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Background: Prostate cancer (PCa) is the most common malignant male neoplasm
in the American male population. Our prior studies have demonstrated that protein
phosphatase 1 regulatory subunit 12A (PPP1R12A) could be an efficient prognostic
factor in patients with PCa, promoting further investigation. The present study attempted
to construct a gene signature based on PPP1R12A and metabolism-related genes to
predict the prognosis of PCa patients.

Methods: The mRNA expression profiles of 499 tumor and 52 normal tissues were
extracted from The Cancer Genome Atlas (TCGA) database. We selected differentially
expressed PPP1R12A-related genes among these mRNAs. Tandem affinity purification-
mass spectrometry was used to identify the proteins that directly interact with
PPP1R12A. Gene set enrichment analysis (GSEA) was used to extract metabolism-
related genes. Univariate Cox regression analysis and a random survival forest algorithm
were used to confirm optimal genes to build a prognostic risk model.

Results: We identified a five-gene signature (PPP1R12A, PTGS2, GGCT, AOX1, and
NT5E) that was associated with PPP1R12A and metabolism in PCa, which effectively
predicted disease-free survival (DFS) and biochemical relapse-free survival (BRFS).
Moreover, the signature was validated by two internal datasets from TCGA and one
external dataset from the Gene Expression Omnibus (GEO).

Conclusion: The five-gene signature is an effective potential factor to predict the
prognosis of PCa, classifying PCa patients into high- and low-risk groups, which might
provide potential novel treatment strategies for these patients.

Keywords: prostate cancer, protein phosphatase 1 regulatory subunit 12A, metabolism, gene signature,
prognostic model
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INTRODUCTION

Prostate cancer (PCa) is the most common male malignancy in
the developed world and is predicted to account for ∼26% of
new cancer diagnoses among US men and 14.1% worldwide in
2021 (Ferlay et al., 2020; Siegel et al., 2021). In cases with early
detection, radical prostatectomy (RP), in which local malignant
prostate tissue is resected, is the preferred method to treat PCa
patients. However, the high recurrence rates of PCa contribute
to the risks of progression to castration-resistant PCa (CRPC),
giving rise to the second-leading cause of cancer deaths (Ward
et al., 2003; Roehl et al., 2004; Ferlay et al., 2018; Matsumoto et al.,
2018). Potent diagnostic and prognostic biomarkers are necessary
to predict the course of disease and the medical therapeutic
efficacy in personalized medicine (Huber et al., 2015). It is
demonstrated that the most commonly used clinicopathological
factors used to provide important prognostic information for
monitoring disease progression in PCa are serum prostate-
specific antigen (PSA) level, the Gleason score, the pathological
tumor stage, and the surgical margin (Quinn et al., 2001).
Nevertheless, because of the great heterogeneity of PCa, the
prediction power of these conventional markers is often not
satisfactory, and the prognostic markers have not been fully
explored yet. Therefore, identification of novel biomarkers for
PCa to enhance the accuracy of PCa aggressiveness prediction
still is a significant task.

Protein phosphatase 1 regulatory subunit 12a (PPP1R12A),
also named myosin phosphatase targeting subunit 1 (MYPT1), is
a member of the myosin phosphatase-targeting (MYPT) protein
family and participates in the regulation of smooth muscle
contraction (Murthy, 2006; Rattan et al., 2010; He et al., 2013;
Qiao et al., 2014). In addition, the functions of PPP1R12A in cell
development (Weiser et al., 2009), the cell cycle (Yamashiro et al.,
2008; Dumitru et al., 2017), and cell adhesion and migration (Joo
and Yamada, 2014) have been observed recently in accumulating
studies. Importantly, PPP1R12A could inhibit angiogenesis and
tumor growth and predict aggressive outcomes in PCa (Lin et al.,
2017). Moreover, its expression in PCa, combined with CD31,
could be a significant prognostic factor (Liang et al., 2018).
Therefore, it is essential to explore more biomarkers that interact
with PPP1R12A for the early effective prognosis, and effective
treatment of PCa.

After the discovery of the Warburg Effect (Warburg, 1956),
metabolic reprogramming drew increased attention in the cancer
field and has since become a novel hallmark of cancer (Hanahan
and Weinberg, 2011). Anabolic and catabolic metabolism are
indispensable to cancer cells in metabolic reprogramming,
ensuring that the biomass synthesis and energy supply of
cancer cells are adequately supplied (Ward and Thompson,
2012; Pavlova and Thompson, 2016; Sun et al., 2018; Cardoso
et al., 2021). Previous studies have revealed a tremendous
difference in metabolic statues between tumors and normal
tissue due to the unlimited proliferative nature of cancer cells
(El Hassouni et al., 2020). However, little is known about the
metabolic microenvironment and its prognostic value in PCa.
It is particularly significant to recognize biomarkers with high
specificities and sensitivities in consideration of the prognosis of
PCa at the metabolic level.

In the present study, we extracted five genes related to
PPP1R12A interaction and metabolism and developed a robust
five-gene signature to predict the prognosis of PCa. Our findings
provide a new perspective for the development of therapeutical
strategies and personalized treatment approaches.

MATERIALS AND METHODS

Collection of Human Tissue Samples
The patient cohorts and tissue samples in this study were the
same as those used in our previous study (Lin et al., 2017;
Liang et al., 2018). In total, 225 consecutive PCa patients that
underwent radical prostatectomy were included in the human
PCa tissue microarrays (TMA). Related clinicopathological
data were included.

UALCAN Analysis
The UALCAN database, a publicly accessible web portal that
is easy to operate,1 includes clinical data from 31 cancer types
and is commonly used to investigate relative transcriptional
expression levels between tumor and normal samples. PPP1R12A
expression was identified using the “prostate adenocarcinoma”
dataset with the “Expression Analysis” module. Expression levels
of PPP1R12A across PCa and normal samples as well as the
relationships between PPP1R12A and different Gleason scores
were analyzed. p < 0.05 was regarded significant.

Direct PPP1R12A Protein Interactor
Analysis
The PCa cell line LNCaP, obtained from the American Type
Culture Collection (United States), was maintained in RPMI
1640 medium (Hyclone, United States) supplemented with 10%
fetal bovine serum (Gibico, United States) and 1% penicillin–
streptomycin at 37◦C in 5% CO2. LNCaP cells were transfected
with a PPP1R12A-encoding vector construct and screened with
puromycin. After clone selection, using full-length PPP1R12A
protein as bait, we performed tandem affinity purification–
mass spectrometry (TAP-MS) (Li et al., 2016) to identify direct
PPP1R12A interactors on a proteomic scale. We utilized the
Protein Pilot 5.0 software and MASCOT software to identify
putative PPP1R12A-binding motifs in interaction partners
(Perkins et al., 1999).

Data Processing
The Cancer Genome Atlas (TCGA)2 contains both sequencing
and pathological data for 30 different cancers (Cancer Genome
Atlas Network, 2012). We acquired the FPKM data of TCGA
RNA-seq datasets for PCa from the UCSC Xena browser.3

We changed the type of gene expression profiles from
log2(FPKM + 1) to log2(TPM + 1) to obtain a more precise
data of differentially expressed genes (DEGs). The clinical
information for PCa was acquired from cBioPortal.4 Moreover,

1 http://ualcan.path.uab.edu/
2https://portal.gdc.cancer.gov/
3https://xenabrowser.net/
4http://www.cbioportal.org/
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gene expression profiles from the Taylor (GSE21034) (Taylor
et al., 2010) and GSE6956 (Wallace et al., 2008) datasets were
retrieved from GEO.5 The expression profiles data from the
Taylor dataset were standardized through RMA and data from
the GSE6956 dataset were standardized through MAS5.

Differentially Expressed Gene and
Metabolism-Related Genes Analysis
DEGs were identified among the 499 tumor samples and 52
normal prostate gland tissues after normalization. Based on the
expression levels of PPP1R12A, the patient samples were ranked
from high to low. Thereafter, we used the median expression
of PPP1R12A (4.3584) as cut-off value, and the samples data
were classified into two groups, the high expression group and
the low expression group. We utilized the “Limma” package
(Ritchie et al., 2015) in R (version 3.6.0) to screen the DEGs
related to PPP1R12A using the screening criteria of adjusted
p< 0.01 (Benjamini and Hochberg; Madar and Batista, 2016) and
| log2(fold change)| ≥ 1. The “pheatmap” package was applied for
clustering analyses and heatmaps plotting.

We acquired metabolic pathway gene sets from the Molecular
Signatures Database6 (MSigDB) (Subramanian et al., 2005) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata
et al., 1999). Using the software of GSEA v4.0.3 for Windows
and the “c2.cp.kegg.v7.0.symbols.gmt” gene set, the metabolism-
related genes were defined as the genes that were enriched in
metabolic pathways by calculating the PCa-related activity levels.

Functional Enrichment Analysis
The elemental biological functions of PPP1R12A-related DEGs
in PCa can be assessed by performing Gene Ontology (GO)
(The Gene Ontology Consortium, 2019) enrichment analysis in
three categories (biological processes, cellular component, and
molecular function) and KEGG pathway enrichment analysis,
which were conducted using the by R package (version 3.6.0)
“clusterProfiler” (Yu et al., 2012; Kanehisa and Sato, 2020) with
conditions of adjusted p < 0.05.

Prognostic Gene Signature Screening
and Generation
We utilized the open source toolkit scikit-learn7 in Python
libraries (version 3.6.0) to select the most promising genes to
establish and optimize the predictive random forest model. While
constructing the random forest, we conducted sequencing for a
total of 10 times, identifying the top five genes of the sequencing
results. Subsequently, the genes whose occurrence frequency was
greater than or equal to 5 were selected as genes of interest
(Hastie et al., 2004).

Construction and Validation of
Prognostic Signature
The impact of each promising gene on disease-free survival
(DFS) was explored by utilizing the univariate Cox regression

5https://www.ncbi.nlm.nih.gov/geo/
6https://www.gsea-msigdb.org/gsea/index.jsp
7https://scikit-learn.org/stable/

analysis. According to the expression levels of screened
genes, the risk score (RS) model was developed through Cox
univariate analysis as the following formula: RS = (–0.4619×
expression value of PTGS2) + (–0.141× expression
value of PPP1R12A) + (–0.2915× expression
value of NT5E) + (–0.6051× expression value of
AOX1) + (0.3527 × expression value of GGCT). On the
basis of the matching median RS, PCa patients were split
into high- or low-risk groups. Using the RS-model formula,
we calculated the RS for each patient in the TCGA internal
validation cohort and one more external validation cohort to
confirm the robustness of the prognostic gene signature. The
elementary endpoint was DFS and the secondary endpoint was
biochemical relapse-free survival (BRFS). Kaplan–Meier curve
analysis was performed in the training set and validation set
to assess the relationship between the RS and DFS as well as
BRFS. We used receiver operating characteristic (ROC) curves to
analyze the specificity and sensitivity of the constructed survival
prediction classifier. The area under the ROC curve (AUC) value
was calculated and compared to assess the classifier performance.
p < 0.05 was considered to be statistically significant.

Validation of Expression Levels and
Subgroup Analysis of Screened Genes
To validate the expression characteristics of the five promising
genes between the PCa and control groups, we analyzed
the expression levels of the five genes obtained from the
TCGA, Taylor, and GSE6956 datasets and depicted these
using boxplots. Subgroup analysis in the TCGA cohort was
conducted to validate the predictive superiority of the five-gene
signature.

Immunohistochemistry Analysis
Protein expression levels of PPP1R12A protein in PCa and
benign tissues were tested by immunohistochemistry (IHC) as
previously described.

Statistical Analysis
All statistical analyses used were conducted using R software
(version 3.6.0). Differential mRNA expression of PPP1R12A in
PCa tissues from the TCGA database was tested using Student’s
t-test. Functional enrichment of PPP1R12A-related DEGs in GO
terms or KEGG pathways was analyzed using a hypergeometric
test. To establish the risk assessment formula, Cox’s regression
coefficient was obtained through univariate regression analyses.
Survival curves were generated and compared by the log-rank
test. p < 0.05 was considered statistically significant.

RESULTS

PPP1R12A Expression Was
Downregulated in PCa
The overall design of our study is shown in Figure 1. In
our previous study (Lin et al., 2017; Liang et al., 2018),
we demonstrated that the combination of miR-30d/PPP1R12A
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FIGURE 1 | Flow chart of the study.

and the combination of PPP1R12A/CD31 could be effective
prognostic factors for human PCa. In order to analyze the
expression profiles of PPP1R12A in PCa, mRNA expressions
levels of PPP1R12A were analyzed by UALCAN, as revealed
in 497 PCa samples in TCGA. As shown in Figure 2A,
mRNA expression levels of PPP1R12A were significantly
downregulated in PCa tissues compared to normal samples
(p < 0.001). Furthermore, mRNA levels of PPP1R12A in PCa
were significantly lower compared to the normal tissues in the
subgroup analysis based on the Gleason score (Figure 2B). To
further validate the level of PPP1R12A in PCa, we conducted
IHC to explore the protein expression level of PPP1R12A
in PCa and benign tissues. As shown in Figure 2C, the
immunostaining of PPP1R12A protein in benign prostate tissues
was markedly stronger than that in PCa tissues, indicating
that the protein expression of PPP1R12A was lower in PCa
than in normal prostate tissues. These results suggested that
PPP1R12A was significantly downregulated in PCa relative to
associated normal tissues.

Identification of Direct PPP1R12A
Protein Interactors and
PPP1R12A-Related Differentially
Expressed Genes
To obtain the direct human PPP1R12A protein interactome,
we performed TAP-MS analyses with full-length PPP1R12A
protein as bait. We further analyzed our dataset using Protein
Pilot 5.0 software and MASCOT software to analyze PPP1R12A
interactors, generating a final list of 51 PPP1R12A interactive
proteins (Supplementary Table 1).

Analysis of PPP1R12A-related DEGs was conducted between
the high expression group (higher than median) and low
expression group (lower than median) based on the predefined
cut-off values (4.3584). With the screening criteria of p < 0.01
and | log (fold change) | > 1, we identified 340 PPP1R12A-
related DEGs in the TCGA database after screening, which
included 338 upregulated genes and two downregulated genes
(Figure 3A). The heatmaps of these top differentially upregulated
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FIGURE 2 | PPP1R12A was downregulated in PCa. (A) Relative levels of PPP1R12A in normal prostate and PCa samples based on the UACLAN database.
(B) Boxplot showing the relative expression of PPP1R12A in healthy controls and PCa patients with different Gleason scores based on the UACLAN database.
(C) IHC results for MYPT1 in benign and PCa tissues.

and downregulated PPP1R12A-related DEGs are shown in
Figure 3B.

Gene Functional Enrichment Analysis
GO molecular function enrichment analysis and KEGG pathway
enrichment analysis were performed to analyze functional
enrichment in PPP1R12A-related DEGs. The top 10 (∗p < 0.05;
∗∗p < 0.001) most significant GO terms are shown in Figure 3C,
which reveals that the most common biological processes among
the DEGs were negative regulation of cytosolic calcium ion
concentration, positive regulation of fibroblast migration, tumor
necrosis factor biosynthesis, endothelial cell morphogenesis,
regulation of nitric oxide-mediated signal transduction, prostatic
bud formation, prostate glandular acinus development, prostate
gland epithelium morphogenesis, bleb assembly, and osteoclast
development. Costamere, microfibril, complex of collagen
trimers, platelet dense tubular network, integrin complexes,
extracellular matrix (ECM) components, protein complexes
involved in cell adhesion, basement membrane, fascia adherens,
and dystrophin-associated glycoprotein complex were the
most significantly enriched cellular components. The most
common molecular functions among the DEGs were heparan

sulfate proteoglycan binding, intracellular chloride channel
activity, intracellular calcium-activated chloride channel activity,
proteoglycan binding, EMC structural constituent, transforming
growth factor beta binding, nitric-oxide synthase binding,
fibronectin binding, ankyrin binding, and calcium-release
channel activity.

The results of the KEGG enrichment analysis demonstrated
that ECM-receptor interaction, focal adhesion, vascular smooth
muscle contraction, proteoglycans in cancer, the cGMP-PKG
signaling pathway, the PI3K-Akt signaling pathway, regulation
of the actin cytoskeleton, human papillomavirus infection,
pathways in cancer, and several other associated KEGG
biological pathways were significant to the progression of
PCa (Figure 3D).

Extraction of Metabolism-Related Genes
From the GSEA Website
We acquired 41 metabolic pathway gene sets from MSigDB and
KEGG (Supplementary Table 2). To identify the metabolism-
related genes in PCa, we examined the enrichment scores of
41 metabolic pathway gene sets by using GSEA, extracting 948
metabolism-related genes (Supplementary Table 3).
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FIGURE 3 | Differentially expressed genes in PCa tissues and GO and KEGG pathway analysis of PPP1R12A-related DEGs. (A) Volcano plot for the 340 DEGs from
the TCGA PRAD dataset. Red indicates upregulation while blue indicates downregulation. (B) Heatmap plot of the top 340 DEGs from the TCGA PRAD dataset. The
red shade represents high PPP1R12A expression tissue; the blue shade represents low PPP1R12A expression tissue. (C,D) GO functional enrichment analysis (C)
and KEGG pathway analysis (D) of PPP1R12A-related DEGs. *P < 0.05, **P < 0.001.
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Identification of the Candidate Genes
and Confirmation of the Five Optimal
Genes
To identify common genes among those we extracted above,
all three gene groups, including direct PPP1R12A protein
interactors, PPP1R12A-related DEGs, and metabolism-related
genes, were compared. Although we failed to identify a candidate
gene among all three parts of independent gene sets, we selected
overlapping candidate genes from the intersection of every two
independent gene sets, respectively. In total, 15 overlapping
elements in total were identified between the PPP1R12A-
related DEGs and the metabolism-related genes (Supplementary
Figure 1A). In the comparison of the PPP1R12A-related
DEGs and the interactive genes, two overlapping genes were
identified. Seven overlapping elements were found in the
comparison between the metabolism-related genes and the
interactive genes (Supplementary Table 4). To construct the
prognostic signature efficiently, we identified four optimal
genes (PTGS2, GGCT, AOX1, and NT5E) from the candidate
genes we extracted previously through Scikit-learn’s random
forest classifier (Supplementary Figure 1B). These five genes
(including PPP1R12A) were used to build a predictive signature.

Construction and Verification of the
Prognostic Model Based on the
Five-Gene Signature
We calculated the RS for each PCa patient in the TCGA training
set and ranked them to thoroughly analyze the relevance of
the five promising genes in prognosis in these patients. The
regression coefficients of the five optimal genes in the Cox
regression analysis are shown in Supplementary Table 5. Thus,
those patients were classified into a low-risk group (n = 167) and a
high-risk group (n = 166) based on median RS (cut-off = –2.7737)
(Figure 4A, middle). The survival status in the training set is
shown in Figure 4A, top. Additionally, the five promising genes
were differentially expressed in the high- and low-risk groups,
as shown in the heatmap in Figure 4A, bottom. Utilizing data
from the TCGA validation set, the entire TCGA set, and the
Taylor database, the RS was calculated in each cohort with the
same formula as in the TCGA training set. We confirmed the
prognostic value of the five-gene signature by confirming our
findings from the TCGA training set (Figures 4B–D).

Next, we conducted Kaplan–Meier analysis. In the TCGA
training set, patients in the high-risk group exhibited significantly
worse DFS than those in the low-risk group (Figure 5A)
(p = 0.00507). Similar analyses of the Kaplan–Meier curve
(Figure 5B) showed that compared to the high-risk group,
patients in the low-risk group exhibited a significantly better
DFS in the internal validation set (p = 0.0454). In the entire
TCGA set of 475 patients, patients in the high-risk group suffered
worse DFS than patients in the low-risk group (p = 0.00059,
Figure 5C). Consistently, patients in the low-risk group generally
had a better BRFS than patients in the high-risk group in the
Taylor external validation cohort (p = 0.00149, Figure 5D).
Time-dependent ROC curve analysis revealed that the five-gene

signature had a strong predictive ability in internal and external
datasets (Figures 5E–H).

Expression Profiles of the Five-Gene
Signature and Subgroup Analysis
Utilizing the data concerning different tissues in three databases,
we explored the five genes’ expression profiles. As shown in
Figure 6A, GGCT expression was significantly upregulated in
tumor tissues, while AOX1, NT5E, PPP1R12A, and PTGS2 were
significantly downregulated compared to normal tissues in the
TCGA cohort. Similar results were obtained in the Taylor and
GSE6956 datasets (Figures 6B,C). Subgroup analysis showed
that the five-gene signature-based RS had a good predictive
ability for DFS in different subgroups, including tumor-free
patients (p = 0.00825), patients with tumor (p = 0.0322),
patients aged < 65 years (p = 0.0238), patients aged ≥ 65 years
(p = 0.00866), patients with a Gleason score of < 8 (p = 0.0173),
patients with a Gleason score of ≥ 8 (p = 0.0488), patients with
stage T1/T2 PCa (p = 0.000615), patients with stage N0 PCa
(p = 0.000604), and patients with stage M0 PCa (p = 0.00107),
in the TCGA cohort (Supplementary Figure 2).

DISCUSSION

PCa is one of the most common malignant urinary tumors,
threatening human health globally. Few effective therapeutic
strategies are available for patients with advanced or
metastatic diseases, especially CRPC. Consequently, potential
biomarkers of PCa that can be used to improve prognostic
assessment are urgently needed. We previously identified
that PPP1R12A could inhibit angiogenesis and tumor
growth, and has been identified as a promising prognostic
factor for human PCa. Moreover, previous studies (Dong
et al., 2017) showed that cancer metabolism is an essential
process in tumorigenesis, while research about the relation
between metabolism and the tumor microenvironment
in PCa is limited. Therefore, it is important to explore
new biomarkers that interact with PPP1R12A for early
effective prognosis and personalized treatment of PCa.
Thus, we performed a TAP-MS analysis to identify direct
PPP1R12A interactors on a proteomic scale, using full-length
PPP1R12A protein as bait. We identified 51 direct human
PPP1R12A interactors.

First, we conducted an integrated analysis of TCGA
datasets to investigate the underlying biomarkers interacting
with PPP1R12A in metabolism in PCa. Then, a total of
340 PPP1R12A-related DEGs, including 338 upregulated and
2 downregulated genes, were obtained between 52 normal
tissues and 499 PCa tissues. Next, GO analysis and KEGG
pathway enrichment analysis were conducted. Calcium-activated
chloride channel and chloride channel activity are related
to the regulation of cell proliferation, cell migration, and
metastasis and are proposed to contribute to tumor growth
and invasion in several cancers, including PCa (Lang and
Stournaras, 2014; Hu et al., 2019). In addition, EMC (Walker
et al., 2018) and cell adhesion (Odero-Marah et al., 2018)
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FIGURE 4 | Prognostic model analysis based on the five-gene signature. Analysis of the survival status distribution, risk score, and heatmap based on the five-gene
signature in (A) the TCGA training set, (B) the TCGA validation set, (C) the entire TCGA cohort, and (D) the Taylor cohort.

are connected to progression and metastasis of PCa. Beyond
that, KEGG pathway analysis revealed that these DEGs were
primarily involved in vital signaling pathways, including the
MAPK signaling pathway, the PI3K-AKT signaling pathway,
ECM-receptor interaction, focal adhesion, the cGMP-PKG
signaling pathway, and actin cytoskeleton regulation. It was
reported that PI3K-AKT signaling is upregulated in PCa,
and CRPC is associated with excessive activation of the
PI3K-AKT pathway (Carver et al., 2011; Crumbaker et al.,
2017). As for the ECM, a vital structural element of the
tumor microenvironment, dysregulation of the ECM–receptor
interaction signaling pathway was related to the regulation of
tumor invasion and metastasis (Zhang et al., 2016; Yeh et al.,
2018). Moreover, another study implied that focal adhesion
was related to tumor occurrence and metastasis (Eke and
Cordes, 2015). Wang et al. (2020) found that the cGMP-PKG
signaling pathway also has a tight relationship with proliferation,
migration, and invasion in PCa.

After overlapping and Scikit-learn’s random forest classifier
analysis, PTGS2, GGCT, AOX1, NT5E, and PPP1R12A were
selected as optimal genes. Prostaglandin-endoperoxide synthase
2 (PTGS2), also known as cyclooxygenase-2(COX-2), a crucial
enzyme in the process of arachidonic acid conversion to
prostaglandins and other eicosanoids, was reported to promote
malignant metastasis in colorectal tumor cells (Fenwick et al.,
2003). In addition, Guo et al. (2020) demonstrated that
PKM2 upregulates COX-2 expression, leading to epithelial-
mesenchymal transition (EMT) and metastasis of PCa, by
promoting the phosphorylation of ERK1/2. More studies on
the role of COX-2 in the regulation of PCa metastasis are
required. According to a previous study (Kageyama et al., 2018),
γ-glutamylcyclotransferase (GGCT), an indispensable enzyme
in connection with glutathione metabolism, is upregulated in
most cancers, including PCa. GGCT deficiency leads to the
suppression of proliferation, invasion, and migration of cancer
cells. It has been demonstrated that downregulation of aldehyde
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FIGURE 5 | Survival analysis and predictive value validation of the five-gene signature. Comparison of DFS stratified by risk group in the TCGA dataset and
comparison of BRFS between the low- and high-risk groups in the Taylor dataset. ROC curves testing the predictive value of the risk score in the following four
cohorts: (A,E) TCGA training set, (B,F) TCGA validation set, (C,G) entire TCGA cohort, (D,H) Taylor cohort.

oxidase 1 (AOX1) in PCa is related to shorter times until
biochemical recurrence (Li et al., 2018). Of note, 5′-nucleotidase
ncto (NT5E), also called CD73, whose expression levels can
be used to effectively distinguish between aggressive types and
indolent forms of PCa, was demonstrated to be a potential

independent prognostic marker (Leclerc et al., 2016). The present
study provides a direction for further research on the biological
functions and clinical characteristics of the five genes in PCa.

Finally, a five-gene prognostic model was established using the
TCGA training cohort, and patients were divided into high-risk
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FIGURE 6 | Expression profiles of the five-gene signature. Boxplots presenting the expression levels of the five promising genes (AOX1, GGCT, NT5E, PPP1R12A,
and PTGS2) in the tumor and tumor-free groups from (A) the TCGA cohort, (B) the Taylor cohort, and (C) GSE6956.

and low-risk groups. The AUC values for predicting the 1–, 2–,
3–, 4–, and 5-year DFS rates were 0.578, 0.643, 0.601, 0.606, and
0.561 in the TCGA training cohort, respectively, demonstrating
that the model is a reliable predictor of prognosis. We used the
data from the TCGA validation cohort and the external Taylor
cohort to confirm the prognostic superiority of the five-gene
signature. Survival analysis in the validation set confirmed our
results from the training set, demonstrating that our five-gene
risk model was robust. Additionally, the prognostic significance
of the signature was analyzed in different subgroups in the TCGA
cohort. The signature also showed a good predictive ability for
DFS in different PCa patient subgroups (based on TNM stage,
Gleason score, age, or patient status), verifying that the five-
gene signature is a functional marker independent of other
clinicopathological features.

Despite the merits of the present study, certain limitations
should be acknowledged to avoid its overinterpretation. First, it is
difficult to fully evaluate the quality of the data used in the study
because the number of samples acquired from the databases was
relatively low, and part of the gene expression data and clinical
data involved were retrieved from open databases. Secondly,
further in-depth experimental studies should be conducted to
investigate the biological functions and clinical characteristics of
the five genes identified in this study.

CONCLUSION

In conclusion, based on publicly available data and our
experimental results, we established a robust five-gene signature
to predict the prognosis of PCa by stratifying PCa patients
into high-risk and low-risk groups. Its prognostic value was
validated in an internal cohort from the TCGA database and
an external cohort from GEO. Subgroup analysis confirmed
that the signature is a functional marker independent of other
clinical features. We hope that the signature will guide treatment
strategies for PCa patients.
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