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Gene transcriptional process is random. It occurs in bursts and follows single-molecular
kinetics. Intermittent bursts are measured based on their frequency and size. They
influence temporal fluctuations in the abundance of total mRNA and proteins by
generating distinct transcriptional variations referred to as “noise”. Noisy expression
induces uncertainty because the association between transcriptional variation and the
extent of gene expression fluctuation is ambiguous. The promoter architecture and remote
interference of different cis-regulatory elements are the crucial determinants of noise,
which is reflected in phenotypic heterogeneity. An alternative perspective considers that
cellular parameters dictating genome-wide transcriptional kinetics follow a universal
pattern. Research on noise and systematic perturbations of promoter sequences
reinforces that both gene-specific and genome-wide regulation occur across species
ranging from bacteria and yeast to animal cells. Thus, deciphering gene-expression noise
is essential across different genomics applications. Amidst the mounting conflict, it is
imperative to reconsider the scope, progression, and rational construction of diversified
viewpoints underlying the origin of the noise. Here, we have established an indication
connecting noise, gene expression variations, and bacterial phenotypic variability. This
review will enhance the understanding of gene-expression noise in various scientific
contexts and applications.

Keywords: gene expression noise, combinatorial regulation, promoter architecture, logic gates, phenotypic
heterogeneity

INTRODUCTION

Genetically identical cells often behave differently despite sharing consistent growth conditions
(Sanchez et al., 2013; Jones et al., 2014; Engl, 2019). Bacteria adapt rapidly to environmental pressures
to attain competitive survival advantages in detrimental conditions (Roberfroid et al., 2016; Engl,
2019). Such competency in modulating phenotypic plasticity is the major driver influencing such
variability (Roberfroid et al., 2016). Transcriptional noise usually drives heterogeneous gene
expressions, and thus determines the phenotypic fate of each cell (Coskun et al, 2016; Engl,
2019; Iida et al., 2019) and empowers some bacteria to become more adaptive (Imdahl et al., 2020;
Sun et al., 2020).

Randomness arising from biochemical reactions during transcription is one of the major
drivers underpinning gene-expression noise (Sanchez et al., 2013). It is directly influenced by
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dogma of the generation of bacterial phenotypic heterogeneity. This schematic

represents the central direction and the overall realizations by the authors discussed in this review paper. Biological challenges are greatly masked by the multiplexed
layers backed by biological origin, biophysical origin, and deep-rooted physical and mathematical origin. Similarly, bacterial heterogeneity and random yet extreme
adaptability in a wide range of detrimental circumstances have been a great challenge. These challenges are merely not to be addressed by biological knowledge

only. The underlying mechanisms, quantitative foundations, structural and functional aspects including their interdependencies to each other are inevitably pivotal to
trace back those intricated challenges. In this review, the authors have identified the relational model of the phenomenon from the very molecular level to the phenotypes.
(Top to bottom direction): A few challenges with bacterial extreme adaptability and prompt phenotypic switching can be explained with the basis of phenotypic heterogeneity.
Toreveal the basis of phenotypic heterogeneity, the underlying biological challenges, that is the variations in gene-expressions are essential to understand. And, the differential
gene-expression noise, intrinsic and extrinsic transcriptional noise, and their discrepancies may support the explanation of the wide extent of gene-expression variation. It
relies mostly on the biophysical basis of gene expression. Subsequently, a question remains important that what drives or controls those noises? The most probable hints
have been established with the arising scientific supports enriching the underlying causes as the different regulatory logics and different combinations of the logic gates being
constructed by the different regulators. Finally, the promoter architecture and the successive interaction of different trans-regulatory elements have been identified to influence
the combinatorial selection of different logic gates that triggers the variable gene-expression noise (bottom to top), thus the variation in gene-expressions and causing bacterial
phenotypic heterogeneity. (B) Schematic of the origin of gene-expression noise that dictates the cell-to-cell variation in the clonal population of bacteria. Bacterial cell-to-cell
variability in the clonal population used to be mediated through stochastic gene expressions or fluctuations in random partitioning during cell division. Stochastic gene
expression is majorly influenced by gene-independent extrinsic factors and gene-specific or gene-dependent intrinsic factors through gene-expression related fluctuations in

biochemical reaction kinetics. It gets manifested in both transcriptional and translational bursting.

the cis-regulatory elements (CREs). CREs are regulatory DNA
sequences that include enhancers and promoters that regulate
gene expression on the same chromosome (Park and Wang,
2018). Noise can also be generated during translation when
individual mRNAs within a cell fluctuate randomly (Bar-Even
et al., 2006; Silander et al., 2012; Espinar et al., 2017). However,
these are not gene-specific and, thus, do not directly regulate
CREs. In this review, we focused on the manifestations of
transcriptional noise affecting gene expression and phenotypic
variability (Figure 1A). An understanding of the interactions
among CREs and their influence on transcription may help to
elucidate the mechanisms by which bacteria produce diverse
phenotypes (Imdahl et al., 2020).

Combinatorial gene regulation by multiple transcription
factors (TFs) is highly utilized in cells in responding to

environmental conditions, enables the organism to generate
diverse expression patterns facilitated by a limited number of
TFs. It can be characterized using the concept of logic gates (Yan
et al.,, 2017), as this illustrates the diverse combinations of TFs,
CREs, and other regulators in the remote promoter region
(Sepulveda et al., 2016). The transcription initiation rate is a
key determinant of transcriptional regulation (Lionnet and Wu,
2021). Diversified interaction patterns among those limited
number of regulators against a single binding site introduce
randomness in the system, and thus the higher level of noise
(Yan et al,, 2017). The physical architecture of the promoter
region and the influence of CREs support the understanding of
combinatorial associations, although the mechanism is poorly
understood (Sun et al, 2020; Mejia-Almonte et al., 20205
Morrison et al., 2021).
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We lack a complete insight into the transcriptional machinery
embedded in deep cellular biophysics that is associated with different
biological challenges (Sun et al., 2020; Mejia-Almonte et al., 2020).
Most of our knowledge is derived from static biochemical
experiments (Park and Wang, 2018; Imdahl et al., 2020), which
usually fail to consider the versatility of transcriptional machinery and
the stochastic interactions among regulators (Park and Wang, 2018;
Imdahl et al, 2020). These approaches are limited by sharing
interdisciplinary efforts to address such multimodal challenges
(Figure 1A). So, it becomes imperative to decode the
transcriptional mechanisms (Sanchez and Golding, 2013; Imdahl
et al,, 2020). Integrated frameworks with quantitative modeling are
one of the proficient ways to expand experimental knowledge to
develop novel testable hypotheses. Recent advancements in high-
throughput sequencing, multi-omics technologies, and genomic data
science have significantly augmented our knowledge. For example,
bacterial single-cell RNA sequencing has enabled the study of CRE-
driven gene-expression noise in an individual cell revealing the CRE-
mediated interaction patterns (Hermsen et al., 2006; Sanchez and
Kondev, 2008; Yan et al, 2017; Imdahl et al, 2020). Such
advancements, combined with an effective modeling approach,
can decode the underlying forces causing gene expression
variations producing phenotypic heterogeneity (Figure 1A).

TRANSCRIPTIONAL REGULATORY
SWITCHES IN BACTERIA

Bacterial transcriptional regulation is primarily governed by operons
(Mdiller et al., 1996; Bintu et al., 2005a; Kaern et al., 2005; Sanchez and
Kondev, 2008; Kokubo, 2013; Sanchez et al., 2013; Rocabert et al.,
2020). It consists of four components: a regulatory gene, operator(s),
promoter, and structural genes (Conway et al., 2014). The discovery
of the lac-operon model aided to decode complex coordination in
bacteria (Esmaeili et al.,, 2015). In bacteria, gene regulation primarily
facilitates adjustment and adaptation to nutritional changes aiding
their optimized growth (Blake et al., 2006; Cheng et al., 2017). There
are no genes continuously active. Local growth conditions and
metabolism requirements induce gene transcriptions (Blake et al,
2006; So et al, 2011) through numerous proteins (complex or
individual) that influence other regulatory proteins. The
transcriptome contains signaling information that facilitates the
recognition of the genes to be activated (Taniguchi et al, 2010;
Sanchez et al,, 2013; Wang et al., 2015). Therefore, a thorough study
of the bacterial transcriptome may elucidate the core mechanisms
supporting those heterogeneous instructions.

Cis-Regulatory Controls in Bacterial

Transcription

CREs act proximally at their target genes and serve as anchoring
sites for numerous proteins that influence their adjacent genes
(Cheng et al.,, 2017). CRE mutations occurring at the structural
genes of the lac-operon restrict the lac-repressor from anchoring
to the operator, and CRE mutations in the lac-promoter induce
structural changes in RNA polymerase (RNAP) binding sites that
inhibit transcriptions (Choudhary and Narang, 2019). Also,
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trans-acting elements (TREs) sometimes control gene
expression on distal DNA molecules, translating diffusible
proteins, and occasionally RNAs (Park and Wang, 2018). They
influence gene expression in trans.

Combinatorial Regulatory Logic in Bacterial
Transcription Regulation

Combinatorial associations of different regulators tend to form
diverse logic gates which are essential for bacterial transcription
(Kuhlman et al., 2007; Lin et al., 2015; Scholes et al., 2017; Reiter
et al, 2017). Logic gates are designated as the overlying
arrangements of cooperative binding sites with an additional
regulatory layer that represents different interaction modules.
Transcriptional signals are aggregated through the interplay
between intramolecular  cooperative interactions and
intermodular competition (Hermsen et al., 2006). It facilitates
the mapping of multiple inputs to one output (Silva-Rocha and de
Lorenzo, 2008; Yan et al, 2017; Bordoy et al, 2019; Mejia-
Almonte et al., 2020). This represents the programming of
input signals, which typically varies as per the temporal
concentrations of TFs, and the output signals used to signify
the expression levels of the target genes (Yan et al, 2017).
Eventually, they stipulate the operon status for different TF
concentrations (Hermsen et al, 2006). Figure 2B illustrates
the typical combinations of logic gates comprising two
different TF concentrations. The rationale of these processes
relies on the design and microarchitecture of the cis-regulatory
domain wherein the arrays of binding sites often overlap and
compete (Hermsen et al., 2006). This architecture is certainly
complex. In this connection, a few predictive models attempted to
understand the balance between intramodular and intermodular
competition upon combining several physio-chemical
parameters within the evolutionary algorithm (Hermsen et al.,
2006; Sanchez et al, 2013). In Versatility of Gene-Expression
Noise, we discuss how certain models aid researchers in this
endeavour in greater detail.

BACTERIAL GENE-EXPRESSION NOISE
AND ITS ORIGIN

Noise primarily relies on fluctuations in gene expression
correlated with oscillations in DNA topology and promoter
architecture (Engl, 2019) (Figure 1B). They characterize the
origin of noise as either extrinsic or intrinsic (Elowitz et al,
2002). Extrinsic noise is gene-independent and non-specific to
gene expression, while intrinsic noise is gene-specific. Usually, the
noise is introduced as a consequence of the innate stochasticity
that occurs during transcription and translation. But the spans of
both fluctuations used to vary (Rosenfeld et al., 2005), and these
variations in gene transcription dictate phenotypic heterogeneity
in bacteria (Engl, 2019) (Figure 1B).

Noisy transcription occurs across the entire bacterial genome,
as confirmed by protein abundance profiling of a single E. coli cell
(Taniguchi et al., 2010; Tyagi, 2010). The extrinsic noise usually
exhibits a higher abundance of proteins (>10) per cell, whereas
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FIGURE 2 | TF-driven gene regulation, transcriptional bursting, and combinatorial regulatory TF-logics. (A) Single-TF regulation and transcriptional bursting. It
illustrates the process of gene transcription under single-TF regulation. During transcription, RNAP binding (i) can be viewed as a series of on/off signals, as shown in (ii).
Each “on” status is corresponding to a transcript initiation. Therefore, the frequency of the “on” events are equivalent to the rate of transcript initiation, as well as the
mRNA synthesis rate if every synthesized pre-RNA is converted into a mature mRNA. Similarly, the TF binding status can also be viewed as a digital signal with a
series of “bind” and “unbind” events. The TF “bind” state lasts from the moment of TF binding to the time of TF-DNA dissociation. The duration of TF binding depends on
the relative affinity of its competitors, such as other DNA binding molecules. The “unbind” state, however, refers to the status that the promoter is not bound by the TF.
The duration of the “unbind” state is the time that TF spends searching for the binding site after TF-DNA dissociation. Since the transcription can only be initiated during
TF binding (in case that the TF is an activator), or during the process of TF disassociation (in case that TF is a repressor), thus making the transcription occurs in bursts. (jii)
and (iv) show the binding signal of an activator TF and the transcriptional bursts, while (v) and (vi) show the binding signal of a repressor TF and the bursts. (B) Three
fundamental combinatorial logics of gene regulation and their bursting patterns. Three fundamental logics of combinatorial gene regulation and the patterns of
transcriptional bursts. It illustrates the process of gene transcription under two-TFs regulation while forming three basic combinatorial logics, OR, AND, and NOT. In
systems biology, the regulatory interactions between TFs are typically represented as logic, such as OR (denoted by “|”), AND (“&”), and NOT (“="). This figure shows
several logics and the corresponding bursting patterns, (i) while the TF, “A” acts as an activator; (i) while the TF, “B” acts as an activator; (i) while the TF, “A” and “B”
cooperate with OR logics by forming, A|B logic gates; (iv) while the TF, “A” and “B” cooperate with AND logics by forming, A&B logic gates; (v) while the TF, “A” and “B”
interacts with NOT logics by forming, A-B logic gates, implies that “A” should be present to activate the transcription but “B” should not be present; and, (vi) while the TF,
“B” and “A” interacts with NOT logics by forming, B-A logic gates, implies that “B” should be present to activate the transcription but “A” should not be present.
Specifically, two TFs can form eleven logics, including, (1) no TF needed (“None”); (2) one single activator “A”; (3) one single activator “B”; (4) one single repressor “A*”; (5)
one single repressor “B*”; (6) “A” or “B” can independently activate gene transcription, denoted as A|B; (7) “A” and “B” need work cooperatively to activate the gene, i.e.
A&B; (8) “A” is an activator while “B*” is a repressor, i.e. A-B*; (9). “B” is an activator and “A*” is a repressor, i.e., B-A*; (10) “A” or “B” can independently repress gene
transcription, i.e., A*|B*, and (11) “A” and “B” need work cooperatively to repress gene transcription, i.e. A*&B*.

the intrinsic noise is used to exhibit a lower abundance of proteins
(<10) per cell (Taniguchi et al., 2010; Tyagi, 2010). And the
promoters governing the expression of essential genes exhibit low
levels of noise (Silander et al., 2012) implying the homogenous
expression of essential genes (Silander et al., 2012). Wherein, the
essential proteins are usually expressed in higher abundance,
indicating that extrinsic noise is critical in bacteria.

GENE EXPRESSION VARIABILITY IN
CLONAL POPULATIONS

In prokaryotes, a single parent cell undergoes binary fission to
generate a population of cells known as clonal populations (Viney
and Reece, 2013). So, they are anticipated to possess identical

genotypes, but this is not always the case. Genotypes within clonal
populations used to differ significantly (Viney and Reece, 2013;
Roberfroid et al., 2016). Transcriptional variations among them
trigger  cell-to-cell ~variations that produce phenotypic
heterogeneity (Jones et al, 2014). Disparities in gene
expression and regulation, such as noise (intrinsic and
extrinsic) and bistability to specific responses to variations in
the molecular environment, are two prominent mechanisms
imparting variations in a clonal population termed phenotypic
plasticity (Roberfroid et al., 2016). It is predominantly random,
non-programmed, multivariable, and stochastic events (Viney
and Reece, 2013; Roberfroid et al., 2016). It undergoes clonal
evolution mediated by mutations and copy number variations
and thus provides an added source of variability in gene
expression (Smith et al, 2016). However, the mechanisms by
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which a few molecular regulators and CREs control such wide
phenotypic variability remains unknown. Thus, research must
consider the origin of these stochastic fluctuations and may
untangle some of the complexity, allowing us to understand
and manipulate the origin of divergent phenotypes.

VERSATILITY OF GENE-EXPRESSION
NOISE

The versatility of gene-expression noise induces phenotypic
variations. And the abundance of TF-binding sites (TFBS)
significantly influences the noise (Sanchez et al., 2013). The
accurate mechanism of action has not yet been elucidated.
Transcriptional regulatory mechanisms and the abundance of
biochemical variability may generate the magnitude of distinctive
signature noise corresponding to heterogeneous gene expression
(Sanchez et al., 2013). Certain controversies prevail around the
relationship between signature noise and the noise-to-mean trend
line (Ozbudak et al., 2002; Sanchez et al., 2013). A noise-to-mean
trend line is followed by a large number of genes, which
contradicts the generation of transcriptional regulation-driven
signature noise. This contradicts the concept of noise, which is
regulated in the promoter region or by the DNA sequence of the
regulatory regions (Ozbudak et al., 2002; Sanchez et al., 2013).

Multiple layers of transcriptional regulation are deeply
intertwined (Mejia-Almonte et al., 2020). Studies suggested a
cohesive justification for this universal relationship that is
dominant in bacteria and yeast (Balaji et al, 2006; To and
Maheshri, 2010; Larson et al, 2011) and specify essential
functions of the promoter architecture in regulating noise.
Several promoter-driven noises have also drifted considerably
from a universal relationship that endorses the predominant roles
of the promoter architecture and promoter architecture-specific
elements in determining noise (Sanchez et al.,, 2013).

Promoter Architecture

Promoter architecture determines the degree of gene-expression
noise (Jones et al., 2014; Einav and Phillips, 2019; Engl, 2019;
Huminiecki and Horbanczuk, 2020). The promoter architecture
was found to determine the promoter-specific noise in E. coli
(Silander et al., 2012), which contradicts the hypothesis of
extrinsic noise generation. Earlier evidence was not sufficient
to discriminate the effects of promoter-specific influence and
induction conditions on gene expression (Jones et al., 2014; Einav
and Phillips, 2019; Engl, 2019; Huminiecki and Horbanczuk,
2020; Imdahl et al, 2020). A single-molecule study also
highlighted the impact of promoter architecture on
transcription variation (Jones et al, 2014). Transcriptional
noise fluctuates in vivo upon altering promoter-specific
parameters, such as the concentration and binding affinity of
repressors (Jones et al, 2014). This demonstrated that
modulation of physical parameters can modify promoter
architecture and induce fluctuations in gene expression. The
authors also demonstrated the capacity of mutations within
the regulatory DNA to alter transcriptional noise to induce
transcriptional variations (Jones et al., 2014). Another study

The Logic-Driven Transcriptional Noise

showed that the concentration of A the -bacteriophage
repressor introduced variations in the lysogeny maintenance
promoter, Pry-derived stochastic expression (Sepulveda et al.,
2016). These promoter-specific behaviors were investigated in
E. coli. The TF concentrations and abundance of synthesized
mRNAs were estimated. They were mathematically modeled to
identify the stochastic features of regulated promoters. The
promoters rapidly switched their configurations (Septlveda
et al, 2016). These switches were reported to be more
frequent than the lifetime of mRNA synthesis in the same cell.
Therefore, noise is a highly adjustable feature that is dependent
on evolutionary selection pressure. These studies clarified the
limitations of the previously proposed universal model that
describes the ubiquitous nature of transcriptional noise (Jones
et al,, 2014; Sepulveda et al.,, 2016).

Promoter Architecture and
Gene-Expression Noise in Bacteria

Promoter architecture-specific elements are a promising
approach for characterizing the transcriptional noise. Despite
considerable research, the extensive roles of TFs in transcriptional
dynamics remain unclear. Previous studies have highlighted the
mechanisms of multiple TF-mediated gene regulation (Browning
and Busby, 2004; Morrison et al, 2021) which consists of
deterministic biochemical kinetics. Then, several mechanisms
have been tested in vitro and in vivo to estimate the level of
gene expression as a function of available TF concentrations
(Dodd et al., 2004; Bintu et al., 2005b; Kuhlman et al., 2007;
Garcia and Phillips, 2011; Garcia et al., 2012; Ahsendorf et al.,
2014; Morrison et al., 2021). This strengthens the construction of
additional mathematical models accounting for all feasible states
a promoter can adopt. The maximum number of such states used
to be directly proportional to the occupancies of TFs and other
regulators, including RNAPs at the promoter site (Bintu et al,
2005a; Stanton et al., 2014). The occupancies of these factors
critically determine the typical fates of transcriptional activities
and their regulation. Altogether, they used to be reflected in terms
of the average gene expression that can be estimated (Shea and
Ackers, 1985; Bintu et al., 2005b). Many of those models were
tested with the average gene expression, which poorly represents
the dynamic landscape in living systems (Shea and Ackers, 1985;
Bintu et al., 2005a). This is because mean gene expression is
independent of transcriptional dynamics. To elucidate the
dynamics of transcriptional regulation, it is imperative to
model different thermodynamic parameters when considering
different stochastic transitions between credible promoter states
(Austin et al., 2006; Hermsen et al., 2006; Sanchez et al., 2013; Yan
et al., 2017). More inclusion of stochastic transitions across the
time series must offer a better-informed description of the
dynamics (Yan et al., 2017).

Robust mathematical modeling with fine resolution of
quantitative factors, the inclusion of different parameters into
a single framework, and the quality datasets altogether are
essential standards to capture wide-spectrum dynamic
snapshots of transcriptional events. Employing them may
facilitate the reconstruction of accurate quantitative predictive
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models entailing strong stochastic insights about combinatorial
transcriptional regulation.

Stochasticity, Gene-Expression Noise, and

Logic Gates

Stochastic variations in gene expression are primarily produced
by a series of random transitions among different promoter states
(Roberfroid et al., 2016). They are abundant in both prokaryotic
and eukaryotic clonal populations and are used to generate
random transcriptional variations, irrespective of external
signals (Roberfroid et al, 2016). Two major types of noise
have been identified: intrinsic and extrinsic noise (Figure 1B).

One possible origin of intrinsic noise is molecules that are
dispersed and randomly collide within a cell (Golding et al., 2005;
Baptista and Ribeiro, 2020). This type of noise arises from a short-
duration event, such as the dissociation of a repressor from a
promoter region that rebinds faster than an RNAP (van Zon et al.,
2006; Walker et al., 2016). In such rapid rebinding, the rate of
repressor dissociation diminishes and generates a degree of
variation. The resultant variations in the rate of dissociation
events result in noisy gene expression (van Zon et al., 2006;
Walker et al., 2016). Therefore, the transcription rate influences
the associated stochastic behavior. Genes with a lower
transcription rate exhibited a higher occurrence of intrinsic
noise. By accelerating the transcriptional rate, the intrinsic
noise of a specific gene may get reduced and vice versa.
However, extrinsic noise behaves differently and used to occur
at intermediate transcription rates (Elowitz et al., 2002; Raj and
van Oudenaarden, 2008). The interplay between different
regulators is vital for noisy gene expression. How the
regulators collaborate is crucial in determining the fate of gene
expression within a cell (Choudhary and Narang, 2019;
Torkaman and Jafarpour, 2019).

The mode of collaboration can be defined using the logic gate
concept (Blake et al., 2006; Hermsen et al., 2006; Silva-Rocha and
de Lorenzo, 2008; Warmflash and Dinner, 2008; Corrigan et al.,
2016; Yan et al., 2017; Zoller et al., 2018; Bordoy et al., 2019; Iida
et al, 2019). Logic gates rationalize different possible
combinations of multiple regulators, including TFs and CREs,
with their manifestations in gene expression (Lin et al., 2015; Yan
et al., 2017; Larsson et al., 2019; Macauley et al., 2019). This is
pivotal in explaining the generation of transcriptional noise in
cells as they often tend to reduce the noise (Raj and van
Oudenaarden, 2008). On the other side, noisy gene
expressions are intermittently a positive phenomenon as it
allows the cells to adapt extreme environments (Choudhary
and Narang, 2019; Sarkisov et al., 2020).

Transcriptional Burst Size, Frequency, and

Exaggeration of Gene-Expression Noise

Cellular fitness and extreme adaptability used to rely on
transcriptional noise, which is linked to transcriptional bursts.
Transcriptional bursts include a range of molecular activities that
occur during transcription and consider the number of states and
activities at which a gene is transcribed (Zoller et al, 2018;
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Tunnacliffe and Chubb, 2020). Several models and hypotheses
describe the characteristics of these bursts. The simplest is the
“one-state” model that considers the transcriptional initiation
rate as fixed and can influence the generation of fluctuations in
transcriptional activity (Corrigan et al., 2016; Tunnacliffe and
Chubb, 2020). However, this is not adequate for describing
transcriptional dynamics. A two-state random telegraph model
was subsequently proposed and has been widely adopted
(Peccoud and Ycart, 1995). This model distinguishes the
“active” and “inactive” modes of a transcriptional process,
wherein a gene is typically transcribed once it is in an active
state (Figures 2A,B). Fluctuations among these states are
reproduced through mRNA synthesis in a bursty manner
(Peccoud and Ycart, 1995). A small surge in mRNA synthesis
may be interspersed with the period of inactivity (Raj et al., 2006;
Tunnacliffe and Chubb, 2020). This bursting model is efficient for
inferring transcriptional dynamics. It is also suitable in a genome-
wide context, indicating global gene expression heterogeneity
(Antolovi¢ et al., 2017) and provides mechanistic insights into
transcriptional regulation (Larsson et al., 2019).

In bacteria, transcriptional bursts are quantified with a
reporter gene, driven by the P-lac/ara promoter (Startceva
etal,, 2019), wherein the bursting duration follows a geometric
distribution, separated by inactivation following an
exponential distribution (Figures 2A,B). The on/off states
of transcription can be modeled as a two-state random
telegraph. The burst duration increases with an increase in
the expression level, but the burst frequency and initiation rate
remain constant (So et al., 2011; Startceva et al., 2019). The
bacterial transcription can also be gene-independent (Lin
et al., 2015; Baudrimont et al., 2017). The binding of an
RNAP can be conceptualized as a series of on/off signals
during the transcription process (Figures 2Aii), in which
the “on” status corresponds to transcription initiation (Yan
et al, 2017; Qiu et al,, 2019). Therefore, the frequency of “on”
events is equivalent to the rate of transcription initiation and
the rate of mRNA synthesis, assuming every synthesized pre-
RNA is converted into a mature mRNA (Ben-Tabou de-Leon
and Davidson, 2009; Asif and Sanguinetti, 2013). Likewise, the
TF-binding status can also be viewed as a digital signal with a
series of “bind” and “unbind” events (Figures 2Aiii,v). The
TF’s “bind” state lasts from the moment of TF binding to the
time of TF-DNA dissociation. The duration of TF binding
depends on the relative affinity of its competitors, such as
DNA-binding molecules (Suter et al., 2011; Yan et al.,, 2017).
However, the “unbound” state refers to the status wherein the
promoter is not bound by the TFs. The “unbind” duration is
the time that a TF spends searching for TFBS after TF-DNA
dissociation. The mRNA synthesis rate is determined by the
ratio of bursts to inactivation (Yan et al., 2017). Therefore,
variations in bursting patterns may lead to variations in the
levels of gene expression. The burst size is determined by the
duration of TF binding, which is related to the affinity of TFs to
their binding sites. The inactivation period between bursts is
equal to the time that the TFs spend searching for their targets.
Both burst size and inactivation periods are subjected to
stochastic fluctuations due to the Brownian motion of
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molecules (Yan et al, 2017), which ultimately exaggerates
gene-expression noise (Bokes and Singh, 2017).

DISCUSSION

Gene-expression noise is typically described as a driving force
underpinning many cellular functions, rather than a kind of
dysregulation of the central dogma. Single-cell and single-
molecule studies have suggested that the fluctuations in
transcriptional regulation may be governed under the direct
control of cells in response to intracellular and extracellular
signals. Direct observations with real-time transcription in
living cells provide better spatial and temporal resolution, but
they are limited in decoding the mechanisms of controlling
noise and phenotypic heterogeneity (Satija et al., 2015; Goni-
Moreno et al.,, 2017; Zoller et al., 2018). A cell is capable of
controlling  diverse transcriptional patterns through
combinatorial regulation by modulating the relative timing
of two/multiple TFs upon constructing dynamic logic gates to
regulate the target genes. However, a mechanistic explanation
of how «cells control transcriptional noise through
combinatorial gene regulation is also not revealed. In this
review, we have offered a snapshot of the latest
developments, considerations, and perceptions in this area
of synthetic biology.

Genetically identical bacterial cells behave differently
despite growing together under identical conditions.
Combinatorial gene regulation mediated by multiple TFs is
extensively utilized in bacterial cellular programs in response
to environmental conditions. A limited number of TFs are
used to produce various expression patterns upon
combinatorial interactions that diversely drives the gene
transcription in bacteria. It is inherently a random process
because of the stochastic behavior of TF molecules. These
random fluctuations can potentially affect the functions of
genetic circuits and downstream signaling pathways that lead
to transcriptional noise in a population of cells. So, noise is a
genome-wide phenomenon that is usually driven by the
stochasticity of biochemical reactions occurring during gene
expression. The synthesis of mRNA and proteins is used to
follow an episodic bursting pattern during transcription and
translation. Despite many studies, unraveling the mechanisms
of transcriptional and translational noise generation, their
associated consequences, and phenotypic variations remains
challenging. Experiments guide us to decode a few instances of
a phenomenon wherein the evolution in living systems is a
larger combination of possibilities that are typically excluded
with experimental set-up (Mejia-Almonte et al., 2020).

This work is concerned with one of the fundamental
biological problems, noise in gene expressions in
understanding the role of genetic circuits in cellular
complexity and functions (Figure 1A). We emphasized the
use of synthetic biocomputational approaches to create a
holistic roadmap to understand not only the transcriptional
noise-driven phenotypic variability but also its underlying
regulatory logic. This may offer a path to purpose-driven
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programming of combinatorial regulation to augment
phenotypic variability and adapt to fluctuating environments.
Addressing them accurately is a challenge because of
underdefined bacterial phenotypic heterogeneity. Genetically
identical bacteria can behave differently despite exhibiting
the same growth patterns due to variable gene expression
patterns, which are noisy. The generation of such
spontaneous dynamic performance is pervasive and has been
used in microbes and mammalian cells. Hence, we evaluated the
contradictory perceptions of the origin of such heterogeneity.
However, figuring out the characteristics of variable noise is
essential for genomics applications. Amidst the rising conflict
between gene-specific and genome-wide transcriptional
regulation, it is time to reconsider the scope, progression,
and logical construction of the different viewpoints
underlying the generation of gene-expression noise to reach a
consensus on our scientific goal of understanding bacterial
phenotypic heterogeneity. It is a consequence of randomness
in gene circuits, which is tightly dictated by the transcription
noise produced via combinatorial gene regulation. Static
biochemical experiments are unable to explore the versatility
and stochasticity of the transcriptional machinery. The shortfall
between cutting-edge biophysics and current challenges must
encourage researchers to develop better strategies to associate
noise and related manifestations at the structural and functional
levels, and eventually to reprogram combinatorial regulation to
reverse-engineer the phenotypic variability against diverse
adaptability.
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