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Copy number variation (CNV), is defined as repetitions or deletions of genomic segments

of 1 Kb to 5 Mb, and is a major trigger for human disease. The high-throughput and

low-cost characteristics of next-generation sequencing technology provide the possibility

of the detection of CNVs in the whole genome, and also greatly improve the clinical

practicability of next-generation sequencing (NGS) testing. However, current methods for

the detection of CNVs are easily affected by sequencing and mapping errors, and uneven

distribution of reads. In this paper, we propose an improved approach, CNV-MEANN, for

the detection of CNVs, involving changing the structure of the neural network used in the

MFCNV method. This method has three differences relative to the MFCNV method: (1) it

utilizes a new feature, mapping quality, to replace two features in MFCNV, (2) it considers

the influence of the loss categories of CNV on disease prediction, and refines the output

structure, and (3) it uses a mind evolutionary algorithm to optimize the backpropagation

(neural network) neural network model, and calculates individual scores for each genome

bin to predict CNVs. Using both simulated and real datasets, we tested the performance

of CNV-MEANN and compared its performance with those of seven widely used CNV

detection methods. Experimental results demonstrated that the CNV-MEANN approach

outperformed other methods with respect to sensitivity, precision, and F1-score. The

proposed method was able to detect many CNVs that other approaches could not, and

it reduced the boundary bias. CNV-MEANN is expected to be an effective method for

the analysis of changes in CNVs in the genome.

Keywords: copy number variations, next-generation sequencing, mind evolutionary algorithm, multiple features,

neural network

1. INTRODUCTION

Copy number variations (CNVs) (Freeman et al., 2006; Redon et al., 2006) are important genomic
structural variations, which are widespread in the human genome, and cause a variety of complex
diseases, such as Crohn’s disease (Fellermann et al., 2006; Aldhous et al., 2010), ankylosing
spondylitis (Wang et al., 2013), Alzheimer’s disease (Brouwers et al., 2012), and autism (Sebat et al.,
2007). The accurate detection of CNVs in the human genome is an important step in the analysis of

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.700874
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.700874&domain=pdf&date_stamp=2021-08-16
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lijunqing@lcu-cs.com
https://doi.org/10.3389/fgene.2021.700874
https://www.frontiersin.org/articles/10.3389/fgene.2021.700874/full


Huang et al. CNV-MEANN: A Neural Network

disease. Neither array comparative genomic hybridization
(aCGH) (Peiffer et al., 2006) nor single-nucleotide polymorphism
(SNP) (Park, 2008)microarrays enable an accurate determination
of gene expression patterns via CNVs. However, next-generation
sequencing (NGS) (Ansorge, 2009) techniques have introduced
new possibilities for the accurate identification of CNVs with
highly efficiency, low cost, and high-throughput (Tan et al., 2014).

In recent years, NGS-based methods have been employed
for the identification of CNVs in the human genome. The
bioinformatics tools used for detection of CNVs use four major
approaches: paired-end mapping (PEM) (Shrestha and Frith,
2013), split-reads (Nguyen et al., 2016), sequence assembly
(Nijkamp et al., 2012), and read depth (RD) (Yoon et al., 2009).
Paired-end mapping uses many paired-end reads to detect CNV.
For instance, PEMer (Korbel et al., 2009) detects CNVs using
a simulation-based error model. CommonLAW (Hormozdiari
et al., 2011) uses maximum parsimony analysis and aligns
multiple samples to identify structural variants (SVs). GASV
(Sindi et al., 2009) employs a geometric model for the detection
of SVs. Pindel (Ye et al., 2009) detects break points and insertions
using a pattern growth approach. There are several other PEM-
based methods, including BreakDancer (Chen et al., 2009),
Spanner (Mills et al., 2011), VariationHunter (Hormozdiari et al.,
2010), SoftSV (Bartenhagen and Dugas, 2016), and PECC (Li
et al., 2017). The PEM-based approaches can detect shorter
CNVs, but are unable to identify CNVs in low coverage data.

The second category is based on split-reads, which divides the
sequence into parts of equal size and aligns them to multiple
locations of the reference genome. AGE (Abyzov and Gerstein,
2011) uses optimal alignments with gap excision to determine the
breakpoints of genomic structural variants. SRIC (Zhang et al.,
2011) calibrates all calls with realistic error models. Additional
of split-read based approaches include SLOPE (Abel et al., 2010),
SV-BET (Alzaid and Badr, 2016), and LAMSA (Liu et al., 2017).

The third category is an approach based on sequence
assembly, which can detect CNVs by comparing the reference
sequence and the assembled genome sequence. Magnolya
(Nijkamp et al., 2012) utilizes a Poisson mixture model for the
detection of CNVs fromNGS data. Cortex (Iqbal et al., 2012) uses
colored de-Bruijn graphs for identifying and genotyping gene
mutation. Other methods based on sequence assembly include
NOVOPlasty (Dierckxsens et al., 2017), MECAT (Xiao et al.,
2017), Recycler (Rozov et al., 2017).

The last category is the read-depth-based approach, which is
the most frequently used, and most effective method. The RD-
based method detects CNVs by analyzing differences of read-
depth signal in genomic locations (Klambauer et al., 2012).
G-CNV (Manconi et al., 2015) is able to remove duplicated
read sequences and normalize read-depth signal using graphics
processing units. CNV-seq (Xie and Tammi, 2009) detects
CNVs using shotgun sequencing. CNAseg (Ivakhno et al., 2010)
implements a segmentation of the read counts (RC) using a
Hidden Markov Model (HMM) to detects CNVs. Earlier RD-
based approaches focused solely on read-depth signal. CNVnator
(Abyzov et al., 2011) combines the mean-shift approach with
correction of GC-content bias to expanded the range of
CNVs found. BIC-seq (Xi et al., 2011) can discover CNVs

via minimizing the Bayesian information criterion. ReadDepth
(Miller et al., 2011) explains the overdispersion of genetic data
by a robust statistical model. Control-FREEC (Boeva et al.,
2012) constructs a profile that includes copy number and B-
allele frequency for detecting CNVs. CNAnorm (Gusnanto et al.,
2012) uses estimates of the mean to determine the underlying
ploidy and the pollution level of normal cells. However, most
of the abovementioned approaches can only detect CNVs
characterizing distinct.

Many investigators have proposed CNV detection algorithms
that consider RD signal plus other factors. For instance, m-HMM
(Wang et al., 2014) uses the Expectation-Maximization (EM)
algorithm to measure the parameters in the HMM, with their
emission probabilities. CNV-RF (Onsongo et al., 2016) employs a
random forest with a machine learning algorithm to find CNVs.
CoNVaDING (Johansson et al., 2016) discovers CNVs busing
a rigorous quality control standard that eliminates or marks
low-quality exons. The seqCNV (Chen et al., 2017) method
utilizes the maximum penalized likelihood estimation model to
determine the CNV boundaries. ICopyDAV (Dharanipragada
et al., 2018) enables to discovering the discovery of CNVs via
a total variation minimization and circular binary segmentation
algorithm. CONDEL (Yuan et al., 2020a) adopts a Bayesian
approach with statistical mixture models to predict the status of
the copy number. ModSaRa2 (Xiao et al., 2019) method uses a
normal mean-based model in a screening and ranking algorithm
for the detection of CNVs. BagGMM (Li et al., 2019b) utilizes a
segmentation method involving “large bin and then small bins”
to identify the boundaries of CNVs. CNV_IFTV (Yuan et al.,
2019b) calculates an abnormal score for each genome bin using
a set of isolation trees, and adopts a total variation model to
flowing neighboring bins for detecting CNVs. SM-RCNV (Li
et al., 2019a) combines the frequency of aberrance at one position
across whole genomes and the correlation between successive
positions for detecting CNVs. CNV-LOF (Yuan et al., 2019a)
allocates an outlier factor to each genome bin, and uses a boxplot
program box plot to distinguish CNVs. AITAC (Yuan et al.,
2020b) creates a nonlinear model using an exhaustive search
strategy to correlate observed and expected RDs. DINTD (Dong
et al., 2020) adopts a spatial clustering algorithm based on density
to discover the tandem duplication regions. CRSCNV (Liu et al.,
2020a) uses a statistical model based on cross to measure the
essentiality of genome bins. DCC (Yuan et al., 2018) utilizes a
sliding bin to measure a relevant index of each genome segment
for detecting CNVs. RKDOSCNV (Liu et al., 2020b) employs a
kernel density estimation algorithm to calculate the partial kernel
density distribution of each bin, and finds the CNVs by selecting
an appropriate threshold. IndivCNV (Chen and Yuan, 2020)
detects individual CNVs by hierarchical matrix energy spectrum.
The features of existing approaches are shown in Table 1.

The several approaches above rely on RD and other factors,
reducing the effects of an uneven distribution of RC, to
improve the sensitivity and specificity. However, these methods
overlook the influence of linked effects of multiple features.
And some CNVs that were similar to normal copy numbers
not are identified due to the impacts of GC-content bias and
sequencing errors. Artificial neural networks have powerful
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TABLE 1 | Comparison of existing methods.

Methods Signals Analysis samples Data input Language and interface

DCC RC Single BAM Python

RKDOSCNV RD, GC Single BAM Python, R

DINTD RD, MQ Matched BAM Python

CNV-LOF RC Single RC Python, R

BagGMM RC Matched BAM MATLAB

SM-RCNV RD Single RD Java, R

MFCNV RD, GC Single BAM Python, MATLAB

CoNVaDING RD Matched BAM, BED Perl

CNV-RF RD Matched BAM Perl, R

CNAnorm RC Single BAM Perl, R

CNVnator RD, SNP Single BAM Python, Perl

MQ, mapping quality file; Single, single sample analysis with normal matching samples; Matched, tumor-normal matched samples; CLI, command-line interface.

nonlinear mapping capabilities, which can address the linked
effects of multiple features. MFCNV (Zhao et al., 2020) detects
CNVs based on multiple features and a back-propagation neural
network classifier. However, neural networks suffer from some
limitations, such as slow convergence velocity, relapse into local
optima, and premature convergence. These disadvantages reduce
the generalization properties of neural networks.

Based on the above research, we propose an improved
method called CNV-MEANN (CNV detection of neural network
based on mind evolutionary algorithm). The proposed method
consists of five steps: eigenvalue calculation and normalization,
determination of neural network structure, calculation of
individual scores by backpropagation neural networks using a
mind evolutionary algorithm, training of the neural network, and
prediction of the actual CNVs by the neural network. The major
contributions of the presentedmethod are as follows: (1) a feature
called mapping quality is considered, which represents whether
the mapping position of reads can be trusted, (2) the categories
of CNVs are distinguished in great detail, including normal, gain,
hemi_loss, and homo_loss, which helps to accurately distinguish
the types of diseases, and (3) the network model parameters are
optimized and the individual scores are calculated using a mind
evolutionary algorithm, increasing the generalization capability
of the network model, which further improves the sensitivity
and precision of detection, to effectively identify CNVs without
obvious characteristics.

The rest of this paper is organized as follows: section 2
introduces the workflow of CNV-MEANN, and the underlying
principles and calculations. In section 3, some simulation datasets
are applied to assess the performance of our method and several
representative methods. Then, the proposed method is verified
using some real sequencing samples. Finally, in section 4, a brief
discussion and summary of the proposed method are provided,
as well as outlines for future research.

2. METHODS

2.1. Workflow of CNV-MEANN
CNV-MEANN is an RD-based method, and is designed to
accurately detect CNVs using NGS data. At present, very

few methods consider the effect of mapping quality. The
original data is mapping to the reference genome to obtain
the location information of the reads. Three features—GC-
content, RD, and mapping quality—are integrated into the
genome sequence analysis. The three factors interact in training
a neural network. To circumvent the shortcomings of the
network model, a mind evolutionary algorithm is adopted to
optimize this model, enhance its generalization ability, and
improve its performance. The individual scores are calculated
by the mind evolutionary algorithm. CNV-MEANN greatly
improves the sensitivity of detection of CNVs which do not have
noticeable features.

The workflow of the CNV-MEANN method is depicted in
Figure 1. First, a reference genome and a sequencing sample
are used as initial input to CNV-MEANN. Then, CNV-MEANN
pre-processes the sequencing input data. Finally, CNV-MEANN
executes five main steps to achieve the identification of CNVs:
(1) calculation and normalization of three features related to
CNVs, (2) construction of the neural network model based on
a mind evolutionary algorithm and using the three features,
(3) calculation of individual scores by the mind evolutionary
algorithm, (4) training of the neural network usingmarked CNVs
acquired from simulation datasets and real sequencing samples,
and (5) prediction of CNVs by the trained neural network model
based on a mind evolutionary algorithm, where the output is
the type of the CNVs (normal, gain, hemi_loss, or homo_loss)
for each genome bin. The codes of the CNV-MEANN method
are freely available at the website https://github.com/huangtihao/
CNV-MEANN.git. In the following sections the five steps are
illustrated in detail.

2.2. Data Preprocessing and Quantification
of Eigenvalues
In CNV-MEANN, one of the alignment algorithms, BWA (Li
and Durbin, 2009), is used to process a reference genome file
(FASTA) and a sequencing sample file (FASTQ), to generate
alignment files formatted in BAM. The RC profiles are acquired
from the BAM file using the SAMtools (Li et al., 2009) software.
The values of the RD signal are calculated from the RC profiles.
Each RC profile is divided into successive and non-overlapping
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FIGURE 1 | Workflow of the CNV-MEANN method for the detection of CNVs from NGS data.

equally sized bins for computational convenience in calculating
the RD signal. The default bin size is 1,000 bp, and can be
set to other appropriate values by the users. The RD signal
value is the mean value of the RC in each bin. GC-content
bias is defined as high or low GC-content due to normal cell
contamination during sequencing. Noise appears in the RD
signal because of GC-content bias, and many methods calculate
a pre-correction to overcome this bias. These approaches can
deal with some specific scenarios, and the influence of GC-
content bias is reduced, but they do not produce significant
results inmost clinical scenarios. Therefore, unlike the traditional
approach, CNV-MEANN takes GC-content as one of the features
for creating the input feature vector. The types of CNVs in the
genome bin can be distinguished by mapping quality. If a read
can be mapped to multiple locations, then the read will have a
lower mapping quality. Mapping quality is also included in the
analysis of the genome bins. Each genome bin is represented by
a triple containing three factors, and it quantified as shown in
Formula (1):

Bi = (Ri,Gi,Qi) (1)

where Ri represents the RD value of the i-th bin, Qi represents
the mapping quality of the i-th bin and Gi represents the GC-
content of the i-th bin. Bi is the eigenvector of the i-th genome
bin. Since the proposed algorithm inputs triples, we combine the
label column with triples and use a quadruple,Dm∗4 = (g, q, r, L),
to represent the training data. Where m represents the number
of bins to be used for training, g, q, and r represent the column
vectors that the values of the three types of features, and L
represents the column vectors of the label of bins. The values
of L are 0, 1, 2, 3, which represent normal, gain, hemi_loss, and
homo_loss, respectively.

Each feature has a different range of values. The value of Qi is
a few tens, while the value ofGi is between 0 and 1.We normalize
the feature values using the min-max normalization method.
Normalization of eigenvalues ensures they are invariant against
scaling and magnification. Taking base quality as an example,
normalization is shown in Formula (2):

Q =
Qi − Qmin

Qmax − Qmin
(2)

where Qmax and Qmin are calculated as the max and min of all
bins in all RC profiles. Since normalization is for the mapping
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qualities of all bins, so Qmax and Qmin are calculated as max and
min for all bins in all RC profiles.

2.3. Construction of a Neural Network
Based on the expression of each bin with an eigenvector
Bi = (Ri,Gi,Qi), a network model using the three features for
the prediction of CNVs is established. The neural network is
the commonly utilized multilayer feedforward neural network
trained using the backpropagation of errors algorithm. The
neural network has been widely applied in pattern recognition
and quality evaluation due to its excellent capability for nonlinear
mapping and its flexible network structure. The training of a
neural network involves the forward spread of signal and the
reverse spread of error. During the forward spread, information
comes from the input layer, is processed in the hidden layer(s),
and transmitted to the output layer. If output results are
inconsistent with the desired output, the matrix consisting of
weights between neurons is adjusted, and the errors are reduced.
The topology of the networks used in this work is shown in
Figure 2.

In this picture, ωij indicates the weights between the input
and hidden layer. The input layer consists of three neurons, the
hidden layer consists of 15 neurons, and the output layer consists
of four neurons. The neurons of the input layer represent three
features for each genome bin. The neurons of the hidden layer
are established according to calculation Formula h = n + 3m
following extensive experiments into the optimal functioning of
the proposed algorithm, where n denotes the number of neurons
in the input layer, and m denotes the number of neurons in
the output layer. The neurons of the output layer indicate the
four possible types of copy number: normal, gain, hemi_loss, and
homo_loss. The nonlinear activation function between the input
and hidden layers is the sigmoid function, which is shown in
Formula (3):

f (ωTB+ θ) =
2

1+ e−2(ω
TB+θ)

− 1 (3)

where ω represents the matrix of weights between the input and
hidden layers, B represents the eigenvector from the input layer,
and θ represents the corresponding errors. The learning rate is an
important parameter of a neural network, and is closely related to
convergence. The value of the learning rate is set at a default value
of 0.1, which is the same as the MFCNV (Zhao et al., 2020).

2.4. Calculation of the Individual Scores by
the Mind Evolutionary Algorithm
With the neural network structure, a mind evolutionary
algorithm is utilized to optimize the weights and thresholds
of this network. The mind evolutionary algorithm and the
evolutionary process of human thinking are very similar.
The mind evolutionary algorithm not only retains the main
concepts of the genetic algorithm, including group, evolution,
and environment, but the algorithm is refined by the addition
of two new concepts, similartaxis and dissimilation, proposed
to simulate human thinking activity. The residual between the
output produced and the expected output is lessened by the

operation of similartaxis and dissimilation. Compared with
the traditional optimization algorithms, the mind evolutionary
algorithm speeds up the search process and enhances search
efficiency. The system structure of the mind evolutionary
algorithm is shown in Figure 3.

Step 1: Individual initialization. A population of individuals
is generated randomly within the solution space, and the
individuals are scored using the objective function. Superior
individuals and temporary individuals are generated according
to individual scores. The objective function is shown in
Formula (4).

F =
N∑n

1 (Ei − Pi)2
(4)

where E and P represent the values of the expected output and
the produced output, respectively.

Step 2: Generation of superior subgroups. Random
individuals are generated centered on superior individuals
and temporary individuals, to obtain superior subgroups and
temporary subgroups.

Step 3: Individual similartaxis. The operation of similartaxis
is performed within each subgroup generated by the second
step. After the subgroups are fully mature, the score of
superior individuals in each subgroup is defined as the score
of the corresponding subgroups, and the similartaxis operation
is ended.

Step 4: Subgroup dissimilation. When the similartaxis
operation is completed, the operation of dissimilation is
performed between subgroups, and the scores of the subgroups
are published on a global bulletin board until the process of
replacement and abandonment between subgroups is completed.

Step 5: Generation of the best individual. After a predefined
number of iterations, the individual with the maximum score
is defined as the global optimal individual. The global optimal
individual is defined as an individual composed of the optimal
weight and threshold values optimized by the mind evolutionary
algorithm (MEA). If the termination criterion is not fulfilled, the
process is repeated from Step 3.

Step 6: The weights and threshold of the global optimal
individual are allocated to a neural network. Then, the network
model with the mind evolutionary algorithm is trained for the
prediction of CNVs.

2.5. Training of the Neural Network Based
on MEA
The networkmodel withMEAmust be trained before being used.
The specific steps of neural network are shown in Algorithm 1.
First, the solution space is mapped to an encoding space, based
on the topology of the neural network. Each code corresponds
to a solution (that is, an individual). Then, the reciprocal of the
average mean squared error from the training data is defined as
the scoring function of each individual and population. TheMEA
is utilized to output the optimal individual after several iterations.
Finally, the optimal individual is used as the initial weights and
thresholds for the neural network, and used in training the
network. A flowchart of the network model with MEA is shown
in Algorithm 2 and Figure 4. The specific steps are as follows:
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FIGURE 2 | Structure of a neural network.

FIGURE 3 | Structure of mind evolutionary algorithm.

Step 1:Network initialization. The input vector is defined as B,
the eigenvector of genome bins, and the output vector is defined
as P, representing the four possible states of CNVs.

B = (b1, b2, · · · , bn)

P = (p1, p2, · · · , pm)
(5)

Step 2: Calculation of the hidden layer. The activation function is
defined as f .

Hj = f (

n∑

i=1

ωijbi − λj) 1 ≤ j ≤ h, 1 ≤ i ≤ n (6)

Step 3: Calculation of the output layer. The threshold is defined
as η.

Pk =

m∑

j=1

Hjωjk − ηk 1 ≤ k ≤ m (7)

Step 4: Calculation and verification of error. The error between
the produced output and the expectation output is defined as e,
and themaximum allowable error is defined as e0. If max(e) > e0,
the parameters of the neural network are adjusted. The network
is trained until the criteria have been fulfilled.

ek = |Ek − Pk| (8)
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Algorithm 1: Procedure of neural network

Input: the optimal weights and thresholds obtained by
MEA, Bi = (Ri,Gi,Qi)

Output: status of CNVs
1 Initialize the weights and thresholds of the network;
2 while iter ≤ 200 do
3 for each B do

4 for j = 1 to n do

5 Calculation of Hj;
6 end

7 for k = 1 to m do

8 Calculation of Pk;
9 Calculation of ek;
10 ifmax(e) > e0 then
11 error back propagation;
12 end

13 end

14 for each ωij, ωjk do

15 Update the weights;
16 end

17 for each λ, η do

18 Update the biases;
19 end

20 end

21 end

Step 5: Update of the weights. The ωij and ωjk are updated
according to e, and the learning rate is defined as µ.

ωij = ωij + µHj(1−Hj)bi

m∑

k=1

ωjkek (9)

ωjk = ωjk + µHjek (10)

Step 6: Update of the thresholds. The λ and η are updated
according to e.

λ = λ+ µHj(1−Hj)

m∑

k=1

ωjkek (11)

η = η + ek (12)

2.6. Prediction of CNVs
After training the neural network based on MEA, the prediction
of CNVs can be made for the test data. For each genome bin,
the output of the CNV-MEANN contains four values mapped
from the activation function. The range of these values is (0,1),
which represents the probability of each copy number status—
normal, gain, hemi_loss, or homo_loss—for the bin. Normal is
defined as the copy number without variation. Gain is defined
as the repetition caused by homologous recombination between

Algorithm 2: Procedure of MEANN

Input: factors of CNVs
Output: status of CNVs

1 i← 0;
2 Randomly generate N individuals;
3 Calculate the individual score for each bin using Formula
(3). Ns represents the score of each superior subgroup, Nt

represents the score of each temporary subgroup;
4 Generate Ns superior subgroups;
5 Generate Nt temporary subgroups;
6 while i ≤ 10 do
7 Similartaxis operation;
8 i← i+1;
9 if Nt ≤ Ns then

10 break;
11 end

12 while Nt > Ns do

13 Dissimilation operation;
14 end

15 end

16 Generate best individual;
17 Allocate the weight and threshold of best individual to the

neural network;
18 Train the MEANNmodel by training data;
19 Predict CNVs by the MEANNmodel;

repetitive sequences on the same chromosome. Hemi_loss is
defined as the deletion of copy number of a homologous
chromosome. Homo_loss is defined as the simultaneous deletion
of the copy number of two homologous chromosomes. The
status of the candidate CNVs is then determined as the largest
of the four probability values. For example, the candidate CNV
is defined as a deletion if the probability of gain is larger than
the probability of hemi_loss, homo_loss, and normal. Finally,
subgroups are created using each candidate CNV as the center
of a group, so that the actual CNVs are identified.

3. RESULTS

3.1. Simulated Data Studies
Simulation experiments were used to evaluate the reliability and
accuracy of our method. The parameters of the CNV-MEANN
method are shown in Table 2. A comprehensive simulation
approach, IntSIM (Yuan et al., 2017), from methods of analysis
of genomic variation was chosen to generate simulated data.
Chromosome 21 from the reference genomes was selected as
input sequence of IntSIM. The range of tumor purity was set to
0.2, 0.3, and 0.4, the range of coverage depth was set to be 4x
and 6x, and the different sequence datasets were generated using
different configurations. Fifty samples were generated for each
configuration, making 300 samples in total.

Based on these simulated data, CNV-MEANN and six
alternative methods, CNAnator, iCopyDAV, FREEC, CNAnorm,
GROM_RD, MFCNV, were run. The default parameters were
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FIGURE 4 | Flowchart of the network model with MEA.

TABLE 2 | Parameters of the CNV-MEANN method.

Parameters Scale

Number of input layer 3

Number of hidden layer 15

Number of output layer 4

Weights 3*15+15*4 = 105

Thresholds 15+4 = 19

Population 200

Superior subgroups 5

Temporary subgroups 5

Subgroups 20

used to ensure a fair comparison. The comparison of the
performances of the seven methods is shown in Figure 5. The
sensitivity is defined as the ratio of the number of accurately
identified CNVs to the totality of ground truth CNVs. The
precision is the ratio of the number of accurately identified CNVs

to the totality of all identified CNVs. The F1-score (gray curves in
Figure 5) is the harmonic mean of sensitivity and precision. The
values of each indicator represent the means of 50 samples from
each configuration.

It can be seen from Figure 5 that the performance of the seven
methods improves with increasing tumor purity. For example,
the sensitivity of GROM_RD was about 0.45 at a tumor purity
of 0.2 and a coverage depth of 4x, while it reached 0.56 at a tumor
purity of 0.4 and a coverage depth of 4x. Of the methods, the
lowest F1-score value was about 0.11 and the largest value was
about 0.94 at a tumor purity of 0.2 and a coverage depth of 6x,
while these methods achieved 0.20 and 0.96 at a tumor purity of
0.4 and a coverage depth of 6x.

CNVnator achieved the highest precision in one environment,
GROM_RD achieved the highest precision in two environments,
and CNV-MEANN achieved the highest precision in three
environments. From the perspective of sensitivity, CNV-
MEANN reached the highest value in four environments,
CNAnorm achieved the highest value in two environments. From
the perspective of F1-score, CNV-MEANN reached the highest
value in all environments, and MFCNV had the second highest

Frontiers in Genetics | www.frontiersin.org 8 August 2021 | Volume 12 | Article 700874

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Huang et al. CNV-MEANN: A Neural Network

FIGURE 5 | The performance comparison of the CNV-MEANN method and the eight same methods in the aspects of sensitivity, precision and F1-score on simulation

datasets under six configurations.

value. Thus, the performance of these methods can be ordered
from highest to lowest as follows: CNV-MEANN, MFCNV,
FREEC, CNAnorm, CNVnator, GROM_RD, and iCopyDAV.

Regarding each type of CNV, the proposed algorithm can
also accurately detect. At a sample with tumor purity of 0.2 and
coverage depth of 4x, the number of CNV of gain type, hemi_loss

type, and homo_loss type is 166, 144, and 144, and the proposed
algorithm identifies 159, 143, and 141, respectively. And at a
sample with tumor purity of 0.3 and coverage depth of 6x, the
proposed algorithm identifies 162, 136, and 131, respectively.

To discuss how much improvement due to the use of MEA.
The prior algorithm of CNV-MEANN method which only uses
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FIGURE 6 | Comparisons of the boundary bias between CNV-MEANN and six peer methods.

MEA algorithm without introducing new features is named
CNV-MEANN(p). The CNV-MEANN(p) method was compared
with other algorithms, and the results were shown in Figure 5.
The average F1-score of CNV-MEANN(p) is 0.946, while the
average F1-score of MFCNV is 0.931, and the detection ability
is improved by 0.015. The reason for this result is that MEA

divides the population into superior subgroups and temporary
subgroups. On this basis, the similartaxis and dissimilation
operations are respectively explored and developed. These two
operations coordinate with each other and maintain certain
independence, which is convenient to improve the efficiency,
respectively. Besides, MEA can remember multiple generations
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of evolutionary information, which can guide similartaxis and
dissimilation in a favorable direction.

The accuracy of boundary bias detection is also an important
indicator of the reliability of the proposedmethod. The boundary
bias is described as the bias between the mean number of base
pairs of the identified CNVs and the ground truth CNVs in each
simulation sample. The smaller the boundary bias, the higher the
performance of the CNV detection method. The boundary bias
of the seven methods is shown in Figure 6.

As can be seen from Figure 6, the boundary bias of the
seven methods showed a downward trend with increase in tumor
purity and coverage depth. In contrast, CNV-MEANN obtained
the lowest value in five environments, and MFCNV obtained
the lowest value in one environment. In the comparison of
boundary bias, the performance of these methods can be ordered
from highest to lowest as follows: CNV-MEANN, MFCNV,
iCopyDAV, CNAnorm, CNVnator, GROM_RD, and FREEC. The
main reason for the good boundary bias of CNV-MEANN is it
detected the CNVs that are were not detected by other methods.

ROC curves were also used to assess the performance of the
detection methods. ROC curves are constructed by plotting the
true positive rate (TPR) against the false positive rate (FPR).

FIGURE 7 | ROC plots on simulation datasets between CNV-MEANN and five

peer methods.

The curve with both higher values of TPR and lower values of
FPR, the performance of the corresponding method is thought
to be better. The TPR and the FPR for each tumor purity of the
six methods were calculated and compared, and the results are
presented in Figure 7. The CNV-MEANN method performed
better than the other five methods in TPR, and performed
slightly better than the GROM_RDmethod in FPR. TheMFCNV
method had a higher value of TPR and a lower value of FPR, and
its performance was next to the MEANN method. In summary,
CNV-MEANN had superior performance compared to the other
methods, especially for low tumor purity and low coverage data.

There are three main reasons for the superior performance
of CNV-MEANN: (1) it selected numerous samples used as the
training data from data of different configurations, and the fault
tolerance is improved, (2) it extracted a feature called mapping
quality that better reflects the states of CNV, and considered the
joint actions of multiple features by using the neural network,
whereas other methods only consider the marginal effects of each
feature, and (3) it used anMEA to optimizing the neural network,
enhancing the robustness of the model.

3.2. Real Data Applications
To further investigate the effectiveness of CNV-MEANN, we
applied it to three real sequencing samples from the CEU family
of the 1,000 Genomes Project (http://www.internationalgenome.
org/), ID numbers NA19238, NA19239, andNA19240. The CNV-
MEANN method and the other six methods were used to detect
CNVs on the chromosome 21 of each sample, and the results
are presented in Table 3. For these real sequencing samples, the
Database of Genomic Variants (DGV) (http://dgv.tcag.ca/) was
used to obtain validated CNVs. These validated CNVs were used
to measure the performance of CNV-MEANN and the other
peer methods.

As can be seen from Table 3, CNV-MEANN identified 275,
194, and 153 CNVs in these real sequencing samples. Compared
with the other six methods, the number of CNVs detected by
CNV-MEANN was less than that detected by MFCNV for the
sample NA19240. The total number of CNVs detected by CNV-
MEANN was 4.19% higher than that detected by MFCNV. This
observation indicates that CNV-MEANN has a strong capacity
for the detection of CNVs with non-obvious features. The
comparisons of sensitivity, precision, and F1-score are shown in
Figure 8.

As can be seen from Figure 8, CNV-MEANN had the highest
sensitivity for two samples, while ReadDepth had the highest
sensitivity for sample NA19240, followed by MFCNV and the
other methods. With respect to precision, MFCNV had the
highest value for sample NA19239, while CNV-MEANN had the

TABLE 3 | Number of CNVs detected by CNV-MEANN and the six peer methods on real sequencing samples.

Samples CNVnator GROM_RD FREEC iCopyDAV ReadDepth MFCNV CNV-MEANN

NA19238 252 0 222 26 220 233 275

NA19239 145 5 91 11 187 181 194

NA19240 109 9 88 8 211 183 153
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FIGURE 8 | Performance comparison of the six methods on real sequencing

samples.

highest values for the other two samples, followed by CNVnator
and the other methods. From the perspective of the F1-score,
CNV-MEANN had the highest values in two samples, a value
of around 0.81 for three samples, followed by MFCNV and the
other methods. Compared with the other six methods, CNV-
MEANN achieved a balance between sensitivity and precision.
The results demonstrate that CNV-MEANN performed well in a
practical application.

4. DISCUSSION AND CONCLUSION

In research into intricate human diseases, the accurate detection
of CNVs is essential for comprehensive analyses of genome
sequence mutations. In this paper, an improved method for
the detection of CNVs from NGS data, called CNV-MEANN,
is presented. CNV-MEANN was developed based on the RD
method, and integrates multiple features associated with CNVs.
The algorithm includes a neural network model and utilizes
an MEA to predict CNVs. Unlike traditional CNV detection
methods, that only focus on the importance of the RD signal,
our method not only considers the influence of multiple features,
but also explores the impact of correlation between different
features. Compared with extant methods, CNV-MEANN does
not demand correction for GC-content bias, so it can elude the
errors generated during this process. CNV-MEANN extracts and
integrates three important features that are closely related to
CNVs and genomic structure variation. It then uses the neural
network to address the weight interactions of these features.
CNV-MEANN uses datasets of various configurations to train
the neural network algorithm, using training data with different
grades of tumor purity and coverage depth to enhance the
generalizability and adaptive capacity of the algorithm. Finally,
CNV-MEANN employs an MEA to calculate the individual
scores for the prediction of different types of CNVs.

Each of the three factors used in the algorithm are likely
to have its own fringe effect, that affects the accuracy of CNV
predictions. Fringe effect is defined as the effect of a single feature
on the prediction of copy number variation. The CNV-MEANN
method integrates the three features and takes them as the input
to a neural network. During the training of the neural network,
CNV-MEANN uses backpropagation of errors to update the
weights and thresholds, which includes the fringe effect of each
feature. The joint effect among the features also affects the
prediction of CNVs. Because each of the features has a different
range of values, the features are normalized before they are input
into the neural network. Normalization scales the eigenvalues
to the same level and balances the three features. To overcome
the shortcomings of the network model, such as relapsing into
local optima, the MEA is used to improve the predictive ability
of the model. In the process of optimizing the neural network
using the MEA, the eigenvectors score, composed of three
eigenvalues, is calculated, and the individual with the highest
score is regarded as the global optimal individual. Superior
subgroups are generated centered on superior individuals. The
superior subgroups contain many CNVs. Similartaxis is then
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performed within the superior subgroups. After the subgroup
matures, the score of superior individuals (the eigenvector that
is marked as CNV) in this subgroup is regarded as the score of
the subgroup. After the operation of dissimilation is performed
between subgroups, the unmarked CNVs have a probability of
being marked as CNVs in each subgroup. Finally, the marked
eigenvectors are employed as inputs to the neural network to
predict CNVs.

To appraise the performance of CNV-MEANN, several
comprehensive datasets of including different tumor purity and
coverage depth were simulated. CNV-MEANN was tested for
sensitivity, precision, and F1-score. CNV-MEANN had a better
performance than six other competing methods. CNV-MEANN
was validated using three real sequencing samples from different
sequencing platforms, and the validated CNVs of the DGV were
used tomeasure the performance of CNV-MEANN and the other
peermethods. CNV-MEANNperformed better than the other six
methods in practical application. Therefore, CNV-MEANN is a
reliable and effective tool for identifying CNVs from NGS data,
especially for datasets with low tumor purity and low coverage.

With respect to future work, we plan to improve CNV-
MEANN in the following four aspects. First, the estimation of
tumor purity and ploidy will be researched and integrated into
CNV-MEANN. This procedure will help to reduce the impact
of normal genome pollution in the sequenced genomes, and
provide more diagnostic information. Next, the application of
CNV-MEANN to single-cell sequencing data will be expanded.
Genome bins of single-cell sequencing data containing normal
and distorted states will be used to train the CNV-MEANN
algorithm, which will contribute to the discovery of new
intercellular heterogeneity, and corresponding mutations. Then,
simultaneous detection of SNV and CNV will be considered, as

both tend to occur on the genome (Mao et al., 2021). Finally, an
alternative neural network structure (Li et al., 2021) and a custom
population size can be implemented, which can adapt to different
sizes of sequencing data. Judging by its superior performance,
CNV-MEANN can be applied to clinical diagnosis and improve
the ability to predict CNVs.
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