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Repurposing is an increasingly attractive method within the field of drug development
for its efficiency at identifying new therapeutic opportunities among approved drugs at
greatly reduced cost and time of more traditional methods. Repurposing has generated
significant interest in the realm of rare disease treatment as an innovative strategy
for finding ways to manage these complex conditions. The selection of which agents
should be tested in which conditions is currently informed by both human and machine
discovery, yet the appropriate balance between these approaches, including the role of
artificial intelligence (Al), remains a significant topic of discussion in drug discovery for
rare diseases and other conditions. Our drug repurposing team at Vanderbilt University
Medical Center synergizes machine learning techniques like phenome-wide association
study—a powerful regression method for generating hypotheses about new indications
for an approved drug—with the knowledge and creativity of scientific, legal, and clinical
domain experts. While our computational approaches generate drug repurposing hits
with a high probability of success in a clinical trial, human knowledge remains essential
for the hypothesis creation, interpretation, “go-no go” decisions with which machines
continue to struggle. Here, we reflect on our experience synergizing Al and human
knowledge toward realizable patient outcomes, providing case studies from our portfolio
that inform how we balance human knowledge and machine intelligence for drug
repurposing in rare disease.

Keywords: drug repurposing, evidence synthesis, rare diseases, machine learning, phenome wide association
studies, precision medicine
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INTRODUCTION

In today’s age of big healthcare data, how should artificial
intelligence (AI) and human critical thinking and creativity
coexist within the drug development process? The long-range
effects of integrating Al tools such as machine learning (ML)
into drug development remain to be determined, particularly
for complex problems such as rare disease strategies. Within the
burgeoning field of drug repurposing—which seeks to facilitate
and accelerate drug development by discovering new use cases
for existing drugs (Nosengo, 2016)—this discussion is especially
timely. The oldest, most well-known cases of repurposing, such
as sildenafil for erectile dysfunction (Roundtable on Translating
Genomic-Based Research for Health et al., 2014), are often
considered serendipity but were in reality unexpected effects
astutely recognized by humans. As procedures and knowledge
bases for the identification and validation of repurposing
candidates continue to mature and grow (Challa et al., 2018; Xue
et al., 2018; Pulley et al., 2020), the field is extremely fertile for
the application of Al to identify patterns suggestive that a drug
candidate is attractive for repurposing.

Repurposing of existing therapeutic agents has generated
significant interest in the realm of rare diseases as an innovative
strategy for finding new opportunities to manage these complex
conditions (Delavan et al., 2018; Valencic et al., 2018; Scherman
and Fetro, 2020; Roessler et al., 2021). As data resources that
integrate longitudinal phenotype information with genetic data
and patient demographics continue to expand and evolve, so does
their utility for identifying new therapeutic insights for an array of
rare diseases. Several studies have harnessed these data with ML
to identify drug repurposing candidates, exploring connections
among multi-omics data with potential therapeutic implications
(Jarada et al., 2020; Chen et al., 2021). Drug discovery in rare
disease has been a particularly innovative use case for this
approach, allowing investigators to predict molecular etiologies
for rare diseases from existing knowledge on illnesses with
similar presentations. Subsequently, these predictions can inform
a shortlist of repurposable therapies for such rare diseases. This is
done by considering the therapeutic indices of agents indicated
for those illnesses that ML identifies as having pathophysiology
and symptomology similar to the rare disease of interest (Alvarez-
Machancoses and Fernandez-Martinez, 2019; Brasil et al., 2019;
Lee et al., 2019). The power of ML in this context is in its
capacity to identify patterns at scale. MLs automation of this
discovery step expedites the pace of hit discovery and expands
the landscape of potential candidates translatable to future
stages of the development pipeline. This approach’s efficiency is
magnified when the probability of this kind of a hit is otherwise
low, as it is for many rare disease therapeutic campaigns
(Ekins et al., 2019).

Despite the promise, current ML architectures struggle to
parse the diverse, semi-structured feature sets inherent to the
available data. Thus, we propose that ML can be a supplement—
but not a replacement—for the perspectives of domain experts
in drug repurposing. The complementary and interconnected
nature of human intelligence and AI is becoming apparent
(Kim et al., 2021). We assert that in its current state ML is

best leveraged in drug repurposing efforts to inform human
“go/no-go” decision-making. Relying on rigid rules-based criteria
typically required by ML overlooks that important information
remains insufficiently codified to even be able to apply a rule.

Our drug repurposing team at Vanderbilt University Medical
Center (VUMC) synergizes computational techniques like the
phenome-wide association study (PheWAS) (Denny et al., 2010,
2013)—an ML method for generating hypotheses about new
indications for an approved drug—with data mining from public
databases (Challa et al., 2019). As we describe throughout the
case studies we present in this manuscript, PheWAS inputs
phenotypes encoded as administrative billing codes [e.g., the
International Classification of Diseases ontology (World Health
Organization, 1993; Centers for Disease Control and Prevention,
2021)] and tests the strength of associations between the presence
of these codes in patients’ electronic health records (EHRs) and
the incidence of single nucleotide mutations recorded for these
patients within clinical genomics repositories that accompany
their EHRs. The associations are formalized through a logistic
classification algorithm, which provides p-values (correctable for
multiple testing) and odds ratios to quantitatively assess the
strength of each predicted mutation-disease pair (Denny et al.,
2010, 2013). These data are then overlaid with the knowledge of
scientific and clinical domain experts, which facilitates review of
true causality, identification of drugs associated with the targets
carrying implicated mutations on their encoding genes, as well
as the likelihood of successfully repurposing these drugs for the
diseases indicated by PheWAS. In this article, we reflect on the
processes involved in our program, with a view to areas of synergy
for ML approaches like PheWAS and human knowledge. We
share illustrative examples from our portfolio that support our
beliefs in the unique balance of human and machine intelligence
required for drug repurposing in rare disease.

OVERVIEW OF THE DRUG
REPURPOSING PLATFORM AT
VANDERBILT UNIVERSITY MEDICAL
CENTER

Our drug repurposing platform at VUMC (Pulley et al.,, 2017,
2018a,b; Goldstein et al., 2018; Jerome et al., 2018; Choby et al,,
2019) leverages natural human genetic variation as a proxy
for, and method for more accurately predicting, the physiologic
effects of therapies in humans. The key resource enabling this
work is BioVU, a repository of 245,000 unique, de-identified
DNA samples derived from discarded blood collected during
routine clinical testing (Roden et al., 2008). BioVU, combined
with extensive and granular phenotype data from the EHR,
serves as a centralized resource for conducting largescale disease-
agnostic research on fundamental questions of how genetic
variation corresponds to variations in observable attributes,
like the PheWAS analyses described above. The open-source
codebase enabling execution of PheWAS and replication of
previously published PheWAS signals (Pulley et al., 2017; Jerome
et al., 2020) and a catalog of single nucleotide polymorphism
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(SNP)/phenotype findings are publicly available online (Denny
etal., 2013; PheWAS, 2021).

With a sufficiently large dataset, SNPs with low minor allele
frequencies can allow for assessment of therapeutic targets among
rare diseases, given the size and breadth of data yielded by large,
diverse healthcare centers. As above, our methods (Figure 1)
identify variants in drug target genes (Wishart et al., 2018) and
then execute PheWAS (Denny et al., 2010) to find the diseases
associated with these SNPs. When a known indication of a drug
results from this analysis (e.g., when a SNP that is known to lower
gastric acid secretion has a statistically significant association
with reduced risk of heartburn), we can reasonably conclude that
the SNP recapitulates the effects of a comparative drug (e.g., a
proton pump inhibitor). Building upon these validation signals,
we assess associations between the SNP and potential novel
indications for the associated drug, as represented in phenotypes
yielded by PheWAS. Our method does not solely rely on the
classifier; it also requires the integration of conceptual knowledge
on the clinical manifestations of human disease and markers of
disease pathophysiology. To facilitate this conceptual synthesis of
existing knowledge, we have developed a plausibility assessment
approach with extensive evidence review using comprehensive
searches of a wide range of information science resources. These
methods are applied to make selections for clinical development.
Using this procedure, we have established a suite of 13 drug-
indication pairings, and we have generated confirmatory data
for five (out of six) programs to date. Table 1 provides several
illustrative examples from our program’s slate of projects.

Each project in our repurposing pipeline represents a precise
disease or, when the disease is not a classical rare disease, a
rare disease endotype, defined by a discrete pathophysiologic
mechanism and cluster of characteristics that is revealed
by review and synthesis of narrative descriptions of disease
presentations (e.g., as detailed in clinical notes) within candidate
EHRs. It is well known that the presentations of rare diseases
are often so complex or opaque that even skilled clinicians
require extensive workups and multidisciplinary consults to
unearth a sufficiently discriminatory differential. MLs goal of
pattern recognition could allow for more efficient identification
of these rare disease differential diagnoses, but to make accurate
predictions of which drugs might work for which rare disease,
the ML algorithms require knowledge of presence, absence,
and corresponding significance of features to facilitate accurate
rule-in/rule-out modeling. We propose that these methods
do not yet have the sophistication to mirror or replace the
expert domain knowledge applicable to finding new rare disease
indications for existing drugs, as we have found in our
repurposing experiences.

LIMITATIONS OF THE UTILITY OF Al
BASED ON OUR DRUG REPURPOSING
EXPERIENCES

Researchers are developing approaches to systematically
support and expand repurposing efforts, some of which
use ML technologies (Chen et al, 2021; Gupta et al, 2021;

Issaetal, 2021). Promising techniques include quantitative
structure-activity relationship modeling (Ekins et al, 2019;
Challa et al., 2020), in silico docking experiments on druggable
targets, virtual high-throughput screening, adverse event
matching, and applying advanced statistical approaches to big
clinical, genomic, pathway, and gene regulation data to discover
new relationships within this information toward personalized
medicine (Challener, 2018; Le et al., 2019, 2020). Despite the
advantages of an Al approach like unsupervised ML to discover
previously unrecognized patterns, as well as the large extent
to which AI allows for pliable model development, we have
found several challenges hindering the potential of AT to be fully
realized in the context of our platform. While we believe that
PheWAS offers an advance over other functionally similar ML
approaches in its ability to work robustly across the healthcare
data of diverse enterprises (Hermann et al, 2021; Salvatore
et al, 2021; Schneider et al., 2021) and its empowerment of
holistic, high-throughput discovery through minimal model
pre-conditioning, its results require manual interpretation.

A key first step in our hypothesis generation workflow is
identifying, via PheWAS, SNPs within a drug target’s genes
that replicate known therapeutic information about the drug
(i.e., known indications or side effects of the drug). Given
that the indications or side effects on a drugs label may
not directly correlate to patient experiences in the real world,
identification of the “controls” that underlie our models requires
leveraging deep conceptual knowledge from the literature and
from clinical collaborators. For example, we used “aphasia”
(odds ratio = 5.05, p = 0.007) as an anchoring phenotype
in analyzing PheWAS results for GRIN2A, which encodes
the protein target of memantine. Memantine is approved for
treatment of Alzheimer’s disease but has limited efficacy for
that indication as a standalone therapy. Literature evidence
indicates stronger therapeutic efficacy for aphasia (Berthier et al.,
2011), which is among the top associations in our PheWAS
dataset and is also a feature of neuropsychiatric lupus, which
we further identified as a pathogenicity of SNPs linked to
GRIN2A. Cognitive dysfunction in patients with systemic lupus
erythematosus patients then became our repurposed indication,
which we are currently interrogating through clinical testing
(NCT03527472). If we had only relied on ML to construct our
model, would a rules-based classifier have recognized a theme of
aphasia, or the “rare” subtype of lupus, when these diseases are
written in clinical narratives without formal diagnosis?

Another example of ways in which manual patient chart
reviews can contribute to our process involves our use of
electrolyte imbalance as the anchoring phenotype for TACRI,
which encodes the protein target of aprepitant. Aprepitant
is approved for chemotherapy-induced nausea and vomiting;
review of patient charts confirmed that vomiting explained
our controlling set of electrolyte imbalance PheWAS results
in patients with TACRI mutations. Could ML stably and
efficiently integrate such relationship-driven disease classification
knowledge into a larger inference model, in a way that would
prevent calling this true-positive result a false-negative?

Establishing parity between a drug’s mechanism of action
and SNP directionality enables us to confirm known indications,
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FIGURE 1 | VUMC Drug Repurposing Platform methods for establishing precision indications.
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identify potentially novel indications, and pair drugs and SNPs
with inference regarding mode of action for a SNP effect
(e.g., inhibition, activation, agonism, or antagonism). However,
SNP function, especially for rare variants, is often not known.
Because ML model performance is poor in the presence of
data missingness, automating this critical component of our
workflow is not currently feasible. Our anchoring work thus plays
a key role in allowing us to infer SNP function in the absence
of previous evaluation of a variants effect. Lastly, depending
on the database or the literature source, SNP directionality is
often inverted (i.e., which allele is considered “minor” or more
rare as well as risk causing, which varies by population), and
therefore can be misinterpreted in the exact opposite way it
should be. Such catastrophic failure is unlikely to be identified
by most ML frameworks.

Given that PheWAS results may contain false positives (i.e.,
statistically significant p-values that will not help the drug
development process) and false negatives (i.e., weaker p-values
that are truly meaningful to the process), automating the
evaluation of PheWAS results based on p-values is unlikely to
reliably identify the strongest repurposing indications, not to
mention the multitude of cautionary tales and even the stance of
the American Statistical Association against reliance on p-values

for decision making. One example of this problem is illustrated
by our program to repurpose misoprostol for prevention of
Clostridioides difficile recurrence, which has validating preclinical
data (Zackular et al., 2019) and is currently in clinical testing
(NCT03617172). Rather than arriving at our precision indication
directly from a single PheWAS association, we worked from a
cluster of individually weaker, but strongly related, associations
with p-values that would not individually pass corrections for
multiple testing. Combining data from across multiple analyses
with awareness of diagnostic code overlap represents an area in
need of methodological innovation (Strayer et al., 2020).
Phenome-wide association study relies heavily on diagnostic
codes. Diagnostic codes, and thus their corresponding
phenotypes, are not always self-explanatory, may vary in
usage patterns based on local practice, may require assessment
dependent on other ontologies, and often warrant consultation
with clinicians for interpretation. For example, our program to
repurpose ifetroban for prevention of metastases in multiple
cancer types originated with a cluster of significant associations
with several “secondary cancers.” Manual review of patient charts
revealed that secondary cancer codes were being used to signify
metastatic spread originating from various primary tumor sites,
which was essential in developing our repurposing indication;
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TABLE 1 | Example projects, Vanderbilt University Medical Center Drug Repurposing Platform.

Drug Gene | SNP Current use Anchoring Novel phenotype Proposed FDA Animal validation

Mutation | effect phenotype (p-value) indication
(p-value)

Misoprostol PTGER2 Gastric ulcers; Ulcer of esophagus Ulcerative colitis Prevention of Misoprostol
rs139552094 obstetrics (1.1E-02) (2.4E-02) recurrent increased
C83G | receptor C. difficile colitis survival in mice
signaling (oral) infected with

C. difficile

[fetroban TBXA2R Cardiovascular Chronic venous Metastatic Prevention of Ifetroban
rs200445019 hypertension malignancies metastasis in decreased
T399A 1 receptor (9.1E-06) (3.8E-03) cancers with high metastases in
activity recurrence animal models of

three different
cancers (breast,
pancreatic, and
lung)

Fluoxetine SLC6A4 rs6355 Psychiatric Antisocial/borderline Non-autoimmune Shiga Fluoxetine
Gly56Ala 1 personality disorder hemolytic anemias toxin-producing increases survival
transporter activity (2.4E-02) (7.7E-04) Escherichia coli of mice with Shiga

hemolytic uremic toxin-producing
syndrome E. coli

Enoxaparin F10rs3211783 Thrombo-embolism Other diseases of Cluster of infection Acinetobacter Enoxaparin
Gly192Arg blood and blood phenotypes: baumannii reduces
predicted 1+ F10 forming organs Mycoses (7.8E-07) infection A. baumannii

activity

(1.2E-03)

bacterial burdens

in B6 mice

Bold text highlights key phenotypes.

this program also has validating preclinical data (Werfel et al.,
2020) and is currently in clinical testing (NCT03694249). If
we had relied only on ML to construct our indication, would a
rules-based classifier have recognized this rare sub-population
who appear predisposed to metastases, when these diseases are
coded as “secondary cancers?”

An additional shortcoming of diagnostic code-based clinical
datasets is that a single disease code may represent several disease
endotypes with vastly different etiologies. This is the case for
our chronic fatigue syndrome (CFS) repurposing program, in
which our treatment strategy would correct a disruption in
norepinephrine transport. This hypothesis was derived from a
PheWAS signal in the gene that encodes the norepinephrine
transporter, and data from our completed biomarker study
(NCT03029377) that suggest that this disruption is present
in a subset of CFS patients. If using automated approaches
for hypothesis generation or evidence synthesis, it would be
difficult to arrive at a repurposing indication that falls under
an “umbrella disease” and delineate which evidence is relevant
for the specific subset of the disease from both mechanism and
symptomology perspectives.

Our evidence synthesis workflow relies on manual review
of publicly available gene expression data. The data can
be misleading and lack specificity regarding how expression
may be altered in disease states, differ based on population
demographics, and vary in organ systems or by gene subunit.
In addition, some proteins have tissue-or cell-specific effects that
can change from positive to negative by tissue or cell, whereas
others do not. This complexity of directionality and context

is difficult to assess and integrate into a scalable and coherent
repurposing hypothesis without significant human scientific
expert interpretation. Perhaps ML methods can be trained for this
purpose, but the scope of deducing such relational knowledge at
industrial scale currently precludes the automation of this step in
the drug discovery workflow.

Several other issues hinder automation of literature review.
For example, biologic assay specificity, in terms of measurement
and whether protein subunits can be detected, is sometimes
not adequately described in papers; in several repurposing
projects, limitations in available descriptions of enzyme-linked
immunosorbent assay (ELISA) methods have required that
we directly consult with ELISA vendors to assess results and
relevance, in some instances uncovering notable flaws in the
published literature related to human disease-related inferences.
The relevance of published animal model data may also vary
based on homology against a human comparator which itself
varies based on the specific disease being studied. Given that
some published literature contains weak study designs and/or
incoherent findings, even drugs that proclaim a mechanism of
effect may be found erroneous in subsequent investigations.
In such situations, the inaccurate mechanism remains in the
published literature and the chance of excluding it using
automated methods is currently low (McEwen et al, 2010).
Furthermore, a wealth of data relevant for drug repurposing
is only minimally published. Additionally, there can be serious
data quality issues where publicly available databases just
contain completely incorrect information. A previous version
of DrugBank listed ACE2 as a target of moexipril, a target of
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interest in COVID-19; however, when we manually reviewed
the references supporting this claim none of them contained
any direct evidence that moexipril had any impact on ACE2;
this has since been corrected. Finally, much drug development
data are proprietary and can only be gleaned by talking directly
with members of original clinical development teams; such
information includes the full dose range clinically tested and
comprehensive understanding of biological effects and safety
profiles observed over that range. Because of this, some of the
richest repurposing data are unstructured.

DISCUSSION

Our experience is that ML models are currently unable to
handle the complexity inherent to key repurposing information
sources. While advances in natural language processing have
been helpful in extracting unstructured and semi structured
data, the complexity of data structures and sources used in
the repurposing pipeline do not lend themselves to such
straightforward solutions. Sometimes the judgment call about
a given compound’s selectivity (or lack thereof) and how
well suited the compound is for a new use balanced against
other (known) pharmacodynamic, pharmacokinetics, and safety
concerns is just not straightforward and requires critical thinking,
intuition, and creativity to synthesize existing knowledge into
a new hypothesis with a high probability of success and low
likelihood of propagating errors that exist in the historical
record. The deep utility and value of engaging humans in
evaluating PheWAS results, placing them within the broader
scientific context, weaving together various and disparate sources
of data, and identifying opportunities for confirmatory scientific
investigations should not be underestimated. While current ML
and other AI techniques can substantially complement these
efforts by helping to identify meaningful patterns for validation, it
is premature to consider replacing our human-focused approach.
Identifying those aspects of the pipeline that require human
insights can identify those problems amenable to algorithmic
innovation to accelerate the pace of novel drug discovery.
Repurposing of existing therapeutic agents has generated
significant interest in the realm of rare disease treatment, as an
innovative strategy for finding ways to manage these complex
conditions. In conversations with pharmaceutical industry
collaborators, we often receive questions about the optimal
balance of machine and human decision-making necessary to
support the pipeline. This question continues to intensify given
the growing availability of largescale EHR data combined with
genotyping that may be leveraged for drug development. By
enabling precision phenotyping and connections with genomic
variation, these large datasets present a particularly exciting
opportunity for exploring repurposing opportunities for rare
diseases. Given the importance of hypothesis generation and
the dense, complex nature of critical pre-clinical data in
drug development, human knowledge remains essential for
interpretation and making “go-no go” decisions with which
machines continue to struggle. Much of the technology necessary

to automate the complete hypothesis generation and evidence
synthesis processes is not yet ready or created, but by paying
careful attention to the problems that require human insight we
have highlighted those areas where methodological innovation
might have greatest impact on the pace of discovery.

Helping us identify previously unrecognized patterns that
we can then rationalize through systematic thinking and
generational of a testable hypothesis is the significant value add
of ML in our current workflow. It is not a replacement for
the perspectives of domain experts; instead it is best leveraged
in drug repurposing efforts when it is informed by content
experts and then considered synergistically with human decision-
making to pursue top repurposing leads through randomized
controlled trials.
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