis in our
rice population of study.

MATERIALS AND METHODS

Plant Materials and Population Design
The plant materials for prediction comprised 13 female
lines, 564 male lines, and their 10,716 possible F1 hybrids
(Supplementary File 1). Twelve of the female lines were wild-
abortive cytoplasmic male sterile (CMS), and one female line,
A07, was thermosensitive genic male sterile (TGMS). The 564
male tester lines were backcross introgression lines (BILs) from
11 families. Each family of BILs was generated by crossing one
of the 11 diverse males to a common female, Weed Tolerant
Rice 1 (WTR-1), and advancing the backcrosses to the BC1F5
generation under stringent selection for multiple stress tolerances
as described in Ali et al. (2018). The recurrent parent, WTR-
1, was a restorer line, but the male lines likely segregated for
fertility restoration.

Of the 10,716 possible F1 hybrids, a random subset of 938 were
made to comprise the genomic prediction model training set by
crossing six female lines to 137 males. To avoid unintentional
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selection for synchronous flowering, the female parents had two
planting dates. None of the 137 male lines were completely
crossed to all six females. However, in pairwise comparisons of
females, all females had some overlap with each other female in
males crossed (Supplementary Table 1). In total, 85 of the males
were crossed to a single female, 108 of the males were crossed
to 2 females, 124 of the males were crossed to 3 females, 60 of
the males were crossed to 4 females, and 5 of the males were
crossed to 5 females. All female lines were manually emasculated
to prevent contamination by selfing and to expose the stigma.

Two groups of lines were used to estimate mid-parent
heterosis and commercial relative performance but were not
included for prediction. The five maintainer (B) lines of the five
CMS female parents were used to estimate mid-parent heterosis.
Six inbred lines were used as commercial checks to estimate
commercial relative performance: five of the donor parents, Y 134
(DP 6), Khazar (DP 8), OM 997 (DP 10), M 401 (DP17), and X
21 (DP19), and the recurrent parent, WTR-1.

Field Experimental Design
The F1 hybrids, their inbred parents, the female maintainer
lines, and the commercial checks were phenotyped in an
unbalanced randomized complete block design (RCBD) in two
environments, irrigated lowland and irrigated upland, at the
IRRI farm (approximately 14◦09′50.7′′ N, 121◦15′50.5′′ E) in the
dry season of 2018. After establishment in seedbeds on January
8, 2018, seedlings were transplanted at the three-leaf stage.
Transplanting occurred on January 31, 2018, at the irrigated
lowland site and on February 8, 2018, at the irrigated upland
site. The plants were harvested the week of May 14, 2018. Basal
NPK fertilizer was applied at a rate of 30 kg/ha, and zinc was
applied at a rate of 5 kg/ha. N fertilizer was also applied at 28–
30 days after transplanting and at the panicle initiation stage
(42 days after transplanting) at a rate of 35 kg/ha. Rat fences
were installed at both locations; bird pressure was controlled by
farmworkers in the lowland environment, and by a bird net at
the upland environment. Both environments were hand-weeded.
Both environments were irrigated, but the lowland environment
was continuously flooded to a depth of ∼10 cm, whereas water
depth was allowed to vary in the upland field. Insect pressure
was controlled by application of Regent R© pesticide (fipronil).
Temperatures were sufficient throughout the growing season to
ensure seed set in the TGMS female line A07.

The field layout was designed in PBTools 1.4, which depends
on the R package agricolae (IRRI, 2014; de Mendiburu, 2020).
There were two blocks per environment with one replicate
per genotype per block, but replicates were missing for some
genotypes. Genotypes were replicated in single-row plots due to
limited availability of hybrid seed, with five plants per row, and
plants were spaced to 25 × 20 cm within rows. Measurements
were only recorded for plants at 20 cm spacing within rows; i.e.,
edge plants were not measured, nor were plants with missing
neighbor plants within the row.

The following traits or trait derivatives were phenotyped: plant
height, number of tillers, panicle dry weight, panicle length,
proportion of spikelets filled, yield per plant, and yield potential
per plant (Supplementary File 1). For all genotype replicates,

phenotypes were averaged across measured plants in a single-row
plot; plants were subsamples, but were not treated as subsamples
in downstream modeling because subsampling variance was not
of interest. Plant height was measured from the base of the plant
to the panicle tip after flowering. All tillers were assumed to be
productive based on observations in a subset of samples. For
panicle measurements and yield estimates, three random panicles
were harvested from each sampled plant, totaling nine panicles
per replicate. Panicle length was measured from the pedicel to
the panicle tip and averaged across all panicles in a replicate. For
a given replicate, yield per plant was calculated as panicle dry
weight times tiller number. For a given replicate, yield potential
per plant was calculated as average panicle dry weight divided by
proportion of spikelets filled times tiller number. Yield potential
per plant and proportion of spikelets filled were only measured in
the irrigated lowland environment due to cost.

Molecular Marker Generation and
Analysis
Genome-wide molecular markers were generated for the parents
with tunable genotyping-by-sequencing R© (tGBS) by data2Bio
and its subsidiary, Freedom Markers, in Ames, Iowa (Ali et al.,
2017; Ott et al., 2017). In general, each individual DNA sample
was double-digested with restriction enzymes, then the resulting
fragments were ligated to a uniquely barcoded adapter at the
5′ end. At the 3′ end, the fragments were ligated to a universal
sequencing adapter. However, in the first subsequent PCR
amplification of the library, the complementary primer for the
universal sequencing adapter was extended by 1-3 nucleotides;
only fragments in which the genomic sequence complemented
the extension were amplified. Then, the libraries were amplified
with Ion Proton sequencing primers.

The male and female parents were sequenced in separate Ion
Proton runs. For the male parents, a total of ten Ion Proton runs
were done; the female parents were sequenced in two Ion proton
runs as part of a larger set. The Ion Proton sequencing reads were
trimmed by the manufacturer to remove adapter sequence and
bases with PHRED quality scores less than 15 in the software Lucy
(Chou and Holmes, 2001). For the female parent A07, additional
RAD-sequencing was done in-house. In brief, DNA was extracted
from mature leaf tissue of the A07 parent and digested separately
with one of three enzyme combinations: ApeKI-PstI, HinP1I-PstI,
or ApeKI only. Then, each digestion was ligated separately to
unique barcoded adapters and subsequently pooled. Fragments
were selected for sizes ranging from 200–500 bp, and the libraries
were amplified by PCR. Then, the libraries were sequenced
for single-read 100 bp reads with an Illumina NovaSeq6000
SP. All reads were aligned to the Nipponbare IRGSP-1.0 v7
reference genome in GSNAP 2017-11-15 (Kawahara et al., 2013;
Wu et al., 2016). Then, variants were called in BCFtools 1.7
(SAMtools, 2018).

Variant sites were filtered separately within the male and
female parent sets in TASSEL 5.0 (Glaubitz et al., 2014). Within
sets, only the 2 most major alleles of the variant were considered,
and at most 50% of the individuals were permitted to be
heterozygous. In the females, the minimum site count was
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FIGURE 1 | Neighbor-joining tree of the parental lines used in the study. Color indicates the female parents (light blue) and, for the male parents, their subfamily by
donor parent (all other colors). The recurrent parent for all males was WTR-1.

2 (corresponding to a minimum site presence of 10% in all
females), and the minimum minor allele count was 2, yielding
77,709 polymorphic sites among the females. In the males, the
minimum site count was 188 (corresponding to a minimum site
presence of 33% in the males), and the minimum minor allele
count was 3, yielding 148,922 total polymorphic sites among
the males. The genotypes were imputed separately for males
and females in Beagle 5.0 (Browning et al., 2018). Principal
components analysis of the male and female parent genotypes
was done using 20,000 sites common to both using the glPca
function in the R package adegenet (Jombart and Ahmed, 2011).
The F1 hybrid genotypes were inferred from the same 20,000 sites
common to males and females using the build.HMM function in

the R package sommer version 3.8 (Covarrubias-Pazaran, 2016,
2018). A phylogenetic neighbor-joining tree of the male and
female parent genotypes was constructed in TASSEL 5.0 using the
same common 20,000 sites, and the tree was visualized in the R
package ape version 5.5 (Figure 1; Paradis and Schliep, 2019).

The additive relationship matrices of each the females, males,
and F1 hybrids, denoted respectively as GF, GM, and GH, were
calculated with the A.mat function in sommer by the method of
Endelman and Jannink (2012). The 77,709 imputed female sites
were used to estimate GF, and the 148,922 imputed male sites
were used to estimate GM. The hybrid genotypes inferred from
the 20,000 sites common to males and females via the build.HMM
function were used to estimate GH. The specific combining ability
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(SCA) relationship matrix GFM was the Kronecker product of the
male and female additive relationship matrices (Bernardo, 2002).
Pairwise SDAF, a hypothetical predictor of mid-parent heterosis,
was calculated as:

SDAFij =
∑N

n=1 (pin − pjn)2

N
(1)

Where SDAFij was the squared difference in allele frequency
between the ith female parent and the jth male parent, pin − pjn
was the difference allele frequency between the ith female parent
and jth male parent at the nth variant site, and N was the total
number of variant sites.

Modeling and Statistical Analysis
All linear models were fit in a single step with the mmer function
in sommer (Covarrubias-Pazaran, 2016, 2018). For a given trait,
i.e., plant height, tiller number, panicle length, average yield per
plant, proportion of spikelets filled, or potential yield per plant,
the genotype replicates (i.e., single-row plots) were considered
the experimental unit. Genetic variances for plant height, tiller
number, panicle length, and average yield per plant traits were
estimated with models of the following form:

Yijkl = µ+ Hi + Ej + HEij + B(k)j + εijkl (2)

where Yijkl was the random phenotypic response of the ith

single-cross hybrid genotype in the kth block nested in the jth
environment from the lth replicate, µ was the grand mean, Hi
was the random effect of the ith hybrid genotype with N(0, Iσ2

H),
Ej was the random effect of the jth environment with N(0, Iσ2

E),
HEij was the random interaction of the ith hybrid genotype and
the jth environment with N(0, Iσ2

HE), B(k)j was the effect of the
kth block nested within the jth environment with N(0, Iσ2

B), and
εijkl was the random error associated with each replicate with
N(0, Iσ 2

e ).
The genetic variance for proportion of spikelets filled and

potential yield per plant was estimated using the following
model in (3), without the environment term and its associated
interactions, because the traits were only phenotyped in the
irrigated lowland environment:

Yijk = µ+ Hi + Bj + εijk (3)

Yijk was the random phenotypic response of the ith hybrid
genotype in the jth block from the kth replicate, µ was the grand
mean, Hi was the random effect of the ith hybrid genotype
with N(0, Iσ2

H), Bj was the random effect of the jth block with
N(0, Iσ2

B), and εijk was the random error associated with each
replicate with N(0, Iσ 2

e ).
The entry-mean heritability was estimated for each of height,

tiller number, panicle length, and yield per plant by (4) following
the method of Holland et al. (2003) for unbalanced RCBDs:

H2
=

σ2
H

σ2
H +

σ2
HE
hj
+

σ2
e
ht

(4)

where σ2
H was the variance among hybrid genotypes from

models of the form in (2), σ2
HE was the variance of the interaction

of the hybrid genotype and environment, σ2
e was the error

variance, hj was the harmonic mean of the number of total
observations of each hybrid genotype within an environment,
and ht was the harmonic mean of the total number of
observations per hybrid genotype.

For proportion of spikelets filled and potential yield,
which were phenotyped in a single environment, entry-mean
heritability was estimated by (5) also following Holland et al.
(2003), using the following equation with the terms as described
in (3):

H2
=

σ2
H

σ2
H +

σ2
e
ht

(5)

Additive genetic variances were estimated from models of the
form in (6) for plant height, tiller number, panicle length, and
yield per plant. The terms of (6) are the same as in (2), but in (6)
the random effect H was assumed to have a multivariate normal
(MVN) distribution with H ∼ MVN(0, GHσ2

H), where GH was
the additive genomic relationship matrix of the F1 hybrids:

Yijkl = µ+ Hi + Ej + HEij + B(k)j + εijkl (6)

Additive genetic variances for proportion of spikelets filled
and potential yield were estimated from model of the form in
(7), with the same terms as (3), but the random effect H was
assumed to have a multivariate normal (MVN) distribution with
H ∼ MVN(0, GHσ2

H), where GH was the additive genomic
relationship matrix of the F1 hybrids:

Yijk = µ+ Hi + Bj + εijk (7)

Narrow-sense heritability, or the proportion of additive
genetic variance out of total phenotypic variance, was estimated
on a single-plant basis for all traits. Variance components were
estimated from the models of the form in (6) for plant height,
tiller number, panicle length, and yield per plant, and narrow-
sense heritability was estimated with (8):

h2
=

σ2
H

σ2
H + σ2

HE + σ2
e

(8)

For proportion of spikelets filled and potential yield, narrow-
sense heritability was estimated using (9) with variances
estimated from the models of the form in (7):

h2
=

σ2
H

σ2
H + σ2

e
(9)

For each trait, genomic best linear unbiased predictions
(GBLUPs) of hybrid genetic value, male GCA, and female GCA
were each estimated using two separate models: the genomic
GCA model and the genomic GCA + SCA model. Model fits
were compared with the Akaike information criterion (AIC) and
Bayesian information criterion (BIC). The genomic GCA model
was:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk + εijklm
(10)
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where Yijklm was the random phenotypic response of a single-
cross hybrid of the ith female line and the jth male line observed
in the kth environment, lth block, and mth replicate, µ was the
grand mean, Fi was the random GCA effect of the ith female
parent with F ∼ MVN(0, GFσ

2
F) where GF was the additive

genomic relationship matrix among females, Mj was the random
GCA effect of the jth male parent with M ∼ MVN(0, GMσ2

M)
where GM was the additive genomic relationship matrix among
males, Ek was the effect of the kth environment with N(0, Iσ2

E),
B(l)k was the effect of the lth block nested in the kth environment
with N(0, Iσ2

B), FEik was the random interaction of the ith

female and the kth environment with N(0, Iσ2
FE), MEjk was the

random interaction of the jth male and the kth environment with
N(0, Iσ2

ME), and εijklm was the random error of each observation
with N(0, Iσ 2

e ).
The genomic GCA+ SCA model was:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ FMij + εijklm (11)

where terms were as described above, and FMij was the additional
random SCA interaction effect of the ith female and the jth
male, with FM ∼ MVN(0, GFMσ2

FM). GFM was the Kronecker
product of GF and GM (Bernardo, 2002).

Best linear unbiased predictions (BLUPs) of hybrid genetic
value and male and female GCAs were also estimated without
genomic information to 1) estimate the predictive ability and
prediction accuracy of the genomic prediction models, and 2)
estimate the accuracy of phenotypic selection. For the GCA
model, all terms remained the same as in (10), but the distribution
of the random effects of F and M were simply assumed to be
N(0, Iσ2

F) and N(0, Iσ2
M) respectively.

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ εijklm (12)

Similarly, for the GCA + SCA model, all terms remained
the same as in (11), but the distribution of the random effects
F, M and FM were assumed to be N(0, Iσ2

F), N(0, Iσ2
M), and

N(0, Iσ2
FM) respectively:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ FMij + εijklm (13)

There are multiple methods to estimate genomic prediction
accuracy (Estaghvirou et al., 2013). Here, predictive ability was
Pearson’s correlation of an estimated value and a true value.
Prediction accuracy was considered to be predictive ability
divided by the square root of the reliability of the estimated
value (Mrode, 2014). This method of estimating prediction
accuracy, which is well-established in animal breeding programs,
was chosen because it is relatively unbiased, precise, and stable
compared to other methods (Estaghvirou et al., 2013). Predictive
abilities of the genomic GCA and genomic GCA + SCA models
described in (10) and (11) were each estimated for male GCA by
ten-fold cross-validation (Resende et al., 2012). Sample size was

inadequate to estimate genomic predictive ability and accuracy
for female GCA. In each fold, the hybrid progeny phenotypes
of 38 of the males were masked from the training set, and the
masked training set was used to train the prediction model.
Predictive abilities for male GCA, or Pearson’s correlation of the
GBLUP of male GCA estimated in the training set fold and the
BLUP of male GCA estimated from all available observations
in the full dataset, were then calculated for the 38 masked
males and averaged across folds for each model. Prediction
accuracy for male GCA for each model was the predictive ability
divided by the square root of the reliability of the genomic
prediction. For each model, the square root of the reliability
of the genomic prediction was the correlation of the GBLUP
of male GCA and BLUP of male GCA when all available
observations were used for estimation of both, as in (10),
(11), (12), and (13).

Predictive abilities and prediction accuracies were also
estimated for hybrid genetic values for each phenotypic response
following Technow et al. (2014). For each of 500 replications,
four females and 127 males which had been crossed to at
least one of the four females were randomly sampled. Then,
a training set was formed by randomly sampling 150 hybrids
which had phenotypic records available, with the constraint
that the randomly sampled male and female lines had at least
one hybrid progeny in the training set. Predictive ability, here
Pearson’s correlation of the hybrid genetic values estimated
from the training fold and the observed hybrid genetic values,
was recorded for hybrids which were not included in the
training set. Predictive ability was recorded separately for
hybrids which had both parents included in the training set
(T2), one parent included in the training set (T1), only the
female parent included in the training set (T1F), only the
male parent included in the training set (T1M), and neither
parent included in the training set (T0). The prediction accuracy
was the predictive ability divided by the square root of the
reliability of the genomic prediction, here the correlation of the
genomic BLUP of hybrid genetic value and BLUP of hybrid
genetic value when all available observations were used for
estimation of both.

The accuracies of phenotypic selection for each trait were
estimated for male GCA, female GCA, and hybrid genetic value
as the square root of the reliabilities of their respective BLUPs
(Falconer and Mackay, 1996; Mrode, 2014). Reliabilities of male
GCA and female GCA were estimated from each the GCA model
in (12) and the GCA + SCA model in (13). Reliabilities of
hybrid genetic values were estimated from model (2) and (3).
To estimate each reliability, the prediction error variances (PEV)
of the appropriate BLUPs (i.e., of hybrid genetic value, female
GCA, or male GCA) were obtained in sommer by inverting the
coefficient matrix of the relevant model. For the BLUPs of male
GCA for a given model and trait, the reliability was the average
of:

1−
PEVj

σ2
M

(14)

where PEVj was the prediction error variance of the jth BLUP of
male GCA and σ2

M was the estimated male GCA variance. For the
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BLUPs of female GCA for a given model and trait, the reliability
was the average of:

1−
PEVi

σ2
F

(15)

where PEVi was the prediction error variance of the ith BLUP of
female GCA, and σ2

F was the estimated female GCA variance. For
the BLUPs of hybrid genetic value for a given trait from model
(2), the reliability was the average of:

1−
PEVi

σ2
H

(16)

where PEVi was the prediction error variance of the ith
BLUP of hybrid genetic value, and σ2

H was the estimated
variance among hybrids.

To assess correlation of SDAF with mid-parent heterosis, mid-
parent heterosis of each F1 hybrid was estimated using BLUPs of
genetic values from the following model:

Yijklm = µ+ Fi + Gj + Ek + GEjk + B(l)k + εijklm
(17)

Yijklm was the random phenotypic response and µ was the
grand mean. In the vein of Xiang et al. (2016) and Liang et al.
(2018), Fi was the fixed effect of an indicator of whether the
genotype was an inbred or F1 hybrid to account for the possibility
of differing inbred and hybrid group means in the presence of
heterosis.Gj was the random effect of the jth inbred parent, inbred
commercial check, or F1 hybrid genotype with N(0, Iσ2

G) Ek was
the random effect of the kth environment with N(0, Iσ2

E), GEjk
was the random interaction effect of the jth genotype and the kth

environment with N(0, Iσ2
GE), B(l)kwas the random effect of the

lth block nested within the kth environment with N(0, Iσ2
B), and

εijklmwas the random error associated with each observation with
N(0, Iσ2

e ). The environment term and its associated interactions
were dropped in estimation of yield potential and proportion of
spikelets filled, because they were observed only in the irrigated
lowland environment.

Mid-parent heterosis of each F1 hybrid was obtained as:

MPH =
Ĥ − M̂P

M̂P
(18)

where MPH was mid-heterosis, Ĥ was the BLUP of the F1
genotype value from (17), and M̂P was the mid-parent value,
i.e., the mean of the BLUPs from (17) of its parental genotype
values (Supplementary File 1). The BLUP of the ith genotype
value was the sum of µ, F̂i, and Ĝj from (17). Because the CMS
parents do not set seed, the corresponding maintainer (B) line
phenotype was used to estimate heterosis. Pearson’s correlation of
SDAF with mid-parent heterosis was estimated among all hybrids
in the study and also separately within families of hybrids with the
same female parent. Student’s t test of significance was conducted
at α = 0.05 for each correlation, with the null hypothesis that
a given correlation did not significantly differ from zero and
the alternate hypothesis that the given correlation significantly
differed from zero.

Commercial relative performance (commercial heterosis) was
estimated for each F1 hybrid with phenotypic observations
against each check as:

CRP =
Ĥ − Ĉ

Ĉ
(19)

where CRP was commercial relative performance, Ĥ was the
BLUP of the F1 hybrid genotype value from (17), and Ĉ was
the BLUP of the commercial check genotype value from (17).
The BLUP of the ith genotype value was the sum of µ, F̂i,
and Ĝj from (17).

RESULTS

Summary Statistics and Heritabilities
Mean phenotypic values for height, tiller number, panicle length,
proportion of spikelets filled, yield per plant, and potential yield
were respectively 85 cm, 14 tillers, 226 mm, 0.757, 36 g per
plant, and 54 g per plant (Supplementary Figure 1; Table 1).
Highest entry-mean heritability observed was for height at 0.906,
and lowest entry-mean heritability observed was for potential
yield at 0.311 (Table 2). Narrow-sense heritabilities on a single-
plant basis were greatest for the proportion of spikelets filled at
0.864 and least for potential yield at 0.271 (Table 2). Because
the narrow-sense heritability of proportion of spikelets filled
was high, perhaps due to differing genetic architectures between
TGMS and CMS lines for the trait, we also estimated the narrow-
sense heritability in the CMS lines only as 0.922 by removing
observations of the TGMS line A07 from the model. Principal
components analysis of the parental genotypes showed clustering
of the males and females, but divergence of the male and female
parents was not due to historical reciprocal recurrent selection
(Supplementary Figure 2).

Model Fit, Predictive Ability, and
Prediction Accuracy
For all traits, model fit was superior for the genomic GCA+ SCA
model compared to the genomic GCA model as assessed by

TABLE 1 | Trait mean phenotypic values and standard deviations overall and
within environments for the F1 hybrids.

Trait Mean ± Standard
Deviation, Overall

Mean ± Standard
Deviation,

Irrigated Lowland

Mean ± Standard
Deviation,

Irrigated Upland

Height (cm) 85 ± 15 89 ± 13 70 ± 11

Tiller Number 14 ± 5 16 ± 4 10 ± 3

Panicle Length
(mm)

226 ± 24 231 ± 22 213 ± 25

Proportion of
Spikelets Filled∗

0.757 ± 0.149

Yield per Plant (g) 36 ± 19 44 ± 17 18 ± 7

Potential Yield∗ (g) 54 ± 20

∗Proportion of spikelets filled and potential yield were only phenotyped in the
irrigated lowland environment.
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TABLE 2 | Estimates and their standard errors for each trait of entry-mean
heritability of the F1 hybrids and narrow-sense heritability on a single-plant basis.

Trait Entry-Mean Heritability Narrow-Sense Heritability

Height 0.906 ± 0.007 0.719 ± 0.029

Tiller Number 0.505 ± 0.034 0.376 ± 0.054

Panicle Length 0.824 ± 0.014 0.542 ± 0.046

Proportion of
Spikelets Filled

0.780 ± 0.014 0.864 ± 0.014*

Yield per Plant 0.433 ± 0.038 0.328 ± 0.055

Potential Yield 0.311 ± 0.046 0.271 ± 0.063

∗ In the CMS lines only, the narrow-sense heritability for proportion of spikelets filled
was 0.922 ± 0.008.

either AIC or BIC (Supplementary Tables 2, 3). However, the
predictive abilities and accuracies of the genomic GCA + SCA
models were not substantially different from the genomic
GCA models (Supplementary Tables 4, 5; Tables 3, 4). Mean
prediction accuracies for male GCA ranged from 0.215 to
0.318 for the genomic GCA models and 0.233 to 0.332 in the
genomic GCA + SCA models (Table 4). Prediction accuracies
for untested females were not estimated. For hybrids in the
T0 set, mean genomic GCA model accuracies ranged 0.039
to 0.394, while the genomic GCA + SCA model accuracies
ranged from 0.043 to 0.490. For hybrids in the T1 set, mean
genomic GCA model accuracies ranged from 0.476 to 0.806,
while the genomic GCA + SCA model accuracies ranged from
0.509 to 0.827. For hybrids in the T1F set, mean genomic
GCA model accuracies ranged from 0.310 to 0.908, while
the genomic GCA + SCA model accuracies ranged from
0.364 to 0.943. For hybrids in the T1M set, mean genomic
GCA model accuracies ranged from 0.537 to 0.742, while the
genomic GCA + SCA model accuracies ranged from 0.423 to
0.785. For hybrids in the T2 set, mean genomic GCA model

accuracies ranged from 0.769 to 0.948, while the genomic
GCA + SCA model accuracies ranged from 0.772 to 0.956
(Table 3). However, in the hybrid T0 case, accuracy for yield
per plant was increased from 0.215 to 0.490 by inclusion of
the SCA effect. No other trait had more than a 10% increase
in accuracy by inclusion of the SCA effect in the T0 case,
and substantial increases in accuracy with inclusion of the
SCA effect were not observed for yield per plant in scenarios
besides T0. Except in the case of proportion of spikelets filled,
accuracy in the T1F scenarios was always substantially higher
than the T1M scenarios.

The accuracy of phenotypic selection for hybrid genetic value
ranged from 0.566 to 0.952 among traits (Table 5). For the
GCA model, the accuracy of phenotypic selection for male GCA
ranged from 0.484 to 0.861, and the accuracy of phenotypic
selection for female GCA ranged from 0.853 to 0.910 (Tables 6, 7;
Supplementary Tables 6, 7). For the GCA + SCA model,
the accuracy of phenotypic selection for male GCA ranged
from 0.253 to 0.798, and the accuracy of phenotypic selection
for female GCA ranged from 0.850 to 0.910 (Tables 6, 7;
Supplementary Tables 6, 7).

Hybrid Genetic Value and Parental GCA
The genomic GCA+ SCA model was used to rank hybrid genetic
values. The maximum predicted F1 hybrid yield was 43.352 grams
per plant, which scaled to 8.670 tons per hectare (Supplementary
Table 8). The maximum predicted F1 hybrid potential yield
was 77.401 grams per plant, scaling to 15.479 tons per hectare
(Supplementary Table 9). Over half of the top 20 F1 hybrids in
terms of yield per plant had phenotypic observations available,
though the top-ranked hybrid did not. The relative performance
of the F1 hybrids compared to the commercial inbred checks
(commercial heterosis) ranged from −43.9% to 70.0% for yield
per plant (Supplementary Figure 3; Table 8). The maximum

TABLE 3 | Mean prediction accuracies ± standard error thereof in cross-validation of the genomic prediction models for hybrids.

Trait T0 T1 T1F T1M T2

Genomic GCA model

Height 0.345 ± 0.013 0.793 ± 0.009 0.908 ± 0.007 0.562 ± 0.006 0.948 ± 0.003

Tiller Number 0.162 ± 0.005 0.628 ± 0.014 0.644 ± 0.015 0.537 ± 0.008 0.812 ± 0.007

Panicle Length 0.394 ± 0.012 0.806 ± 0.009 0.906 ± 0.008 0.574 ± 0.005 0.942 ± 0.005

Proportion of Spikelets Filled 0.039 ± 0.003 0.476 ± 0.003 0.310 ± 0.006 0.742 ± 0.003 0.769 ± 0.003

Yield per Plant 0.215 ± 0.012 0.688 ± 0.008 0.741 ± 0.008 0.646 ± 0.007 0.820 ± 0.005

Potential Yield 0.380 ± 0.015 0.719 ± 0.011 0.842 ± 0.009 0.566 ± 0.011 0.855 ± 0.006

Genomic GCA + SCA model

Height 0.414 ± 0.019 0.820 ± 0.010 0.943 ± 0.008 0.498 ± 0.014 0.956 ± 0.005

Tiller Number 0.190 ± 0.007 0.640 ± 0.016 0.676 ± 0.016 0.442 ± 0.012 0.772 ± 0.013

Panicle Length 0.446 ± 0.020 0.827 ± 0.011 0.940 ± 0.011 0.423 ± 0.018 0.928 ± 0.011

Proportion of Spikelets Filled 0.043 ± 0.003 0.509 ± 0.004 0.364 ± 0.007 0.785 ± 0.005 0.809 ± 0.004

Yield per Plant 0.490 ± 0.022 0.715 ± 0.009 0.795 ± 0.009 0.532 ± 0.014 0.822 ± 0.006

Potential Yield 0.415 ± 0.016 0.723 ± 0.012 0.847 ± 0.010 0.525 ± 0.014 0.851 ± 0.007

For each of the 500 cross-validation folds, 4 female parents and 127 male parents were chosen to have hybrid progeny included in the training set. The total number of
hybrid genotypes sampled for training was 150. Accuracies are reported for hybrids which were not included in the training set which had neither parent in the training
set (T0), one parent in the training set (T1), the female parent only in the training set (T1F), the male parent only in the training set (T1M), and both parents in the
training set (T2).
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TABLE 4 | Model prediction accuracy and standard error for male GCA for each
trait as estimated by ten-fold cross-validation.

Trait Genomic GCA model Genomic GCA + SCA model

Height 0.232 ± 0.056 0.233 ± 0.067

Tiller Number 0.215 ± 0.060 0.261 ± 0.065

Panicle Length 0.224 ± 0.043 0.269 ± 0.046

Proportion of
Spikelets Filled

0.318 ± 0.083 0.332 ± 0.079

Yield per Plant 0.219 ± 0.072 0.241 ± 0.079

Potential Yield 0.292 ± 0.078 0.233 ± 0.096

TABLE 5 | Reliabilities and accuracies of phenotypic selection for
hybrid performance.

Trait Reliability Accuracy

Height 0.906 0.952

Tiller Number 0.533 0.730

Panicle Length 0.828 0.910

Proportion of Spikelets Filled 0.791 0.889

Yield per Plant 0.466 0.682

Potential Yield 0.321 0.566

TABLE 6 | Accuracies of phenotypic selection for male GCA.

Trait GCA model GCA + SCA model

Height 0.809 0.627

Tiller Number 0.644 0.570

Panicle Length 0.680 0.253

Proportion of Spikelets Filled 0.861 0.798

Yield per Plant 0.640 0.562

Potential Yield 0.484 0.454

TABLE 7 | Accuracies of phenotypic selection for female GCA.

Trait GCA model GCA + SCA model

Height 0.906 0.906

Tiller Number 0.860 0.858

Panicle Length 0.910 0.910

Proportion of Spikelets Filled 0.898 0.876

Yield per Plant 0.853 0.850

Potential Yield 0.900 0.899

genomic predicted GCA for yield per plant in females and males
respectively were 36.341 and 34.047; both of the female and male
lines top-ranked for GCA had phenotypic observations available
(Supplementary Tables 10, 11).

Mid-Parent Heterosis and Parental SDAF
Average mid-parent heterosis was positive, though not extremely
so, for all traits except height and proportion of spikelets filled
(Figure 2 and Table 9). Yield per plant and its component
trait, tiller number, showed the highest average heterosis; average
heterosis for yield was 32.0%. Parental SDAF ranged from 0.200
to 0.285 in the phenotyped F1 hybrids (Supplementary Figure 4).

TABLE 8 | Mean, standard deviation, and range of relative yield per plant of the F1

hybrids compared to each inbred check.

Check Mean Relative Performance ± SD Range

WTR-1 0.206 ± 0.143 −0.238—0.679

Y 134 (DP 6) 0.191 ± 0.141 −0.248—0.659

Khazar (DP 8) 0.283 ± 0.147 −0.218—0.724

OM 997 (DP 10) 0.283 ± 0.152 −0.190—0.786

M 401 (DP 17) 0.179 ± 0.140 −0.256—0.642

X 21 (DP 19) 0.289 ± 0.153 −0.186—0.796

Overall, in all hybrids, parental SDAF was significantly correlated
with mid-parent heterosis for all traits except proportion of
spikelets filled (Figure 3 and Table 10). Interestingly, the
direction of the correlation was negative for all traits except
tiller number. The strongest correlation of mid-parent heterosis
and SDAF for hybrids overall was for panicle length. However,
when hybrids were grouped into families by female parent, there
were no significant correlations between parental SDAF and
mid-parent heterosis.

DISCUSSION

The objectives of this study were (1) to identify high-yielding
F1 hybrids from crosses of IRRI male sterile lines with stress-
tolerant male lines, (2) to identify parental lines with high
GCA for use in future reciprocal recurrent genomic selection
programs, and (3) to evaluate genomic prediction and phenotypic
selection accuracies in our hybrid breeding population, with
the end goal of developing stress-tolerant hybrid rice varieties.
Compared to inbred commercial checks (which were also
progenitors of the male lines), phenotyped F1 hybrids showed
genetic yield advantages of up to 80% and warrant further
testing (Supplementary Figure 3; Table 8). Although the genetic
yield of the top-performing F1 hybrid observed in the study
environment was 8.670 tons per hectare, this measure pertains
to the study environment only—which included both standard
irrigated conditions and stressful upland conditions—and only
the plant population densities used, which were lower than
those observed in farmers’ fields (Supplementary Table 8).
Relative to the mid-parent, the F1 hybrids showed on average
32.0% mid-parent heterosis for yield, which is consistent with
literature averages of 10 to 30% in rice (Figure 2 and Table 9;
Janaiah and Xie, 2010; Longin et al., 2012; Spielman et al.,
2013). However, the maximum mid-parent heterosis observed
for yield was 89.2%, and heterosis up to 48.3% was observed
within a single standard deviation of the mean (Figure 2 and
Table 9). Because heterosis is present in the F1 hybrids and
SCA as well as GCA variance was detected, recurrent selection
for GCA in the male and female lines tested should allow
development of heterotic pools. However, we did not evaluate the
relative efficiency of hybrid vs. line breeding for our population
given the estimated GCA and SCA variance detected in our
population or other relevant factors, and further investigation of
this topic is warranted.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 692870

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-692870 June 24, 2021 Time: 18:22 # 10

Labroo et al. Genomic Prediction in Hybrid Rice

FIGURE 2 | Box plots of mid-parent heterosis for each trait in the phenotyped F1 hybrids. (A) Plant height (cm). (B) Tiller number. (C) Panicle length (mm).
(D) Proportions of spikelets filled. (E) Yield per plant (g). (F) Potential yield per plant (g).

Fertility Restoration and Genetic
Architecture of Spikelet Filling
Interestingly, narrow-sense heritability for the proportion of
spikelets filled was relatively high at 0.600 (Table 2). Although
variation in grain fill is generally driven by environmental factors
in rice, with starch synthesis and deposition depending on
available assimilate, in rice hybrids absence of grain fill can be
due to spikelet sterility from lack of fertility-restoring (Rf ) alleles
(Peng et al., 1998; Tang et al., 2017). Because fertility restoration
is only relevant in hybrids of CMS parents, not TGMS parents,
we estimated narrow-sense heritability for proportion of spikelets
filled in the CMS-derived hybrids only as 0.922 (Table 2). The
relatively high proportion of phenotypic variance explained by
additive genetic variance for this trait in CMS lines suggests that
segregation for fertility restoration played a role in the proportion
of spikelets filled in the CMS-derived hybrids and as such in
observed yield per plant. Concordantly, selection accuracy for
proportion of spikelets filled was substantially higher in the T1M
hybrids than T1F hybrids in cross-validation, though T1F hybrids
had higher accuracies than T1M for all other traits. Screening the
population for known major fertility restoration alleles at Rf3 and
Rf4 may allow the use of marker-assisted selection to improve
selection accuracy (Tang et al., 2017). It may also be possible to
select for fertility restoration by genomic prediction rather than
mapping fertility-restoring alleles of more minor or modifying
effect. Selection for fertility restoration may effectively unlock
observed yield potential in future hybrids and fix Rf alleles in the
male heterotic pool.

Accuracies of Genomic Prediction for
Hybrid Genetic Value and Parent GCA
Genomic prediction model accuracies were high in unobserved
T2 F1 hybrids, for which both parents were included in
the training set (Table 3). All F1 hybrids surveyed were

closely related; closely related individuals have smaller effective
population size, which reduces the effective number of loci
controlling traits and is expected to increase prediction accuracy
(Supplementary Figure 5; Daetwyler et al., 2010). Accuracy
appeared to be driven primarily by estimation of the female line
effects, and accuracy in T2 hybrids was not substantially different
from T1F hybrids (Table 3). The exception was proportion of
spikelets filled, for which the male (restorer) line effects were
more relevant. As expected, accuracy in the T0 hybrids was low,
though positive and improved substantially for yield per plant by
the inclusion of SCA effects in the model (Table 3).

Accuracy was low for genomic estimated male GCA (< 0.300)
despite that the males all shared a recurrent parent and as such a
large proportion of their genomes (75% ± Mendelian sampling
and selection; Supplementary Figure 6; Table 4). Although the
male donor progenitors were diverse, multiple male lines per
donor were sampled. Low accuracies of genomic predictions of
male GCA may have been due to highly unbalanced crossing of
males to females, with no single male crossed to all females. It was
not possible to estimate accuracy for genomic estimated GCA in
the females, which were also closely related but more extensively
phenotyped (Supplementary Figure 7).

TABLE 9 | Mean, standard deviation, and range of mid-parent
heterosis for each trait.

Trait Mean Mid-Parent Heterosis ± SD Range

Height −0.019 ± 0.106 −0.237—0.313

Tiller Number 0.292 ± 0.132 −0.026—0.741

Panicle Length 0.017 ± 0.054 −0.163—0.183

Proportion of
Spikelets Filled

−0.034 ± 0.160 −0.657—0.258

Yield per Plant 0.320 ± 0.163 −0.110—0.892

Potential Yield 0.327 ± 0.131 0.005—0.817
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Phenotypic accuracies were similar to or lower than genomic
prediction accuracies for hybrid performance in the T2 case
(Table 5; Rutkoski et al., 2015). Notably, accuracy of genomic
prediction of hybrid yield (0.820) was greater than accuracy of
the phenotypes (0.682). However, for male GCA, the phenotypic
accuracies greatly exceeded those of genomic prediction for
both the GCA and the GCA + SCA models (Table 6). It
was not possible to compare genomic and phenotypic selection
accuracies for female GCA.

Inconsistent Correlations of Mid-Parent
Heterosis and Parental SDAF
Considering all hybrids in the study, we observed parental SDAF
to be negatively correlated with mid-parent heterosis and hybrid
genetic value for all traits surveyed except tiller number, for
which SDAF was positively correlated with mid-parent heterosis
(Figure 3 and Table 10). In many species, parental SDAF (or
other measures of genetic distance) is positively correlated with
heterosis due to release from inbreeding depression to a point,
as dominant alleles mask deleterious recessive alleles in hybrids
(Falconer and Mackay, 1996). However, as genetic distance
increases, outbreeding depression eventually prevails as favorable
epistatic combinations of genes are separated (Lynch and Walsh,
1998). A common manifestation of outbreeding depression is
fertility barriers (Edmands, 2002). In the case of yield per
plant, we cannot eliminate the possibility that genetic distance is
correlated with absence of wide-cross compatibility alleles known
to affect seed set, given the inter-subspecific diversity present in
the male lines (Ji et al., 2005). However, given the intense selection
on the male lines, it seems possible that wide-cross compatibility
in the males may have also been positively and indirectly selected
with yield. Genetic distance could also be correlated with absence
of fertility restoring alleles by chance. However, yield potential
corrects for fertility restoration by estimating yield as if all
spikelets were filled to the average weight observed in the study,
and overall mid-parent heterosis for yield potential was also
negatively correlated with parental SDAF. Importantly, though
unsurprisingly given the relationships of the BC1F5 male lines,
the correlation of parental SDAF and mid-parent heterosis was
not observed within female families of hybrids (Table 10). This
suggests that the negative correlations observed in hybrids overall
were due to differences in female genetic distance from the
average male. More crucially for practical purposes, whether
genetic distance is indicative of mid-parent heterosis depends on
the population defined, even in closely related hybrids.

Future Directions for IRRI Hybrid Rice
Breeding
Based on the study findings, we caution against the conventional
wisdom that increased genetic distance between parents alone
will always confer improved hybrid performance or positive
heterosis. Increased genetic distance in the potential founders
of heterotic pools of rice screened was not reliably associated
with desired positive heterosis for yield, even though the pools
could be genetically distinguished. In this population, and
probably in rice more generally, empirical selection for GCA

TABLE 10 | Pearson’s correlation coefficient of mid-parent heterosis and SDAF
with 95% confidence intervals of the coefficient and t-tests of significance
conducted at α = 0.05.

Trait r ± 95% CI t df P

Height

Overall −0.330 ± 0.062 −9.791 783 < 0.001

10A −0.041 ± 0.157 −0.512 154 0.610

2A 0.007 ± 0.176 0.077 122 0.939

4A 0.031 ± 0.145 0.419 181 0.676

6A −0.044 ± 0.227 −0.381 73 0.705

7A −0.073 ± 0.237 −0.592 66 0.556

A07 0.084 ± 0.146 1.118 177 0.265

Tiller Number

Overall 0.299 ± 0.064 8.725 778 < 0.001

10A −0.143 ± 0.155 −1.786 152 0.076

2A 0.058 ± 0.176 0.644 121 0.521

4A 0.027 ± 0.145 0.357 180 0.722

6A 0.032 ± 0.227 0.269 73 0.788

7A −0.084 ± 0.239 −0.677 65 0.501

A07 0.045 ± 0.146 0.601 177 0.549

Panicle Length

Overall −0.430 ± 0.057 −13.309 783 < 0.001

10A −0.042 ± 0.157 −0.516 154 0.607

2A −0.084 ± 0.175 −0.935 122 0.352

4A 0.081 ± 0.144 1.094 181 0.275

6A 0.066 ± 0.226 0.568 73 0.572

7A 0.013 ± 0.238 0.103 66 0.918

A07 0.058 ± 0.146 0.772 177 0.441

Proportion of Spikelets Filled

Overall −0.015 ± 0.081 −0.363 588 0.717

10A 0.127 ± 0.156 1.578 151 0.117

2A 0.063 ± 0.177 0.687 120 0.493

4A 0.103 ± 0.146 1.364 174 0.174

6A 0.027 ± 0.228 0.23 72 0.818

7A 0.083 ± 0.242 0.663 63 0.510

Yield per Plant

Overall −0.131 ± 0.069 −3.698 781 < 0.001

10A 0.014 ± 0.157 0.169 154 0.866

2A 0.041 ± 0.176 0.450 122 0.653

4A 0.116 ± 0.144 1.562 180 0.120

6A 0.040 ± 0.227 0.346 73 0.730

7A −0.022 ± 0.238 −0.176 66 0.861

A07 0.104 ± 0.146 1.389 176 0.167

Potential Yield

Overall −0.092 ± 0.08 −2.225 585 0.026

10A −0.031 ± 0.159 −0.386 151 0.700

2A −0.005 ± 0.178 −0.059 120 0.953

4A 0.087 ± 0.148 1.141 171 0.255

6A 0.042 ± 0.228 0.360 72 0.720

7A −0.008 ± 0.244 −0.060 63 0.952

Overall correlations as well as correlations within female families are reported.
Correlations are not available within the A07 female family for potential yield or
proportion of spikelets filled because phenotypic observations of the A07 line were
not available at the location in which the traits were phenotyped, irrigated lowland.

is preferable to selection based on genetic distance to breed
high-performing hybrid rice.

For hybrid performance, genomic prediction accuracies were
similar to or higher than phenotypic accuracies. Therefore,
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FIGURE 3 | Scatterplots of mid-parent heterosis against parental SDAF. Points are colored according to female parent. (A) Height. (B) Tiller number. (C) Panicle
length. (D) Proportion grains filled. (E) Yield per plant. (F) Potential yield.

genomic prediction could be useful for product development
in the population of study. Most notably, inclusion of genomic
information increased prediction accuracy for hybrid yield per
plant by approximately 13.8% compared to phenotype alone
(Tables 3, 5). Observed accuracies of prediction of unobserved
hybrids with at least one parent in the training population (T1)
were also positive and substantial, suggesting that on average
genomic prediction could allow identification of further crosses
with high value in the population of study. Genomic prediction
accuracies for hybrids with neither parent observed (T0) were not
as high as in the T1 case, but were nonetheless positive.

In contrast, genomic prediction accuracies for male GCA
were substantially lower than phenotypic accuracies. For yield,
genomic prediction accuracies were approximately three times
less than phenotypic selection accuracies. However, reciprocal
recurrent genomic selection for GCA can reduce cycle length
by two-thirds compared to reciprocal recurrent phenotypic
selection, because parents can be immediately recycled using
genomic predictions of their GCA, leading to a cycle length of
one (Powell et al., 2020). In conventional reciprocal recurrent
selection, it is necessary to cross new parents to the opposing pool
and phenotype the inter-pool crosses to estimate GCA before
intra-pool recycling is possible, which increases the cycle length
to three (Rembe et al., 2019). The genomic prediction accuracies
observed in the study would provide comparable genetic gain to
phenotypic selection if used to reduce the breeding cycle length
to one, assuming that reduction in cycle length has no effect
on genomic prediction accuracy and that accuracy of genomic

prediction of female GCA (which could not be estimated, but for
which more observations per female were available) is the same
or higher than male GCA (Rembe et al., 2019; Powell et al., 2020).
Increases in accuracies of genomic prediction of GCA relative
to phenotypic selection are likely possible, as the training set of
related hybrids would build over time in a closed population, and
more complete and informative crossing designs could provide
phenotypes. The potential of hybrid breeding strategies in IRRI
germplasm would benefit from further assessment by simulation
(Faux et al., 2016; Gaynor et al., 2020).
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