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Editorial on the Research Topic

Advances in Genomics of Crossbred Farm Animals

INTRODUCTION

Crossbreeding is a common strategy to promote animal production (Sheridan, 1981). In the past
century, crossbreeding has been commonly conducted to produce commercial pigs and poultry
as human food. In subtropical countries, crossbred cattle have been developed that combine the
production performance of Taurine cattle with the tropical adaption of Zebu cattle. Composite
cattle are developed by crossing two or more purebred breeds, aiming at exploiting breed
complementarity and retaining some heterosis (hybrid vigor) in future generations. Dairy cattle
are mostly purebred, but crossbred dairy cattle are becoming increasingly popular in recent years
(VanRaden et al., 2020; Khansefid et al.). Strategically, crossbreeding is a potential approach to
improve sustainability in animal breeding by reducing inbreeding and enhancing fertility, survival,
and other functional traits (Sørensen et al., 2008).

Genomics is an interdisciplinary field of biology focusing on the studies of genomes (Culver
and Labow, 2002). A genome is an organism’s complete set of DNA, including all of its genes.
Unlike classic genetics, which focuses on individual genes and their roles in inheritance, genomics
deals with the collective characterization and quantification of all of an organism’s genes, their
interrelations, and their influence on the organism. From the genomics perspective, crossbred
animals differ considerably from purebred animals because their genome is a mosaic of genome
regions inherited from their purebred ancestors. Thus, genomics solutions for crossbred animals
need to be different. For example, ancestry estimation or genomic breed composition (GBC) in
purebred animals is primarily motivated for breed registries and the identification of purebred
animals when the pedigree is missing or incomplete. In contrast, the estimated GBC for crossbred
animals are used to infer their genomic make-ups from their ancestors. Such information can
help estimate heterozygosity, understand their breeding history, and make management decisions
for crossbreeding programs. The breeding objective with purebred animals is to increase additive
genetic gains, but non-addtive genetic effects such as dominance and epistasis effects are pivotal to
produce crossbred animals of high-performance market values.

The past decades have witnessed many milestone discoveries in animal genomics which have
fundamentally revolutionized many aspects of animal breeding and production (Rexroad et al.,
2019). Nevertheless, there are far more questions still unanswered. This Research Topic represented
an effort toward enhancing the understanding and applications of crossbred genomics. It included
25 papers, covering several aspects of the crossbred genomics in farm animals.
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INTERPRETATIONS OF GENOMIC BREED

COMPOSITION AND “THE IMPURE

PUREBRED PARADOX”

Genomic breed composition (GBC) of an individual animal
refers to the partition of its genome according to the inheritance
from its ancestors or ancestral breeds. The U.S. Council on
Dairy Cattle Breeding (CDCB) uses an alternative term, namely
Breed Base Representation (BBR), which is the adjusted genomic
breed composition on each of five dairy breeds (Ayrshire, Brown
Swiss, Guernsey, Holstein, and Jersey) as the potential parents
(VanRaden and Cooper, 2015). Interpretations of GBC depend
on the estimation methods. For example, admixture model
postulates that an observed genotype for a progeny is an instance
of a multinomial distribution, with genotype probability being a
mixture governed by allelic frequencies of the ancestors. Hence,
GBC are estimated by the weights or admixture coefficients
(Bansal and Libiger, 2015). Linear regression estimated GBC of
to be adjusted regression coefficients of coded genotypes for a
progeny on the ancestral allele frequencies, and bounded between
0 and 1 (Chiang et al., 2010; Kuehn et al., 2014). A genomic
prediction model estimates the SNP effects on candidate ancestry
breeds as binary or categorical traits. GBC equals to the total
genomic value for an animal pertaining to each ancestry breed
(Akanno et al., 2017; Li et al., 2020). Wu et al. proposed a causal
interpretation of GBC based on path theory, which decomposed
the relationships between ancestors and their progenies into
direct and indirect breed (path) effects. GBC was measured by
relative ratio of direct (D-GBC) and combined (C-GBC) breed
determination, respectively, from each putative ancestry breed
to a progeny. C-GBC included direct breed effects and indirect
breed effects due to genomic similarities. The estimated D-GBC
and C-GBC were comparable when the ancestry breeds had
a very distant relationship, and they corresponded well to the
estimated GBC from linear regression and admixture model.
However, large differences arose between D-GBC and C-GBC
when ancestors were highly correlated. Overall, the estimated C-
GBC was closer to the estimated GBC from linear regression and
admixture models than D-GBC.

In reality, all the modern cattle breeds are correlated because
they share common ancestors. The same is true with other farm
animal species. The estimated GBC for a purebred animal is
not always 100%. This phenomenon was referred to as “the
Impure purebred Paradox” (Wang et al.). In the U.S. dairy
genetic evaluation, for example, the reference population for
a dairy breed consisted of animals with a BBR no ≥ 94% for
that breed, and animals with BBR no ≥ 90% received single-
breed genomic evaluation (Wiggans, 2021). This was because
the current methods tend to produce a small GBC value
to a non-ancestry reference breed. The more significant the
genomic similarity, the more noise. Statistically, this situation
was an indication of increased false-negative error rates in the
identification of purebred animals. Wang et al. (2020) proposed
applying regularization in admixture models to estimate GBC
for purebred animals. Regularized admixture methods produced
sparse solutions of admixture coefficients, thus effectively

imposing penalties on small, non-essential components due to
genomic similarity. The non-convex penalty outperformed the
L1 norm penalty to suppress the noise in the estimated GBC.

Several issues are not addressed adequately. Firstly, accurately
assessing GBC requires knowing or reliably estimating the allelic
frequencies for the base population when the ancestor breeds
were developed, because they are not observable. Secondly,
while high-density SNP genotypes were used to estimate GBC,
the impact of SNPs in high linkage disequilibrium on the
estimated GBC has not been well-documented. In admixture
models, for example, the likelihood is computed assuming
mutual independence of SNP loci, but this assumption does
not hold with high-density SNP arrays. Finally, the current
methods do not estimate GBC exactly based on genomic
similarities identical-by-descend (IDB) between a progeny and
the ancestry (reference) breeds. Rather, they reflect more of
genomic similarities identical-in-statue (IIS).

LIMITED EFFORTS WITH DIFFERENTIAL

GENE EXPRESSION PROFILING

Expression profiling is a logical next step after genome
sequencing, which reveals the activity of genes in hundreds
and thousands and depicts a global picture of cellular functions
(Subramanian et al., 2005). Expression profiling experiments
involve measuring relative mRNA abundance in two or more
experimental conditions. Altered gene expression suggests a
change for the protein coded by the mRNA, probably indicating
a homeostatic response or a pathological condition.

There were only three papers addressing differential gene
expression in this Research Topic. Chen et al. compared the
microRNA (miRNA) profiles of pectoral muscle in chickens
at pre- to post-natal stages. Cui et al. identified differentially
expressed miRNAs between cattle with high vs. low milk
protein and fat percentages. A miRNA is a small single-stranded
non-coding RNA molecule containing about 22 nucleotides in
animals. It functions in RNA silencing and post-transcriptional
regulation of gene expression. First discovered in the early 1990s
(Lee et al., 1993), miRNAs were not recognized as a distinct class
of biological regulators until the early 2000s (Bartel, 2004). Chen
et al. investigated the expression pattern of pituitary-derived
circular RNAs and their functions in Landrace × Yorkshire
crossbred pigs. A circular RNA is a single-stranded RNA that
forms a covalently closed continuous loop. Some circular RNAs
have shown potential as gene regulators.

The size and complexity of these gene expression experiments
are crucial to reach reliable interpretations. In reality, however,
lacking sufficient sample sizes was mainly related to financial
constraints, which led to reduced statistical power of the
experiment and difficulty to identify essential but subtle
changes, and limited the extent to which experiments performed
in different laboratories appeared to agree. Different gene
expression between purebred and crossbred animals may have
implications on the expression of heterosis, but relevant studies
are missing in this Research Topic.
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THE JOURNEY CONTINUES WITH

DISSECTING QUANTITATIVE TRAIT

VARIATION AND GENETIC

ARCHITECTURE

Quantitative trait locus (QTL) mapping aims at characterizing

chromosomal regions or genes responsible for quantitative
traits and diseases in terms of genomic positions, effects, and

numbers. A simple QTLmapping experiment starts with crossing

two parental lines differing in their trait values and marker
variants. Segregated QTLs are observed and mapping in the

consequent backcrosses or F2 population. Improved strategies,
such as advanced intercross lines (AIL) (Darvasi and Soller,

1995), can increase the precision of quantitative trait loci

(QTL) mapping due to more recombination events. An AIL is
created by successive generations of pseudo-randommating after

the F2 generation, and recombination events are accumulated

continuously between generations. Wang et al. evaluated a nine-
generation AIL derived from two divergent outbred chicken
lines. Their results showed that the founder genomes were
sufficiently shuffled in the F9 generation. This AIL reference
population yielded a considerably narrower for mapped QTL
than the F2 generations.

Genome-wide association studies (GWAS) emerged as a
powerful tool to investigate associations between quantitative
traits (including diseases) and genetic markers on the entire
genome (Ozaki et al., 2002; Klein et al., 2005). There were
six GWAS studies in this Research Topic, covering cattle,
pigs, and chickens, respectively. Rezende et al. identified five
genomic regions associated with carcass and meat quality traits
in a crossbred Angus-Brahman population. Gao et al. found
significant loci for meat quality traits in pigs. Carcass and meat
quality are important traits that drive profitability and consumer
demand for beef and pork. They are expensive to measure and
unavailable until late in life or after the animal was harvested.
Hence, genetic improvement of carcass and meat quality traits
is not viable through traditional phenotypic selection, but these
traits are perfect candidates for marker-assisted selection or
genomic selection. Instead of alive measurement of carcass
and meat quality traits, Grigoletto et al. attempted to localize
chromosomal regions associated with non-invasive, ultrasound-
based carcass and meat quality traits in Montana Tropical
Composite beef cattle. Li et al. identified several candidate genes
that are associated with metabolites, which are intermediate
or end product (usually small molecules) of metabolism,
in crossbred beef cattle. Li et al. found significant loci in
chromosome 1 and chromosome 4, which explained 6.36 and
4.25% of the phenotypic variance of birth weight. Nie et al.
revealed seven significant SNPs spanning a ∼0.29Mb, harboring
14 candidate genes for tail feather color, in dwarf chickens.

Selection tends to cause specific changes in the patterns
of variation among selected loci and in neutral loci linked to
them, leaving genomic footprints known as selection signatures
(Kreitman, 2000). Such information helps understand how
genomes were shaped during the breeding history and localize
functional genes/genomic regions. Singh et al. identified eleven

common regions harboring genes associated with production
and adaptation in an Indian composite cattle breed developed
by crossbreeding taurine dairy breeds with native indicine cattle.
Their results suggested more substantial selective pressure on
regions responsible for adaptation compared to milk yield. Paim
et al. estimated the genomic composition of the regions identified
as selected (selective sweeps) using a chromosome painting
approach. Selected genomic regions as selection signatures for
founder breeds were identified as well. van der Nest et al.
identified ten candidate regions potentially under strong positive
selection, harboring genes for health and production, in South
African Simbra cattle (5/8 Taurine and 3/8 Indicine). Ganteil
et al. assessed the patterns of runs of homozygosity (ROH)
in animals from three-way crossbreeding. ROH are continuous
stretches of homozygous genotypes in a diploid genome, and
their quantification reflects autozygosity, which occurred when
two parents shared at least one common ancestor (Peripolli et al.,
2017).

Given the polygenic nature of quantitative traits and disease,
an adequate sample size for GWAS often tends to be very
large (Nishino et al., 2018). In reality, however, assembling large
sample sizes is not always possible, particularly for carcass and
meat quality traits because they are difficult or expensive to
measure. A similar challenge arises when conducting GWAS in
isolated small populations. Hence, literature synthetic or meta-
analytical methods provides an alternative to incorporate data
from multiple studies and arrive at more reliable conclusions
by utilizing publicly accessible databases (Wu and Hu, 2012).
Population stratification is another concern with GWAS, which
often result in spurious associations if not properly accounted for.
Population stratification can happen in large GWASwhen perfect
matching of cases and controls is virtually impossible. It is also
likely to occur when studying recently admixed populations and
variants with very small effect sizes.

GWAS do not necessarily pinpoint causal variant and
genes, because most association signals map to non-coding
regions of the genome (Hindorff et al., 2009; Mahajan
et al., 2018). Functional characterization of genetic variants
is needed to move from statistical association to causal
variants and genes, especially in the non-coding genome.
Computational methods are used to predict the regulatory
effect of non-coding variants on the basis of functional
annotations. Target genes can be identified using chromatin
immunoprecipitation and chromosome conformation capture
methods, and experimentally validated using cell-based systems
and model organisms. A development in the past decade
combined QTL analyses with gene expression profiling, i.e.,
by DNA microarrays. Such expression QTLs (eQTLs) describe
cis- and trans-controlling elements for the expression of often
disease-associated genes (Westra et al., 2013).

Most GWAS have been conducted using SNP arrays because
they are cost-effective. Nevertheless, whole genome sequencing
(WGS) permits studying the full frequency spectrum of variants,
including rare variants that are difficult to capture by SNP arrays.
We anticipate that, as the cost of WGS continues to decline,
GWAS using WGS will eventually replace GWAS using SNP
arrays. Until then, the majority of the common variants and
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a substantial fraction of the low-frequency and rare variants
that contribute to disease risk can be identified using affordable
SNP arrays combined with imputation to increasingly large
WGS reference panels (Tam et al., 2019). Low-pass sequencing
(i.e., an average depth <1× coverage) combined with genotype
imputation have been proposed as an alternative to genotyping
arrays which showed increased power for GWAS (Pasaniuc et al.,
2012; Gilly et al., 2019).

EXPENDING THE HORIZONS OF GENOMIC

PREDICTION FOR CROSSBRED ANIMALS

Quantitative traits are determined by thousands of genes with
small effects, which are often difficult to detect (Manolio et al.,
2009; Slatkin, 2009). The merge of genomic selection led to a
revolutionary paradigm shift in animal breeding (Meuwissen
et al., 2001, 2016). With a sufficient number of markers
covering the whole genome, genomic selection concentrates on
estimating their total effect rather than testing single loci for their
significance. Most genomic evaluations, say for dairy cattle, are
separate by breed and crossbreds usually are not included except
for the multibreed evaluation in New Zealand (Winkelman et al.,
2015). Crossbred animals were removed based on counts of
breed check markers (Wiggans et al., 2010). On the other hand,
there has been an increasing interest in genomic predictions
for crossbred animals in recent years (Sørensen et al., 2008).
Starting from April 2019, CDCB offered a genomic evaluation
for crossbred dairy cattle on more than 50 traits yet limited to
crosses of five dairy breeds (VanRaden et al., 2020). Crossbred
evaluations were averages of direct genomic values computed
using marker effects for each of the five pure breeds, weighted by
the animal’s genomic breed composition (VanRaden et al., 2020).

Purebred prediction models do not fully meet the need for
evaluating crossbred animals because they are limited to additive
genetic effects only. On the other hand, non-additive genetic
effects such as dominance and epistasis effects are essential
components contributing to the crossbred performance. Stock
et al. gave a literature review of genomic models for analyzing
livestock crossbred data. Genomic models for crossbred animals
extend purebred models with more complexity, such as the
inclusion of dominance effects, breed-specific effects, imprinting
effects, and the joint evaluation of purebred and crossbred
performance data. A two-way cross additive model is the
simplest example (Christensen et al., 2014), where the additive
genetic value of a crossbreed animal, captured by SNP effects,
is decomposed into a contribution that comes from the sire (or
sire line) and a contribution from the dam (or dam line), plus
a Mendelian sampling term. This basic model can be extended
to three-way (Christensen et al., 2019) and four-way crossings
and include dominance effects as well. SNP effects are assumed
to be either the same or different SNP effects across pure lines.
The latter are referred to as BOA (breed-of-origin of alleles)
models (Sevillano et al., 2016, Lopes et al., 2017). Including
dominance effects is in general advisable, leading to higher
accuracy (e.g., Zeng et al., 2013; Xiang et al., 2016). Nevertheless,
available studies are not sufficiently conclusive as to which

existing method is most suitable for a specific crossbreeding or a
genetic trait architecture. Deep learning methods are non-linear
models providing flexibility to adapt to complicated relationships
between data and output (reviewed by Montesinos-López et al.,
2021). They are particularly appealing for crossbred predictions,
but not covered in this Research Topic.

Apart from statistical models, the establishment of an
appropriate reference population is also crucial to crossbred
predictions. In dairy cattle, for example, genotype data are huge
and unbalanced between breeds. Dairy genomic evaluations are
conducted several times a year. Hence, combing genotypes from
multiple breeds imposes great computational challenge. Besides
that, multiple-breed predictions are less accurate than within-
breed predictions. Training on crossbred animals can increase
the prediction accuracies for crossbred animals (Esfandyari
et al., 2015), but collecting data from crossbred animals is
often difficult and expensive. Optimal training strategies for
crossbred predictions remain to be exploited. Alvarenga et al.
showed that including purebred and crossbred animals in a
joint training population yielded the higher accuracies and
lower biases than only training on purebred animals in single-
trait or multiple-trait analyses. The multiple-trait model treated
purebred and crossbred phenotypes as different traits. Khansefid
et al. proposed a strategy by equalizing breed contributions in
a mixed dairy breed reference of Holsteins, Jerseys, and their
crossbreds, instead of a Holstein-dominated reference. Their
results showed improved genomic predictions for crossbred and
purebred animals using this strategy. With a support vector
machine (SVM) regression model, Tusell et al. also showed
increased accuracies by including crossbred information for
training when predict the performance of purebred and crossbred
pigs. As the genomic data are accumulating indefinitely, the
computational challenge will extremely high. Hence, optimal
sample selection is worth exploiting, which aims at choosing
subsets of training samples that give the same or comparable
prediction accuracy as the whole training set. This concept was
proposed by Frankel (1984) to select a subset of the data that
is representative of the whole resource by removing redundant
or highly correlated samples. Also, high-performance computing
offers a solution to bypass the computational bottleneck (Wu
et al., 2011, 2012; Coninck et al., 2014).

Single-step genomic BLUP enables the inclusion of marker
genotypes into the well-established BLUP methods, which often
leads to increased prediction accuracies (Legarra et al., 2009;
Misztal et al., 2009). This method has been challenged by defining
the genetic base when pedigree and genomic information are
used simultaneously. For predicting crossbred performance,
the challenge becomes how to quantify relationships between
different lines compositions and appropriately define different
base generations. One solution is to use metafounders, which
are pseudo-individuals, that describe the genetic relationship
between the base population individuals (Christensen, 2012;
Legarra et al., 2015). Junqueira et al. showed that using
metafounders increased the accuracy of GEBV and the rate
of genetic gain for tick resistance using single-step genomic
BLUP in multi-breed beef cattle populations. They defined
four metafounders, each for the three pure breeds (Hereford,
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Bradford, and Zebu) and the fourth metafounder assigned to the
remaining base animals with an unknown breed of origin.

Genomic selection in indigenous or minor breeds is often
limited by the number of animals with genotypes and phenotypes
for training. Combining animals from breeds with similar
backgrounds or development history can increase the training
population sizes and prediction accuracy. Oliveira et al.
reported a moderate genetic connectedness between Norwegian
White Sheep and New Zealand Composite Sheep with similar
development history, based on the consistency of gametic phase
and other genetic diversity metrics. Their results suggested a
promising opportunity for cross-country genomic selections.
Gebrehiwot et al. found moderate to high genomic composition
of European Bos taurus cattle in Western African crossbred
cattle. Hence, the genomic information from European Bos
taurus cattle can be borrowed to improve genotype imputation
and genomic selection in the Western African crossbred cattle.
While genomics studies are heavily directed toward major
livestock species and breeds, genomics tools for minor livestock
species and breeds are in need (Das et al.; Gebrehiwot et al.; Yang
et al.).

CONCLUSIONS AND PROSPECTS

Genomics focuses on the structure, function, evolution, mapping,
and editing of genomes (Culver and Labow, 2002). Genomics
studies also included studies of intragenomic phenomena such
as epistasis, pleiotropy, heterosis, and other interactions between
loci and alleles within the genome (Pevsner, 2009). Given such
a broad spectrum of genomics domains, the coverage of this
Research Topic is very limited. The 25 articles are mostly in
the domains of functional genomics and predictive genomics
in crossbred animals. The former used available genomic data
to describe gene functions and interactions, whereas the latter
attempts to predict the performance of individual animals based
on low- to high-density genotype data. Studies in structural
genomics, epigenomics, andmetagenomics in crossbred livestock
animals are essential, but they are not addressed in this collection.

Advances in genomics have triggered a revolution in
discovery-based research and systems biology concerning
complex biological systems. Driving genomics to practice,
genomic prediction is at the core of enhancing animal breeding

and farming management. We anticipate more efforts to
specifically exploit genomic prediction models and cost-effective
training strategies for crossbred animals. Innovative genomic
mating and crossbreeding is appealing for improving commercial
crossbreeding. The objective for crossbreeding is to find optimal
combinations which maximize the general combining ability
(GCA) from the contributing parental lines and the special
combining ability (SCA) between them, penalized by standard
deviation of gamete breeding values passed from the parents to
the offspring. This type of innovative mating or crossbreeding
schemes is expected to produce high-performance and less-
variable crossbred animals.

Finally, predicting heterosis remains a topic of interest.
Heterosis is an old concept proposed by George Harrison
Shull, American botanist and geneticist known as the father
of hybrid corn, in 1914 (Shull, 1948). In animal breeding,
it refers to crossbred performance superiority relative to the
parental average (Lush, 1945). Two competing but not mutually
exclusive hypotheses, dominance hypothesis and dominance
hypothesis, have been proposed to explain heterosis or hybrid
vigor (Crow, 1948). Epigenetic components of hybrid vigor
were established recently, pinpointing the involvement of small
RNAs in the growth, vigor and adaptation of hybrids (Ni
et al., 2009; Baranwal et al., 2012). Heterosis is linearly
related to heterozygosity, considered to be 100% in the
first generation cross (F1) between two diverse parental
breeds. In the following generations, it is measured as
retained heterosis or heterozygosity relative to F1 (Dickerson,
1973). Genomic-estimated retained heterozygosity or heterosis
(GRH) can be used to match parents to obtain optimized
heterosis and produce progeny with improved performance and
replacement females with better lifetime productivity (Akanno
et al., 2017). A silent feature is that GRH provides an
additional metric for the existing purebred genomic evaluation
systems, for example, in beef cattle to include crossbred
predictions without any infrastructural change (Basarab et al.,
2018).
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