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The rapid rise and global consequences of the novel coronavirus disease 19 (COVID-19)
have again brought the focus of the scientific community on the possible host factors
involved in patient response and outcome to exposure to the virus. The disease severity
remains highly unpredictable, and individuals with none of the aforementioned risk factors
may still develop severe COVID-19. It was shown that genotype-related factors like an
ABO Blood Group affect COVID-19 severity, and the risk of infection with SARS-CoV-2
was higher for patients with blood type A and lower for patients with blood type O.
Currently it is not clear which specific genes are associated with COVID-19 severity. The
comparative analysis of COVID-19 and other viral infections allows us to predict that the
variants within the interferon pathway genes may serve as markers of the magnitude of
immune response to specific pathogens. In particular, various members of Class III
interferons (lambda) are reviewed in detail.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a rapidly emerging infectious disease caused by SARS-
CoV-2 virus, a member of the Coronaviridae family. Since the discovery of first cases in December
2019 in Wuhan, China (World Health Organization, 2020a), the number of infected patients
worldwide has been increasing logarithmically, and by December 2020 had surpassed 70 million
reported cases and over 1.5 million deaths globally since the start of the pandemic (World Health
Organization, 2020b).

According to WHO, mild to moderate respiratory symptoms such as fever, dry cough, upper
airway congestion and sore throat are among the most common symptoms of COVID-19 (World
Health Organization, 2020c; World Health Organization, 2021) which may develop over the course
of 2 weeks after the exposure. However, approximately 20% of the patients develop severe or critical
COVID-19 (Wu and McGoogan, 2020), characterized by pneumonia and acute respiratory distress
syndrome which require hospitalization. While the overall mortality of severe COVID-19 is
estimated between 1 and 4% (Ruan, 2020), in-hospital mortality in severe cases is substantially
higher, reaching 28–62%, and even surpassing that in patients requiring mechanical ventilation
(Weiss and Murdoch, 2020).

Multiple studies have been performed to establish the factors influencing the susceptibility to,
severity and mortality of COVID-19 (Du et al., 2020; Gong et al., 2020; Vardavas and Nikitara, 2020;
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Verity et al., 2020). It has been shown that the severe or critical
course of the disease is more likely in older adults, especially those
with underlying health conditions (Centers for Disease Control
and Prevention, 2020a; Garg et al., 2020), as 80% of deaths
associated with COVID-19 were among adults aged 65 years
or older, or those with severe comorbidities (Centers for
Disease Control and Prevention, 2020b). Other proposed risk
factors include smoking (Vardavas and Nikitara, 2020) and blood
type (Zhao et al., 2020).

However, disease severity remains highly unpredictable, and
individuals with none of the aforementioned risk factors may still
develop severe COVID-19. This is particularly evident in the
demographics of the disease in the United States, where even in
the early stages of the outbreak 20% of the hospital admissions
and 12% of the ICU admissions were attributed to people aged
20–44 years (Centers for Disease Control and Prevention, 2020b).
Coupled with the first reported case of identical twins both dying
of severe COVID-19 (BBC, 2020) within several days of each
other, as well as data obtained in pilot studies on the heritability of
COVID-19 symptoms (Williams et al., 2020), it strongly suggests
that inherited DNA variants play a significant role in the severity
of the disease.

ACE2 and Viral Entry
The rapid rise and global consequences of the novel coronavirus
disease 19 (COVID-19) has brought the focus of the research on
the possible contribution of the host factors to patient response
and outcome of exposure to the virus. SARS-coronavirus 2
(SARS-CoV-2), the pathogenic cause of the disease, relies on
similar mechanisms of cellular entry as SARS-CoV; namely, the
SARS-CoV-2 receptor angiotensin-converting enzyme II (ACE2)
and the serine protease TMPRSS2, which facilitates the priming
of spike (S) protein for viral entry (Hoffmann et al., 2020; Zhou
et al., 2020).

Early on during the rise of the pandemic, there was a hope that
variations in the ACE2 gene may account for resistance or
susceptibility to COVID-19 in different populations. It was
shown that populations in East Asia had higher allele
frequencies in the expression quantitative trait loci (eQTL) in
ACE2, which might have led to increased expression of the
enzyme (Cao et al., 2020). Likewise, given that ACE2 is
located on chromosome X, a hope was expressed for
explaining the gender differences in response to the disease,
namely the fact that men were disproportionately more
susceptible to the SARS-CoV-2 virus (Majdic, 2020).

Early studies attempting to connect variation in ACE2 and
TMPRSS2 loci on the risks of contracting COVID-19 in any form,
so far, have produced inconclusive results, ranging from single
SNP associations uncovered in small cohorts (Latini et al., 2020)
to the lack thereof. The latter, possibly, is due to the dual role of
ACE2, which serves both as an entry into the wells and a lung-
protective molecule (Dalan et al., 2020; Nagy et al., 2021).

A large study by Lopera Maya et al. (2020) used the Lifelines
cohort data to analyze the association between the variants within
ACE2 or TMPRSS2 loci and cardiac, pulmonary, renal and other
quantitative phenotypes, which are also pertinent to COVID-19.
Despite the large sample size and wide variety of variants and

quantitative phenotypes examined, no statistically significant
association was detected. The study found, however, an
intriguing association between the use of angiotensin receptor
blockers (ARBs) and non-steroidal anti-inflammatory drugs
(NSAIDs) and variants at the ACE2 and loci. As the diseases
associated with the use of these medications are commonly
comorbid with COVID-19 (Lopera Maya et al., 2020), these
findings may eventually prove their relevance to COVID-19
severity. Drugs based on the inhibition or blockage of
TMPRSS2 protease are undergoing clinical trials as a
therapeutic option for COVID-19 treatment (Abbasi et al.,
2021). Thus, there remains continued interest in studying the
ACE2 and TMPRSS2 genes as determinants of susceptibility to
SARS-CoV-2.

ABO Blood Group and Disease Severity
After the SARS-CoV outbreak in Hong Kong in 2003, researchers
showed a relationship between the blood type of the participants
that had been exposed to the virus and the chance of contracting
infection (Cheng et al., 2005). It appeared that exposed
individuals with blood group O phenotype were less
susceptible to SARS-CoV infection, even while previous
studies had shown that they had increased susceptibility to
infection with either Norwalk virus or H. pylori (Cheng et al.,
2005). The association of ABO blood groups with the risk to
contract coronavirus disease has also been noted during the
current pandemic. Retrospective study conducted in China
showed that patients with blood group O had a significantly
lower risk of infection and hospitalization with SARS-CoV-2,
while patients with blood group A had a higher risk of infection
and hospitalization (Li et al., 2020).

Further research has both confirmed this association and shed
more light on it. Retrospective studies conducted in various
regions of China, New York, Italy, Spain, and Turkey have
shown a higher odds ratio for being infected with SARS-CoV-
2 for patients with blood type A phenotype as well as a lower one
for blood type O patients when (Focosi, 2020). A genome wide
association study conducted in Italy and Spain regarding the
genetic associations between individuals infected with COVID-19
and respiratory failure, confirmed that patients with blood group
A had a higher risk of COVID-19-induced respiratory failure
while blood group O granted patients a protective effect (The
Severe Covid-19 GWAS Group, 2020). Two loci with a genome-
wide significance were found, namely, the rs11385942 insertion-
deletion GA at locus 3p21.31 and the rs657152 A at locus 9q34.2.
The association signal at 9q34.2 coincided with the ABO locus,
further implicating the connection between patient’s ABO blood
group and the course and danger of the disease (The Severe
Covid-19 GWAS Group, 2020). Later, a multicenter study
performed in Canada showed that COVID-19 patients with
blood group A or AB are at increased risk for requiring
mechanical ventilation and prolonged ICU admission
compared with patients with blood group O or B (Hoiland
et al., 2020), thus, supporting in silico GWAS results by
patient’s ward observations.

Interestingly, the viral infectivity features due to the ACE2
receptor binding, and due to contribution of the blood antigens
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may be related to each other. In case of SARS-CoV, the presence
of anti-A antibodies, which is a characteristic of groups O and B,
inhibits the adhesion of the virus to the ACE2 receptor (Guillon
et al., 2008). It is tempting to speculate that this finding may be
directly relevant to SARS-CoV-2 as well, given that these findings
are consistent with the host response to other viruses such as
measles and HIV (Arendrup et al., 1991; Preece et al., 2002) and a
trend in increased efficiency of the transfusion of the convalescent
plasma from O or B group donors (Hacibekiroğlu et al., 2021).

3p21.31 Locus
In addition to findings reported from Italy/Spain (The Severe
Covid-19 GWAS Group, 2020), a separate study comprising
3,199 hospitalized patients with COVID-19 and control
individuals was released by the COVID-19 Host Genetics
Initiative in which the region on chromosome 3 was the only
major genetic risk factor for severe symptoms after SARS-CoV-2
infection and hospitalization at the genome-wide level (The
COVID-19 Host Genetics Initiative, 2020). It is not clear
which specific gene within the region identified on
chromosome 3 is associated with COVID-19 severity. In
particular, this region harbors CXCR6 and CCR1 genes,
encoding important chemokines, which control the movement
of immune cells and are critical for the innate immune system to
function properly (Sokol and Luster, 2015). Another gene of this
region, SLC6A20, encodes a protein that functions as a proline
transporter expressed in alveolar cells, kidney and small intestine
(SIT1), which is known to bind to ACE2 (Camargo et al., 2009;
Vuille-dit-Bille et al., 2015; Wang et al., 2020). Notably, the entire
fragment may have been inherited from Neanderthals, entering
the human genome during the period of interbreeding between
the two groups (Zeberg and Pääbo, 2020), and is differentially
represented in human population samples.

Other Loci
Interferons (IFNs) are central to antiviral immunity. Previously it
was shown that type I IFN deficiency in the blood could be a
hallmark of severe COVID-19 and provide a rationale for
combined therapeutic approaches (Hadjadj et al., 2020).

Additional studies have shown the importance of other loci in
determining the genetic susceptibility of hosts to COVID-19,
particularly in determining which patients are susceptible to
severe manifestations of the illness. A recent study of patients
with life-threatening COVID-19 pneumonia looked at thirteen
loci involved in either the TLR3 or IRF7 dependent pathways for
the amplification of type I IFN, and found that 3.5% of patients
had deleterious variants (pLOF) in eight of the tested loci,
underlining how impairment of the production of type I IFNs
can lead to critical SARS-CoV-2 infection (Zhang et al., 2020).
Similarly, a recent study of critically-ill COVID-19 patients in the
United Kingdom used Mendelian randomization to show the
potential for a causal relationship between the IFNAR2 gene
which codes for a receptor subunit in interferon signalling and
disease severity, and concluded likewise that the administration of
interferons may aid in patient recovery, while acknowledging that
it is as yet unclear when during the course of the illness they may
provide therapeutic benefit (Pairo-Castineira et al., 2021).

Moreover, the study was able to replicate the results of a
previous study on the 3p21.31 locus, and a transcriptome-wide
association study that they performed on the patient pool showed
that the variant in oligoadenylate synthetase (OAS), rs10735079
affected expression of OAS3, which codes mediator involved in
the degradation pathway of double-stranded RNA, which is itself
involved in the replication pathway of coronaviruses (Pairo-
Castineira et al., 2021).

ACE2 as an Interferon-Responsive Gene
Notably, in humans, the ACE2 belongs to a family of interferon-
stimulated genes (ISGs), which typically serve to promote a
complex and uniform response to an infection-related spike in
interferon levels (Schneider et al., 2014). Moreover, in human
lung epithelial cells, the levels of ACE2 mRNA are co-correlated
with that of TMPRSS4, and many immune response pathways,
including proinflammatory interleukins and IFI16 (Wruck and
Adjaye, 2020). Specifically in human nasal epithelial cells, ACE2
expression is upregulated by type I (IFN-α and IFN-β) and type II
(IFN-γ) interferons (Ziegler et al., 2020). The efficacy of this
process may be affected by genetic variations in any part of this
cascade. However, in this review, we would like to bring attention
to a particular component of the interferon response, which has
been massively implicated in the natural and therapeutic
outcomes for other viral diseases, namely, the IFNL4 gene.
This gene encodes a type III interferon IFN-λ4, capable of
blocking some of the interferon signaling, resulting in poor
response to HCV treatment with IFN (Sung et al., 2017).
Notably, type III IFNs have been proposed as more viable
therapeutic option for prevention and treatment of COVID-19
than type I IFNs, particularly because they cause fewer and milder
systemic side effects (Muir et al., 2014; Prokunina-Olsson et al.,
2020). It has also been shown that Type III IFNs are highly
effective at preventing the viral spread from the nasal epithelium
to the upper respiratory tract (Klinkhammer et al., 2018).
Additional studies may be warranted to explore the
mechanisms of interaction between SARS-CoV-2 and type III
interferons, and to estimate how they are affected by the status of
the IFNL4 gene.

It is anticipated that influence of ACE2 in COVID-19 san
potentially be exploited for the rational design of effective SARS-
CoV-2 therapeutics (Ni et al., 2020; Barros et al., 2021).

Role of Human Interferons in Viral and
Non-Viral Liver Disease
Interferons are a class of cytokines that mediate the host immune
response to infection by viral and non-viral pathogens (Crosse
et al., 2017; Bogdan et al., 2004; Seliger et al., 2008). They are
categorized into three types based on their protein sequence
(O’Brien et al., 2014) (Table 1). Type I interferons are rapidly
produced when viral envelope glycoproteins, CpG DNA, or
dsRNA interact with host cell receptors such as mannose
receptors, toll-like receptors, and cytosolic receptors
(Malmgaard, 2004). Type 1 interferons can directly activate
natural killers (NKs), antigen-presenting dendritic cells as well
as CD4 and CD8 T cells (Hervas-Stubbs et al., 2011). All type I

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7093883

Gozman et al. Interferon Genes in COVID-19 Patients

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


interferons signal through a common receptor interferon alpha
receptor (IFNAR). The IFNAR induces the Janus activated
kinase-signal transducer and activation of transcription (JAK-
STAT) pathway that control a large collection of genes through
regulated expression of various signaling intermediaries (Guan
et al., 2014; Messina et al., 2016; Olex et al., 2016).

Type I interferons are rapidly produced when viral factors,
such as envelope glycoproteins, CpG DNA, or dsRNA, interact
with cellular pattern-recognition receptors (PRRs), such as
mannose receptors, toll-like receptors (TLRs), and cytosolic
receptors (Malmgaard, 2004). These interferons directly
activate natural killers (NKs), antigen-presenting dendritic cells
(DC) as well as CD4 and CD8 T cells (Hervas-Stubbs et al., 2011).
In T cells, the signaling through the IFNAR is critical for the
acquisition of effector functions (Kole et al., 2013).

Type II interferons are represented by pleiotropic Th1-type
cytokine interferon-γ. The IFN-γ is induced in response to a
variety of cytokines, including interleukin-2 (IL-2), IL-18, Type I
IFNs alpha/beta, or by stimulation through T cell receptors
(TCRs) or NK cell receptors (Malmgaard, 2004). Similar to
Type I interferons, IFN-γ stimulates the JAK/STAT pathway.
In addition, a number of other pathways, including MAP kinase,
PI3-K, CaMKII, and NF-kappaB cross-talk with JAK-STAT
signaling to fine-tune the multifaceted effects of IFNγ, which
are exerted in a gene- and cell type-specific manner (Gough et al.,
2008).

The type III family of interferons are comprised of IFN-λ1,
IFN-λ2, and IFN-λ3 or IL-29, IL-28A, and IL-28B, respectively
(Kotenko et al., 2003; Gad et al., 2009; Lin and Young., 2014;
O’Brien et al., 2014). These interferons signal through a receptor
complex composed of the IFN-λR1 chain (also known as IL-
28RA) and the IL-10R2 chain, which is also a part of the receptor
complexes for IL-10, IL-22, and IL-26. (Sheppard et al., 2003; Gad
et al., 2009; Donnelly and Kotenko, 2010; Lopušná et al., 2013).

In 2013, a new member of the interferon λ (lambda) family,
IFN-λ4, was described which signals through the IFNλR1 and IL-
10R2 receptor chains (Hamming et al., 2013). The IFN-λ4 is
encoded by the gene IFNL4, whose expression has been shown to
be upregulated in response to HCV infection, but not to HBV
infection (Estep et al., 2014).

Recent studies point that IFN dysregulation may be the key to
determining COVID-19 pathogenesis (Andreakos and Tsiodras,
2020; Lopez et al., 2020; Meffre and Iwasaki, 2020). There is
evidence that the response to class I interferons in COVID-19 is
impaired. In the blood of patients with severe COVID-19,
amounts of class I IFNs are much lower when compared to
that of patients infected with highly pathogenic influenza viruses.
Nevertheless, in the lungs, in bronchoalveolar lavage in some
seriously ill COVID-19 patients, local induction of IFN genes
becomes noticeable. A dysregulated interferon response is
considered part of the immunomodulatory strategies used by
some coronaviruses, including SARS-CoV-2 (Acharya et al.,
2020). Nevertheless, a recent pan-ancestry exome-wide
association study of rare genetic protein-coding variants and
various t COVID-19 outcomes didn’t find any significant
associations in any of the 13 interferon pathway genes
(Kosmicki et al., 2021).

Since the beginning of the pandemics, interferons were
repeatedly seen as a viable option for boosting the host’s
defences against SARS-CoV-2. Indeed, early evidence suggests
that SARS-CoV-2 may be more susceptible to pretreatment with
type I IFNs, even more so than SARS-CoV (Lokugamage et al.,
2020; Sallard et al., 2020). Later, in human intestinal cells, the
treatment with interferon-lambda and respective responses
showed efficiency at controlling SARS-CoV-2 replication
(Stanifer et al., 2020). In this light, a renewed attention was
paid to type III interferons, which have being tested as
therapeutics in COVID-19 outpatients, either with no success
(Jagannathan et al., 2021) or with limited virological response
detected (Feld et al., 2021). The difference in outcomes of the
interferon-lambda based therapeutics may be explained by the
varied presence of neutralizing IFNL3 autoantibodies pre-
existing in patients that later develop severe COVID-19
(Credle et al., 2021).

The IFNL4 Locus
The IFNL4 gene is located on chromosome 19q13, just over 1 kb
upstream of, and in the same orientation as, the gene encoding
IFN-λ3 (Figure 1). It is extremely conserved in all mammals,
indicating its functional importance (Key et al., 2014). The

TABLE 1 | Classification of interferons.

Interferon
(IFN)Type

Receptor type Protein structure Genes Gene
location

Tissue expression
pattern

Type I IFN α receptor that consists of
IFNAR1 and IFNAR2 chains

α−helix IFN-α 2a
and 2b

Chr. 9 Leukocytes, macrophages, endothelial cells,
tumor cells, keratinocytes, and mesenchymal
cells

IFN-b Fibroblasts, endothelial cells, macrophages,
and epithelial cells

IFN-ω T lymphocytes
IFN-ε Cerebral tissues
IFN-κ Not known

Type II IFNGR consisting of IFNGR1
and IFNGR2 chains

Core of six α− helices and an extended
unfolded sequence in the C-terminal
region

IFN-γ Chr. 12 T and Natural Killer cells

Type III Receptor complex consisting
of IL10R2 and IFNLR1 chains

Structurally similar to the IL-10 family,
despite functionally being an IFN

IFN-λ Dendritic cells and macrophages
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ancestral allele of IFNL4, contains a guanine residue at position
342 of the coding sequence (referred to as “ΔG”). It encodes a
functional IFN-λ4 peptide.

The IFNL4 locus is known to contain a number of medically
relevant single nucleotide polymorphisms (SNPs). One of these,
rs368234815 or ss469415590 (TT) is characterized by the
substitution of the G nucleotide with two thymine residues
(TT) resulting in a nonsense mutation. As a result, IFN-λ4
can be generated only by individuals, who carry the ΔG allele,
To date, the majority of the studies of IFNL4 locus have been
performed in the context of hepatitis C virus (HCV). In contrast
to other IFNs, expression of IFNλ4 is associated with decreased
clearance of HCV in the human population; by contrast, a natural
frameshift mutation that abrogates IFNλ4 production improves
HCV clearance. The ΔG allele is associated with adverse
outcomes of infection and interferon-based treatments
(Amanzada et al., 2013; Franco et al., 2014 AIDS; Aka et al.,
2014; Nozawa et al., 2014; Jouvin-Marche et al., 2014;
Stättermayer et al., 2014) while the TT allele is associated with
the spontaneous clearance of HCV and interferon responsiveness.
It is presently the strongest known host factor for predicting
clearance of HCV (O’Brien et al., 2014). Another SNP, known as
rs12979860, located within the intron of IFNL4 gene, is closely
linked to the rs368234815 allele and is significantly associated
with sustained viral response (SVR) in HCV patients (Younossi
et al., 2012).

In a genome-wide association study published in 2009, the
presence of a rs12979860 with a “C” allele was strongly associated
with spontaneous viral clearance and treatment response (Ge
et al., 2009). Patients who were homozygous for the presence of
“C” allele had a greater than 2-fold increase in rates of SVR as
compared to patients with heterozygosity of this locus (C/T allele
combination) and homozygous state T/T (Younossi et al., 2012;
Meissner et al., 2014; Stättermayer et al., 2014). In addition to
increased SVR rates, patients homozygous for C allele (C/C) were
more likely to demonstrate spontaneous clearance of HCV
(Thomas et al., 2009). Additionally, the presence of SVR-

promoting rs12979860 allele of IL28B locus was associated
with lower baseline inflammation and possible suppression of
apoptosis in peripheral blood mononuclear cell (PBMCs)
evaluated during early phase of the treatment as compared to
the presence of deleterious allele (Younossi et al., 2012). These
findings were confirmed in the 2013 GWAS performed in 13
international multicenter study sites (Duggal et al., 2013).

Interpretation of these findings relies on the proximity linkage
of rs12979860 (IL28B) to rs368234815 (IFNL4) that is
functionally responsible for effects of both variants. Due to
shorter average size of haplotype blocks in individuals of
African ancestry, rs368234815 is more strongly associated with
HCV clearance in these ethnicities, whereas in Europeans and
Asians it performs similarly to rs12979860 (Prokunina-Olsson
et al., 2013).

Non-functional rs368234815-TT allele is specific for humans
and is common in all human populations. In HapMap collection,
it is detected in 93% of Asians genomes, 68% of European
genomes, and 23% of Africans genomes (Prokunina-Olsson
et al., 2013).

Similar frequencies of distribution were observed in the 1000
Genomes Project samples: the TT allele is present in 89.8–95.2%
of Chinese genomes, in 68.9% of European genomes and in 29.3%
of African genomes (The 1000 Genomes Project Consortium,
2015).

Linkage disequilibrium between rs368234815-TT allele and
rs12979860-C allele results in the same frequencies distribution
pattern for the latter genetic variant: C allele is present in
89.8–95.2% Chinese genomes, in 69.1% of European genomes
and in 33.1% of African genomes (The 1000 Genomes Project
Consortium, 2015). Frequency of the rs12979860 C/C genotype
in IFNL4 gene was significantly lower in COVID-19 patients (p <
0.001) (Saponi-Cortes et al., 2021).

Linkage between these two genetic variations rises from
Africans (R2 � 0.8318) through Europeans (R2 � 0.9815) and
is absolute in Chinese populations (R2 � 1.0) (Machiela and
Chanock, 2015).

FIGURE 1 | Location of common SNPs in IFNL4 Locus on Chromosome 19, and the map of IFNL4 exons. Adapted from: Stephen M. Laidlaw and Lynn B. Dustin,
2014, with changes.
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It is theorized that it emerged right before the onset of the
“out-of-Africa” migration and was immediately supported in its
spread by positive selection in European and Asian populations
resulting in the high frequency observed today (Key et al., 2014).

It is most likely that the selective force that was driving
elimination of IFN-λ4 in a majority of human populations was
an exposure to a certain pathogen (or pathogens), most likely a
virus. However, this pathogen is unlikely to be HCV, which is
known for its relatively slow progress toward symptomatic phase
(Fan et al., 2016). There is also no association between IFNL4
polymorphisms and HBV susceptibility or natural clearance (Fan
et al., 2016) and the advantages or disadvantages of IFN-λ4
expression in case of infection with a majority of non-HCV
non-HBV viruses remain unknown.

A number of recent studies showed that IFN-λ4 possesses
strong antiviral activity toward HCV and coronaviruses
(Hamming et al., 2013; Prokunina-Olsson et al., 2013). When
over-expressed in a hepatoma cells, IFNL4 induces STAT1/
STAT2 phosphorylation and expression of interferon-
stimulated genes (Prokunina-Olsson et al., 2013; O’Brien et al.,
2014; Randall and Goodburn, 2008; Ank et al., 2006) (Figure 2).
Interestingly, when studied against either HCV or coronavirus
(HCoV-229E and MERS-CoV) challenges tested in either human
ciliated airway epithelial cell (HAE) or hepatocyte cultures, the
antiviral activities of recombinant IFNλ3 and IFNλ4 were similar
(Hamming et al., 2013). Another recent comparative study of
Type III interferons, this time performed using transcriptome
sequencing, also failed to reveal any crucial differences between
particular members of this family, with the majority of the
identified genes being similarly regulated in hepatocytes as
well as airway epithelial cells (Lauber et al., 2015). Hence, it
looks like the differences in mode of action for various IFN-λmay
be due to their direct binding to some cellular or viral targets
rather than to the transcription programs they stimulate.

IFNLR is expressed at relatively high levels in respiratory
epithelial cells, and mice treated with IFN-λ prior to infection
with human metapneumovirus (HMPV) develop lower viral
titers and reduced inflammatory responses. On the other
hand, Ifnlr1 −/− mice exhibit increased susceptibility to
respiratory viral infections, including influenza virus, HMPV,

respiratory syncytial virus, and SARS coronavirus (Lazear et al.,
2015).

In contrast, Prokunina-Olsson proffered the hypothesis that
functional IFN-λ4 protein may compete with the IL28B/IFN-λ3
receptors and apparently cause a pre-activation of the interferon-
dependent genes, thus, reducing overall responsiveness to Type I
and III interferon (Prokunina-Olsson et al., 2013). This
hypothesis is a good agreement with previous findings that
SVR-promoting alleles are associated with lower baseline
inflammation (Younossi et al., 2012). Notably, in a small study
of rs12979860 allele distribution in COVID-19 patients and
controls, the “C” allele, previously associated with favourable
HCV outcomes and lower baseline inflammation, showed
association both with higher susceptibility to coronavirus and
with poorer outcomes of SARS-CoV-2 disease (Agwa et al., 2021).

There is some evidence that the polymorphisms in IFNλ4 may
influence outcomes of non-HCV non-coronavirus types of acute
and chronic infections. In particular, solid-organ transplant
recipients homozygous for the active, ancestral rs368234815
allele (ΔG) are more susceptible to CMV replication, especially
in absence of antiviral prophylaxis (Egli et al., 2014; Manuel et al.,
2015). Another study showed that the same allele is associated
with increased susceptibility to AIDS-related CMV retinitis
(Bibert et al., 2014).

Findings related to IFN-lambda gene variants in patients with
HIV infection remain controversial. One study showed that, in
Caucasian populations, the CC genotype of rs12979860, which is
associated with favourable HCV outcomes, is also associated with
spontaneous control of human immunodeficiency virus (HIV)
viremia (Machmach et al., 2013). In cohorts of African Americans
these findings, however, were not replicated (Sajadi et al., 2011;
Salgado et al., 2011). In a study of Real and co-authors,
pseudogenized allele rs368234815-TT that protects against
infection with HCV was also associated with decreased
likelihood of HIV-1 infection in male intravenous drug users
[odds ratio (OR): 0.3; p � 0.006], and this association was not
modified by the genotype of CCR5 (Real et al., 2015). Another
recent study of rs368234815 variant showed that carriers of its
active, ancestral variant ΔG have a higher occurrence of AIDS-
defining illnesses and lower CD4 T-cell counts (Machmach et al.,

FIGURE 2 | Schematic map of Jak-STAT pathway during an immune response with type 1-3 interferon antiviral activity.
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2015). These results suggest that genetic susceptibility to HCV
and HIV-1 infection may share a common molecular pathway
(Real et al., 2015).

It should be noted that the relationships between pre-existing
HIV infection and COVID-19 are still unclear (Centers for
Disease Control and Prevention, 2020b), most likely due to
limited cross-testing (Jones et al., 2020). While the use of
protease inhibitors such as lopinavir and ritonavir had a
positive effect on patients with MERS-CoV, recent research
suggests that in patients with SARS-CoV-2 these compounds
do not work (Jones et al., 2020; Jothimani et al., 2020). Attempts
to utilize known anti-HCV treatments in COVID-19 wards had
failed in a similar way (Huang et al., 2020).

Nevertheless, recent events have unequivocally shown that the
coronaviruses, in general, and the SARS-CoV-2, in particular,
should be regarded as yet another evolutionary driver for the fine-
tuning of human interferon response to existing and emerging
pathogens. Population frequencies of IFNL4 and other
interferon-encoding gene variants may reflect a sum of past
exposures to the various pathogens, and the subsequent
bottlenecks which may or may not be related to epidemic events.

CONCLUSION

Genetic resistance to severe viral diseases shares common
molecular pathways for various viral infections. Interferon
expression pathways in host cells make a crucial contribution
to the proinflammatory response to infectious agent appearance.
The presence of some variants in the loci of interferon gene
sequences reduces the natural immunity, and stimulates a
susceptibility to severe viral disease.
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