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Gene expression and methylation are critical biological processes for cells, and how

to integrate these heterogeneous data has been extensively investigated, which is the

foundation for revealing the underlying patterns of cancers. The vast majority of the

current algorithms fuse gene methylation and expression into a network, failing to fully

explore the relations and heterogeneity of them. To resolve these problems, in this study

we define the epigenetic modules as a gene set whose members are co-methylated and

co-expressed. To address the heterogeneity of data, we construct gene co-expression

and co-methylation networks, respectively. In this case, the epigenetic module is

characterized as a common module in multiple networks. Then, a non-negative matrix

factorization-based algorithm that jointly clusters the co-expression and co-methylation

networks is proposed for discovering the epigenetic modules (called Ep-jNMF). Ep-jNMF

is more accurate than the baselines on the artificial data. Moreover, Ep-jNMF identifies

more biologically meaningful modules. And the modules can predict the subtypes of

cancers. These results indicate that Ep-jNMF is efficient for the integration of expression

and methylation data.

Keywords: DNA methylation, network biology, functional epigenetic module, non-negative matrix factorization,

heterogeneous network

1. INTRODUCTION

DNA methylation modifies the cytosine base associating with cellular differentiation and cell
development (Suzuki and Bird, 2008; Deaton and Bird, 2011; Teschendorff et al., 2012; Ziller et al.,
2013). For example, DNA methylation regulates the expression of genes by decreasing the affinity
of transcription factors (Bird and Wolffe, 1999). Furthermore, abberations of methylation directly
result in oncogenesis of cancers (Varley et al., 2013). For instance, the methylation of CpG islands
(CGIs) plays a critical role in renal cell cancers (Herman et al., 1994), breast cancer (Fleischer et al.,
2014), and colorectal cancer (Hinoue et al., 2012).

Thus, it is promising to mine methylation patterns, such as the methylated CpG islands and
epigenetic modules, because they are the foundation for revealing the mechanisms of cancers.
For instance, dynamics of methylation of tissues is critical for the development of cells. The
methylation patterns of genes closely associate with survival time of patients (Fleischer et al., 2014),
and similarity of methylation profiles is also associated with cancer subtypes (West et al., 2013;
Gavaert et al., 2015).

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.706952
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.706952&domain=pdf&date_stamp=2021-08-24
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xkma@xidian.edu.cn
https://doi.org/10.3389/fgene.2021.706952
https://www.frontiersin.org/articles/10.3389/fgene.2021.706952/full


Dou and Ma Inferring Functional Epigenetic Modules

These efforts are insufficient to fully exploit the methylation
patters because they only make use of methylation data, ignoring
the regulation of methylation (Teschendorff and Relton, 2018;
West et al., 2018). Since methylation directly regulates the
expression of genes, it is natural to identify the epigenetic
modules by integrating them. However, it is non-trivial for this
issues largely due to two reasons. First, the pre-requisite of
the integration of methylation and expression is the matched
samples. Second, no cut-off definition of epigenetic modules is
available because the regulation strategies vary. For instance, in
most case, methylation in promoters negatively regulates the
expression, whereas the positive regulation also exists (Varley
et al., 2013).

For the first concern, the world consortia make use of the
next-generation sequencing technologies to generate sample-
matched data for cancers, which enables the possibility to
exploit epigenetic modules. For instance, The Cancer Genome
Atlas (TCGA)1 produces genomic data for various cancers,
covering mutation, transcription, methylation, etc. Furthermore,
Encyclopedia of DNA Elements (ENCODE)2 generate matched
samples for cell lines and tissues.

For the second concern, even though it is intuitive to
define epigenetic module for methylation profiles and networks
by simply extending the traditional clustering problem, it is
difficult to present a satisfied definition with heterogeneous
data. The available algorithms for the integration of methylation
and expression by either using a integrated network and
multiple networks. Algorithms in the first class construct an
integrated network, where the correlation between methylation
and expression are integrate edge weight. Then, the epigenetic
module in the integrated network is defined as a dense
subgraph. For example, the FEM algorithm (Jiao et al.,
2014) addresses this problem with the assumption that DNA
methylation and expression is anti-correlated, where hot-spot
and methylated modules are successfully identified. However,
the recent evidence indicates that the correlation between
methylation and expression could be both positive and negative
(Varley et al., 2013), implying that the integrated network-
based approaches are not precise enough to characterize the
epigenetic modules.

To attack this issue, efforts have been devoted by using
multiple networks to identify graph patterns. For example, in
our previous study (Ma et al., 2014), dynamic modules are
extracted from multiple networks by exploiting the temporality
of cancer progression. Driver genes of cancers can be identified
by exploiting the relations of various layers (Cantini et al., 2015),
implying the importance and effectiveness of multiple networks.
Clustering multiple networks aims to identify modules in
networks, which can be achieved by extending measurement for
single networks (Didier et al., 2015). These results demonstrate
that multiple networks are more accurate and generalized than
single networks in terms of characterizing biological patterns.
In our previous study (Ma et al., 2017), the epigenetic module
is a group of co-methylated and co-expressed genes in multiple

1https://cancergenome.nih.gov/
2https://www.encodeproject.org/

networks, and then the epigenetic modules are discovered by
using the M-Module algorithm (Ma et al., 2014). The success
of the multiple network-based approaches demonstrates that the
multiple networks model is much better than the integrated
network base method.

Even though multiple network-based algorithms have been
devoted to the epigenetic module discovery, many unsolved
problems exit. Particularly, the quantification of modules in
multiple networks is fundamental, and how to further improve
performance of algorithms for epigenetic modules. In the
present study, we discuss these two issues. To identify the
epigenetic modules in the co-methylation and co-expression
networks, the key problem is how to characterize the topological
structure of modules in multiple networks. Then, we define the
epigenetic module as the common module in multiple networks.
To discover the functional epigenetic modules in multiple
networks, a novel non-negative matrix factorization algorithm
for epigenetic module (Ep-jNMF) is proposed, which jointly
analyzes the gene co-expression and co-methylation networks
(Figure 1). It first constructs the two layer networks, and
extracts features usingmatrix factorization, where the topological
structure is regularized into the objective function. Extensive
experiments are performed, where Ep-jNMF achieves the best
performance on the artificial networks. Moreover, it identifies
more biological meaningful modules than the baselines, and
some of obtained modules precisely predict the survival time
of patients.

The rest of this study is organized as follows: section 2 presents
the mathematical model and algorithm. The experiments and
conclusion are depicted in sections 3 and 4, respectively.

2. METHODS

The model and procedure of Ep-jNMF are depicted in
this section.

2.1. Notations
A network (graph) is denoted by G = (V ,E) with vertex set
V and edge set E. Multiple network G = {G1,G2, . . . ,GM} is a
sequence of networks, where Gm is the m-th snapshot. In this
study, the vertex set of G is fixed, i.e.,Gm = (V ,Em). The adjacent
matrix of G is a tensor W = (wijm)n×n×M , where n = |V| and
wijm is the weight on the edge (vi, vj) in Gm. Actually, W =

[W1,W2, . . . ,WM], where Wm = (wijm)n×n is the adjacency
matrix of Gm. In this study, the attached subscript m represents
the value of the variable at conditionm.

Vertex degree is the sum of weights on the incident edges,
i.e., dim =

∑

j wijm. Betweenness is a typical centrality (Freeman,

1979; Brandes, 2001), which is defined as

betweennessm(v) =
∑

vi 6=vj ,vi 6=v,vj 6=v

givj

gij
,

where givj and gij are the number of the shortest paths between
vi and vj passing, and without passing v, respectively. Given a
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FIGURE 1 | Overview of Ep-jNMF. It is composed of network construction, matrix factorization, and module discovery, where network construction obtains the gene

co-expression and co-methylation networks, and the matrix decomposition extracts features.

FIGURE 2 | A schematic example of common module, which is

well-connected in both networks.

group of genes, denoted by C, the density of C in network Gm

is defined as

Densitym(C) =
2|Em(C)|

|C|(|C| − 1)
,

where Em(C) is the edge set of the subgraph induced by C in
network Gm, i.e., Em(C) = {(vi, vj)|vi ∈ C, vj ∈ C, (vi, vj) ∈ Em}.

In G, a module is a group of vertices with more edges within
it, and fewer ones outside it. In G, the common module is a
group of vertices whose connectivity is strong in all snapshots.
For example, the module consisting of {1, 2, . . . , 6} in Figure 2 is
well-connected in both networks. In this study, we aim to obtain
the common modules in the co-expression and co-methylation
networks. The common module detection corresponds to a hard
partitioning {C1,C2, . . . ,Ck} (denoted by {Cl}

k
l=1

) such that Cl1 ∩

Cl2 = ∅ if l1 6= l2 and V =
∑

l Cl, where k is the number
of modules.

2.2. Mathematical Model
The quantification of connectivity of common modules in
multiple networks is fundamental. Typical measurements,
including the entropy function (Ma et al., 2014), modularity
(Newman and Girvan, 2004), and modularity density (Li et al.,
2008), are proposed. However, these strategies are inapplicable
for the multiple networks. Here, we extend the modularity
density D (Li et al., 2008) since it tolerates the resolution limit
problem at some extent. Specifically, connectivity of module Cl

in Gm is defined as

Dm(Cl) =
1

∑

vi∈Cl
dim

(

L(Cl,Cl)− L(Cl,Cl)
)

, (1)

where L(Cl,Cl) =
∑

vi∈Cl ,vj∈Cl
wijm and Cl = V\Cl. Ideally, we

maximize the connectivity of module Cl in all snapshots, i.e.,







maxD1({Cl}),
· · ·

maxDM({Cl}).
(2)

However, it is difficult to reach maximal value for each network.
Therefore, we transform themulti-objective function in Equation
(2) into a single objective function using the geometric mean of
the connectivity, i.e.,

D(Cl) = (
∏

m

Dm(Cl))
1/M . (3)

The underlying assumption is that a group of genes form
a common module if and only if they are well-connected
in all networks.

The partitioning {Cl}
k
l=1

is represented by Xn×k with xij =1 if
vi ∈ Cj, 0 otherwise. The overall function is the connectivity of
all modules, i.e.,

∑

l

maxD(Cl) (4)
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s.t.







xij ∈ {0, 1},
∑k

j=1 xij = 1,
∑n

i=1 xij ≥ 1,

where the second constraint enable the hard partitioning, and
the last one ensures non-empty of modules. To avoid multi-
objectives in Equation (4), we relax it as

max
∑

l

D(Cl) (5)

s.t.







xij ∈ {0, 1},
∑k

j=1 xij = 1,
∑n

i=1 xij ≥ 1.

2.3. The Ep-jNMF Algorithm
The algorithm consists of three components, which are
introduced in turn (Figure 1). Networks are constructed using
the Pearson correlation of gene profiles, and the PCIT package
(Reverter and Chan, 2008) is adopted to remove noise.

NMF (Lee and Seung, 1999) approximates the target matrix
using the product of two low-rank matrices as

W ≈ BF (6)

s.t.

{

B ≥ 0,
F ≥ 0,

where Bn×k and Fk×n are the basis and coefficient matrix,
respectively, and k is the number of features. Usually, k ≪ n
indicates that BF represents a compressed form of the original
data W. Not allowing negative entries in B and F enables a non-
subtractive combination of parts to form a whole. Equation (6) is
solved by minimizing the approximation error as

e(B, F) = ‖W − BF‖2, (7)

where ‖W‖ is the Frobenius Norm ofmatrixW. Tri-factorization
is more efficient than NMF (Yoo and Choi, 2010), where
Equation (8) is formulated as

e(B, F) = ‖W − BHF‖2, (8)

where H is the factor matrix.
For each snapshot, Ep-jNMF jointly factorizesWm as

Wm ≈ BHFm. (9)

Intuitively, we can minimize the approximation error for each
snapshot as

∑

m

min ‖Wm − BHFm‖
2 (10)

s.t.

{

B ≥ 0,
Fm ≥ 0

Algorithm 1: Ep-jNMF.

Input:

G: Networks;
k: Number of features;

Output:

{Cl}
k
i=1: Common modules.

Procedure I: network construction

1: Constructing the gene co-expression (co-methylation)
network using partial Pearson coefficient;
Procedure II: matrix decomposition

2: Fixing Fm(1 ≤ m ≤ M) and H, update x B as equation (12);
3: Fixing B and Fm(1 ≤ m ≤ M), update H as equation (13);
4: Fixing B and H, update Fm(1 ≤ m ≤ M) as equation (14);
5: Keep updating the steps 3 and 4 until the termination

criterion is reached;
Procedure III: common module discovery

6: Extracting modules from B;
7: return

However, it is difficult to reach minimization for each snapshot.
Similar to Equation (5), we reformulate Equation (11)

min
∑

m

‖Wm − BFm‖
2 (11)

s.t.

{

B ≥ 0,
Fm ≥ 0.

The algorithm iteratively updates B and Fm by following the
multiplicative rules (Lee and Seung, 1999), where the update rules
are formulated as

B = B

∑

mWmF
T
m

B
∑

m FmFTm
, (12)

H = H

∑

m BTFTmWm

BTBFmFTm
, (13)

and

Fm = Fm
BTWm

BTWmB
. (14)

Ep-jNMF (Algorithm 1) updates rules until termination is
reached. For example, the approximation error threshold is set
as 10−2, or the maximum iteration number is 103. Because the
initial solution is random, we repeat the procedure 50 runs with
different initial solution matrices. The modules are extracted
based on B, i.e., xij∗ = 1 where j∗ = argmaxjBij, 0 otherwise.
The Ep-jNMF algorithm involves one parameter k, which is the
number of features to obtain the coefficient matrices. We select it
using the instability of matrix factorization (Wu et al., 2016).

2.4. Algorithm Analysis
On the space complexity, G requires space O(n2M). The basis
matrix requires space O(nk) and the coefficient matrices need
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space O(knm). The space of the index matrix X is the same as the
basis matrix B. In all, Ep-jNMF takes space O(n2m) + 2O(nk) +
O(nkm) = O(n2M) since k≪ n.

On the time complexity, for each Fm, Ep-jNMF needs time
O(rkn2), where r is the number of iterations. And the running
time for coefficient matrices in Ep-jNMF isO(rkn2M). Therefore,
the total time complexity of Ep-jNMF is O(rkn2M).

3. EXPERIMENTS

To validate the performance of Ep-jNMF, we select sixe state-
of-the-art methods for a comparison, including M-Module
(Ma et al., 2014), consensus clustering (CSC) (Cantini et al.,
2015), multiple-modularity method (MolTi) (Didier et al., 2015),
stability NMF (sNMF) (Wu et al., 2016), FEM (Jiao et al.,
2014) and spectral clustering (SPEC) (Newman, 2006a), covering
single-network- and multiple-network-based approaches. The
former ones are extended using the consensus strategy (Cantini
et al., 2015).

3.1. Data and Criteria
The artificial networks are derived from GN benchmark
(Newman, 2006b), where each snapshot consists of 4 equal size
communities with 32 vertices, and the degree of vertices is fixed

as 16. Parameter Zout controls the noise level of networks, and
Zout increases from 1 to 8. By manipulating parameter Zout ,
two types of multiple networks are generated, where in the
homogeneous networks (HomoNet) the noise levels in snapshots
are the same, and in heterogeneous networks (Heter-Net) it varies
in different snapshots. Specifically, Zout is fixed as 4 in the first
snapshot, and it varies from 1 to 8 in the others. We downloaded
the sample-matched gene expression and methylation profiles
of breast cancer from TCGA. Specifically, the gene expression
level is quantified using RPKM values and methylation level is
measured by β signal, which are imputed using PCIT (Tibshirani
et al., 2002).

The normalized mutual information (NMI) (Danon et al.,
2005) measures the closeness of two partitioning: standard
partition P∗ and obtained partitioning P. NMI generates matrix
N with the element Nij as the size of vertices overlapped by C∗

i
and Cj, which is formulated as

NMI(P, P∗) =
−2

∑|P|
i=1

∑|P∗|
j=1 Nij log(

NijN

Ni.N.j
)

∑|P|
i=1 Ni. log(

Ni.
N )+

∑|P∗|
i=1 N.j log(

N.j

N )
,

where |P| is the cardinality of P and Ni. =
∑

j Nij.

FIGURE 3 | Performance on artificial networks: (A) Heatmap of common modules in Homo-Net (Zout = 1); (B) selection of the number of modules using instability of

matrix factorization with various noise levels; (C) NMIs of algorithms on Homo-Net; (D) NMI of algorithms on Heter-Net; and (E) scalability analysis of Ep-jNMF.
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To check whether the predicted epigenetic modules are
biological meaningful, various annotation databases are selected
as gold standards for the enrichment analysis, where the
significance is obtained by using the hypergeometric test
(corrected by Benjamini–Hochberg test) with a cutoff of 0.05.

3.2. Performance on Simulated Networks
Each simulated snapshot contains 128 vertices and 4 modules
of equal size with fixed degree 16. Parameter Zout controls the
noise level of networks. As Zout increases from 1 to 8, the module

structure is obscure. In this study, we generate two types of
simulated networks with M = 2: Homo-Net and Heter-Net.
Specifically, the parameter Zout of both networks of Homo-Net
is the same, while the Zout of one network of Heter-Net is fixed
as 4 and the parameter of the other network varies from 1 to 8.
Figure 3A is the heatmap of the Homo-Net networks with Zout
= 1, where the common modules locate at the diagonal.

First, how the Ep-jNMF algorithm selects the parameter k,
i.e., the number of modules, is studied. How the instability of
Ep-jNMF changes as k increases from 2 to 10 for Homo-Net

FIGURE 4 | Performance on the cancer networks: (A) a typical epigenetic module predicted by Ep-jNMF with red border color as hit genes; (B) the density of the

modules in the co-methylation and co-expression network; (C) percentage of predicted modules enriched by one reference pathways or functions (specificity); and

(D) percentage of reference pathways or functions enriched by a predicted module.
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is shown in Figure 3B, where it chooses the optimal value 4
because the minimal is reached at 4. The similar pattern repeats
for Heter-Net, which is not shown because of redundancy. The
result demonstrates that the strategy is promising in selecting the
number of modules.

Then, we compare M-Module, CSC, MolTi, sNMF, and SPEC
on the simulated networks. Figure 3C shows the accuracy of
various algorithms for Homo-Net, while Figure 3D shows the
accuracy of various algorithms for Heter-Net. The performance
of all these algorithms decreases as the parameter Zout increases
from 1 to 8 because the module structure is difficult to detect
as Zout increases. M-Module and Ep-jNMF outperform the rest
of algorithms because the CSC, MolTi, and SPEC are based on
the consensus clustering, which ignores the connection among
multiple networks. However, M-Module and Ep-jNMF make
use the multiple networks simultaneously during the module
search procedure, which improves the accuracy of detecting the
common modules. In all, the Ep-jNMF algorithm is better than
the M-Module algorithm. More specifically, when Zout is less
than or equal to 5 in Homo-Net, the Ep-jNMF and M-Module
algorithms have a similar performance.When Zout is greater than
or equal to 6, Ep-jNMF outperforms M-Module, indicating the
superiority of Ep-jNMF. The similar tendency also repeats in
Heter-Net (Figure 3D).

Finally, we investigate the accuracy of Ep-jNMF by increasing
the number of vertices from 512 to 4096. The performance of
Ep-jNMF is shown in Figure 3E, suggesting that the algorithm
is robust. These results demonstrate that Ep-jNMF is promising
to identify common modules in artificial networks.

3.3. Performance on Cancer Networks
For cancer networks, we select the Ep-jNMF, M-Module, MolTi,
sNMF, and FEM algorithms for a comparison since they
significantly outperform CSC and SPEC. The Ep-jNMF, M-
Module, MolTi, sNMF, and FEM algorithms identify 17, 26, 94,
26, and 460 modules, respectively.

Figure 4A presents a functional epigenetic module obtained
by Ep-jNMF with cell proliferation (p = 3.8E-4), which is
critical for breast cancer metastasis (Loayza-Puch et al., 2016;
Thienpont et al., 2016). Interestingly, the epigenetic module
contains the HAND2 sub-module, which is validated by the
biological experiments (Jones et al., 2013). The HAND2 module
has been used as the benchmark for the algorithms for the
methylated module (Jiao et al., 2014). Furthermore, we find
that only FEM and Ep-jNMF can discover the HAND2 module,
whereas the others cannot. These results imply that Ep-jNMF
is effective for the identification of critical epigenetic modules.
To check whether the genes within the obtained common
module are well-connected in both networks, the density of the
module in different snapshots is shown in Figure 4B. Clearly, the
connectivity is strong in both snapshots because the density is
0.47 and 0.22, which is significantly higher than that in random
networks. The possible reason why the module is much denser in
the co-expressed network than that in the co-methylated network
is that methylation is more specific than expression.

To fully validate the performance of Ep-jNMF, Gene Ontology
(Ashburner et al., 2000), KEGG (Kanehisa et al., 2012), Reactome

(Croft et al., 2014), Biocart (Nishimura, 2001), and Canonical
pathways (Subramanian et al., 2005) are selected as reference
annotation. To evaluate the performance, we first check the
percentage of predicted modules that significantly enriched by
at least one reference annotation, and then we calculate the
percentage of the reference pathways that significantly overlaps
with at least one predicted module. Figures 4C,D show that Ep-
jNMF achieves higher specificity with comparable sensitivity,
implying that the predicted modules are more meaningful in
terms of the biological background.

3.4. Performance on Predicting Cancer
Subtypes
Evidence proves that hub genes facilitate the prognosis of cancers
(Taylor et al., 2009). Therefore, we check whether epigenetic
modules also serve as biomarkers to discriminate cancer subtypes
by using the methylation profiles. We select modules predicted
by Ep-jNMF, FEM, sNMF, M-Module, and MolTi. Furthermore,
we also include size-matched set of randomly modules to
validate the performance of different features. Support vector
machine is selected as classifier to calculate the percentage of
patient samples that are classified correctly (accuracy). The
fivefold cross-validation is used for SVM, which is shown in
Figure 5A, indicating that modules obtained by Ep-jNMF are
more discriminative than the others. Specifically, the accuracy of
Ep-jNMF is 82.4%, whereas that ofM-Module is 75.1% (p= 4.9E-
6, Wilcoxon test), showing that modules in multiple networks
are more accurate to capture the structure and functions of
cancers. The external dataset is also performed (GSE5874), which
is shown Figure 5B. Specifically, Ep-jNMF is also superior to the
baselines (i.e., 74.6% for Ep-jNMF vs. 62.9% for M-Module, p =
2.1E-4, Wilcoxon test).

FIGURE 5 | Performance on the prediction of subtypes with various validation

in terms of accuracy: (A) internal validation with the error bar as for the

standard deviation and (B) external validation.
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4. CONCLUSION

Epigenetic modification is a critical biological process, and
mining the patterns is promising for the understanding of
cancers. The advances in the next-generation sequencing
technologies facilitate the generation of genomic data for
cancers, which enables the integrative analysis of omic data.
How to integrate gene methylation and expression data
is the fundamental step for revealing the mechanisms of
cancers. The traditional methods fuse them into a single
network by assuming the positive and negative correlation
between expression and methylation. However, these strategies
are criticized for the undesirable performance since the
underlying assumption is not consistent with the biological
principle.

In this study, we use the multiple networks model to
characterize functional epigenetic modules, which corresponds
to the common modules detection in multiple networks. Finally,
we present a matrix factorization algorithm for extracting
the common modules from heterogeneous networks. Overall,
the contributions are summarized as follows: (i) it provides
a mathematical model for the functional epigenetic modules,
which overcomes the limitation of the current approaches, i.e.,
the correlation specification between methylation and expression
is not required; (ii) a joint learningmethod is proposed to identify
the epigenetic modules in multiple networks, which avoids the
structure preservation of single network-based method, which
can be easily extended for other data, such as Chip-seq and

mutation data; and (iii) the experiments show the superiority
of Ep-jNMF.

In further research, we will investigate how to
integrate heterogeneous entities, such as microRNAs, to
extract the regulation programming based on multiple
heterogeneous networks.
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