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The application of deep learning in the field of drug discovery brings the development
and expansion of molecular generative models along with new challenges in this field.
One of challenges in de novo molecular generation is how to produce new reasonable
molecules with desired pharmacological, physical, and chemical properties.To improve
the similarity between the generated molecule and the starting molecule, we propose
a new molecule generation model by embedding Long Short-Term Memory (LSTM)
and Attention mechanism in CycleGAN architecture, LA-CycleGAN. The network layer
of the generator in CycleGAN is fused head and tail to improve the similarity of the
generated structure. The embedded LSTM and Attention mechanism can overcome
long-term dependency problems in treating the normally used SMILES input. From our
quantitative evaluation, we present that LA-CycleGAN expands the chemical space
of the molecules and improves the ability of structure conversion. The generated
molecules are highly similar to the starting compound structures while obtaining
expected molecular properties during cycle generative adversarial network learning,
which comprehensively improves the performance of the generative model.

Keywords: LSTM, attention mechanism, Mol-CycleGAN, head-to-tail feature fusion, LA-CycleGAN

INTRODUCTION

Computer-aided drug Design (CADD) promotes the speed of drug discovery
(Macalino et al., 2015). Beyond the traditional CADD, artificial intelligence (AI) is widely
used in the process of new drug screening and optimization. AI is realized by using various
kinds of machine learning or deep learning (DL) algorithms (Goodfellow et al., 2016; Lavecchia,
2019). Among different methods, DL method generally trains a large amount of sample data

Abbreviations: GAN, Generative Adversarial Networks; DL, Deep Learning; VAE, variational autoencoder; JT-VAE,
Junction Tree Variational Autoencoder; LSTM, Long Short-Term Memory; CBDD, Computer-aided drug Design; RNN,
recurrent neural network.
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through neural networks to learn the molecular structure
of the sample. Different from the traditional similar ligand
searching, the DL model obtains the characteristic information
and general rules from learning prior knowledge during the
training process. In the field of DL, generative models can
generate novel compounds effectively with the desired properties,
which would reduce the cost of drug discovery (Jing et al.,
2018; Wainberg et al., 2018). Drug discovery and design
(Muegge et al., 2017; Agrawal, 2018) use the knowledge of
available biomedicine (Mamoshina et al., 2016; Tang et al., 2019)
to define the parameters and indicators that required by each
drug molecule in the following processes: (1) Selection and
confirmation of drug targets; (2) Discovery of seed compound
(Hit); (3) Discovery and optimization of lead compounds (Lead);
(4) Discovery of Candidate. Among the processes, molecule
generation (Xu et al., 2019) emergences as new tool in the
hit-to-lead and lead optimization phases of drug discovery.

The generation model (Jensen, 2019; Walters and Murcko,
2020) is used to generate new molecules with similar molecular
activity to the trained compounds, and to learn the distribution
characteristics of data by using unsupervised learning (Radford
et al., 2015). The generative models normally use SMILES
(Weininger, 1988; Öztürk et al., 2016) grammar based on ASCII
characters and molecular graphs based on Graph (Li et al., 2018;
Lim et al., 2020) to describe molecules at the atomic level.
For example, recurrent neural network (RNN) can generate a
larger chemical space than the training set by using SMILES
grammar to input a small part of molecular data set (Arús-
Pous et al., 2019). Based on deep learning methods, several
deep generative models have been proposed. Deep generative
models are roughly divided into four categories: (1) Based on
the Auto Encoder (AE) model used in semi-supervised learning
and unsupervised learning; (2) Generative Adversarial Networks
(GAN)(Goodfellow et al., 2014) model, which is composed of
two architectures: generator and discriminator, and one-way
generation that confronts each other during the training process;
(3) Model based on RNN (Méndez-Lucio et al., 2020); (4) Hybrid
model based on the combination of deep generative model and
reinforcement learning (RL) (Grisoni et al., 2020).

Different architectures are ongoing developed to generate
more realistic molecules (Sarmad et al., 2019). Character-level
recurrent neural network (CharRNN) (Segler et al., 2018)
is trained on the SMILES molecular database. CharRNN
is a chemical language model based on SMILES grammar
specifications. It uses Maximum Likelihood Estimation (MLE) to
optimize model parameters and improve the structural similarity
of the generated molecules. CharRNN can generate molecules
with new pharmacological properties. Variational Autoencoder
(VAE) (Gómez-Bombarelli et al., 2018; Simonovsky and
Komodakis, 2018) is a kind of “encoder-decoder” architecture.
It proposes a new method based on the continuous coding
of molecules to explore the chemical space. This model map
high-dimensional data to latent space, and perform a new search
based on directional gradients in chemical space. The Adversarial
Autoencoder (AAE) (Makhzani et al., 2015; Kadurin et al.,
2017) combines the ideas of adversarial training in VAE and
GAN for the first time. Junction Tree Variational Autoencoder

(JTN-VAE) (Jin et al., 2018) directly uses molecular graph
expression. JTN-VAE alternatively generates linear SMILES
strings to complete the task of molecule generation. First,
the chemical substructure on the generated tree object is
automatically decomposed, and the substructure on the training
set is extracted. Then, these substructures are combined into a
molecular map. Based on GAN, LatentGAN (Prykhodko et al.,
2019) combines an autoencoder and a generative adversarial
to carry out new molecular designs. CycleGAN (Zhu et al.,
2017) combines two symmetrical GANs into a ring network,
which has two generators and two discriminators to perform
two data conversions. The Mol-CycleGAN model (Maziarka
et al., 2020) extends CycleGAN to the JT-VAE framework to
ensure that the generated compounds are always effective.
The original molecular data set is entered into the “encoder-
decoder” architecture in order to obtain a novel compound
that is similar to the original molecular structure with the
required pharmacological properties. Mol-CycleGAN does not
use SMILES grammar and atomic ordering, which is a heavy
training burden. The decoding method selected by the model is
combined with the JT-VAE based on the Graph form, so that the
generated molecule is always effective.

In this article, we proposed LA-CycleGAN by embedding
CycleGAN architecture with long and short-term memory
module (LSTM) (Mao et al., 2017) and Attention mechanism. We
optimized the generator and discriminator of CycleGAN with the
aim to improve the training performance of the network model
and expand the chemical space. LSTM and Attention mechanism
are used to solve long-term dependency problems when treating
SMILES grammar inputs. The network layer of the generator of
the confrontation network is merged end to end. Least Squares
Generative Adversarial Network (LSGAN) (Yasonik, 2020) is
used to learn the corresponding transformation by minimizing
the loss. The results show that the optimized model improves
the ability of structural transformation. The structure similarity
between the generating molecule and the starting molecule is
increased, which should satisfy the specific requirements for
drug production.

MATERIALS AND METHODS

LSTM
Long Short-Term Memory (LSTM) is a network structure
extended from the RNN. This structure is mainly used to solve the
problem of gradient disappearance and gradient explosion in the
long sequence training process of SMILES grammar. The LSTM
structure is shown in Figure 1.

Long Short-Term Memory (LSTM) can control the
transmission state through three gating states. With the gating
states, LSTM can process the characterization of various sequence
lengths and perform globalization processing. Therefore, the
SMILES can still have a better characterization when the
SMILES type is longer. ft stands for forget gate, whose structure
purposefully deletes or adds information to the input sequence,
and effectively handles the generation of molecular structures
described in SMILES form. it stands for input gate used to update
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FIGURE 1 | The flow chart of LSTM architecture.

the unit state and determine whether the information is stored.
Ct represents the output used by the output gate to control. As
shown in Eq. (1).

ht = σ(Wo · [ht−1, xt] + bo)︸ ︷︷ ︸
ot

∗ tanh


σ (Wf · [ht−1, xt + bf )︸ ︷︷ ︸

ft

] ∗ Ct−1 + σ (Wi · [ht−1, xt] + bi)︸ ︷︷ ︸
it

∗ tanh (WC · [ht−1, xt] + bC)︸ ︷︷ ︸
Ct ′

)


︸ ︷︷ ︸

Ct

(1)

ht−1 represents the output of the previous state and xt
represents the input to the current state. σ represents the
activation function of sigmoid on the gate and tanh represents
the activation function on the state and output. W represents the
weight, b represents the bias, and ht represents the output of the
current state.⊗ is unit times, and⊕ is unit plus.

Attention Mechanism
The Attention mechanism (Vaswani et al., 2017) also handles
the chemical structural formula sequence globally. The vector
generated by the LSTM module cannot fully represent the
information of the entire sequence. The attention mechanism
can retain the intermediate output results of the LSTM encoder
on the input sequence. It is used to supplement the SMILES
information lost by LSTM and perform secondary learning
on the features that have not been learned. The process of
re-modeling global information can effectively improve the
performance of the model. The Attention mechanism is similar
to the task mechanism of LSTM, which overcomes the problem
of information loss in the feature expression process. It effectively

focuses on the output results of the encoder according to the
model target. The Attention mechanism is put at the bottom
of the context vector insertion layer. The output vector of the
LSTM is used as the input of the Attention mechanism, which is
used to calculate the vector probability distribution of the feature.
The method can capture the global information of the chemical
formula structure. Attention mechanism solves the long-distance
dependence of input sequence in RNN. The function of Attention
mechanism is as shown in Eq. (2).

Attention(Query, Key, Value)

= softmax

(
Query� KeyT
√

d

)
∗ Value (2)

Query represents the current molecule fragment, Key
represents each molecule, and d is the vector dimension of query
and key. Softmax is used to make the probability distribution of
the result. Value represents the current molecule, and re-obtain
important information. The attention mechanism can make
deep neural network interpretable by capturing the important
features. Attention mechanism assigns attention scores for the
input features. The attention score can be interpreted as the
importance of the feature, which will filter out the useless
molecular feature information.

Model Architecture of LA-CycleGAN
During the optimization process of the model generated by Mol-
CycleGAN, LSTM neural network and Attention mechanism are
embedded in the framework of CycleGAN. The internal network
layers of the generator and the discriminator are merged end
to end. The first and last layers of the internal network layer
are merged for the generator and the discriminator. During the
training process, we use LSGAN loss and Batch Normalization
(BN) (Ioffe and Szegedy, 2015). Mol-CycleGAN directly uses JT-
VAE to generate latent vectors, which is convenient for molecular
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graphic expression. The purpose of CycleGAN is to learn the
method from the original molecular data domain X to the target
molecular data domain Y.

Through training mapping G:X→Y and reverse mapping
F:Y→X , F(G(X))≈X , and G(F(Y))≈Y are established at the same
time. In order to prevent generators G and F from stopping
the conversion function after generating data, we use cycle
consistency loss as an incentive, as in Eq. (3).

Lcyc(G, F) = Ex∼Pdata(x)[||F(G(x))− x||1]

+Ey∼Pdata(y)[||G(F(y))− y||1] (3)

In order to prevent overfitting between input and output,
the identity mapping loss is used to ensure that the generated
molecule is close to the starting molecule, as in Eq. (4).

Lidentity(G, F) = Ey∼Pdata(y)[||F(y)− y||1]

+Ex∼Pdata(x)[||G(x)− x||1] (4)

In order to ensure that the two generators can achieve mutual
inversion, the overall loss function is used, where λ1= 0.4,
λ2= 0.15, as in Eq. (5).

L(G, F, DX, DY) = LGAN(G, DY , Y, X)+ LGAN(F, DX, Y, X)

+λ1LGAN(G, DY , Y, X)+ λ2Lidentity(G, F)

(5)

Where Dx is used to distinguish between X and F(Y),
and DY is used to distinguish between Y and G(X). The two

generators simultaneously carry out the reverse process of mutual
fight against between optimization reduction and optimization
increase. The overall loss function of the state is optimized
according to Eq. (6).

G∗, F∗ = argminG,F maxDX,DY L(G, F, DX, DY) (6)

LS-GAN’s confrontation loss is introduced, as in Eq. (7).

Lcyc(G, DY , X, Y) =
1
2

Ex∼Pdata(x)[(DY(G(X)))2
]

+
1
2

Ey∼Pdata(y)[(DY(y)− 1)2
] (7)

The main idea of the molecular optimization method is to
obtain molecular descriptors, which make the generated chemical
molecules easier to synthesize and generate molecules similar to
the original molecules.

Workflow
As shown in Figure 2, GAN also generates discrete sequences
when training potential chemical spaces. Then, the encoder can
force the latent space to generate some continuously distributed
sequences when training on the molecular data set. We construct
a self-encoder in the generator of CycleGAN, and use the
input data sequence as the learning target for characterization
learning. The generator is composed of three components:
encoder, converter, and decoder. The encoder is responsible
for converting the SMILES string into a digital representation
feature. The converter performs information conversion. The
decoder reconstructs the features and obtains a new SMILES
string. An encoded SMILES string is input into an LSTM model
with 56 hidden neurons, which is constructed as a single-layer

FIGURE 2 | The proposed architecture of LA-CycleGAN. LSTM with Attention mechanism are embedded in the generators.
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network. The encoder obtains the characteristic information and
distribution law of the input original sequence data through
LSTM. The vector output by the encoder through multiple
feature combination is input to the converter constructed by
the linear structure Sequential model. The latent vector output
by the encoder is input to the converter. The converter plays a
transitional role, converting various molecules from the source
domain to the target domain, avoiding information loss. The
LSTM module acts as a decoder. The vector of each output
vector table of the decoder unit is restored to the size of the
starting vector, and regain the characteristic information of low-
level molecules. Then, the decoded molecules still retain the
structure or characteristics of the original molecular data, and are
converted into samples in the target domain.

We map the output vector of the decoder to the Attention
mechanism, perform learning mapping on the vector output
from the encoder and then calculate the distribution probability.
The output feature information is fused into the layer fusion
module to ensure that each original molecule input can be
directly input to the final fully connected layer. In LA-CycleGAN,
the use of head-to-tail feature fusion plays an important role in
improving the similarity of molecular generation. In the process
of generating, the low-level feature information at the head
is accepted by the high-level feature information at the tail.
By using the feature fusion, a thicker feature can be obtained
from splicing the channel dimensions of the features. Therefore,
the generated molecular dataset is closer to the molecules of
the original data domain. The original feature information is
retained, and the deviation between the generated sample and
the original sample is reduced. The original molecular features
remain in the generated molecular features, resulting in an
effective molecular structure.

The discriminator inputs the original SMILES data set and
the generated data together. The discriminator is composed of
multiple dense layers to extract feature vectors from the data. In
order to determine whether these features belong to a specific
category. The output feature vector of the Attention mechanism
is processed by the feedforward network layer with sigmoid
activation, and the probability of sampling each character of the
known character set in the data set is feedback. The last layer of
the discriminator network is the dense layer and produce one-
dimensional output. It is used to realize the judgment of the
similarity difference of the generated molecules to continue the
training of the discriminator. The network structure parameters
of the new model are shown in Table 1.

Data Set
ZINC database (Sterling and Irwin, 2015) is a molecule structure
database. The deep generative model requires training on a large
amount of data to be able to learn patterns that can generalize
and generate new molecules. Therefore, a molecular data set
is extracted from the ZINC database containing 250,000 drugs.
The chemical characteristics of drug molecules are generally
defined by FeatureType and FeatureFamily. Each FeatureType
uses smarts expressions to describe the mode and attributes of
the molecule, and summarize and characterize the molecular
structure from different degrees.

TABLE 1 | LA-CycleGAN network layer structure parameters.

Network layer structure
(generator)

Units Network layer structure
(Discriminator)

Units

Input 56 Input 56

Dense 56 Dense 56

LSTM 56 Dense 28

LSTM 28 Dense 56

LSTM 56 Attention 56, 64, 1

Attention 56, 64, 1 activation Sigmoid

concatenate 57 Dense 1

Dense 56 – –

Molecules with the same activity generally have common
chemical characteristics. FeatureFamily classifies features as
a whole to achieve the matching effect of pharmacophore
(Nastase et al., 2019), which is an effective way to determine
whether a molecule has a certain type of pharmacodynamic
characteristics. It can assist the structural design of drug
molecules. The pharmacophore model is a model based on the
characteristic elements of pharmacodynamics. Pharmacophore
includes Aliphatic Rings, Aromatic Rings, Hydrogen-Bonding
Acceptor (HBA), Hydrogen-Bond Donor (HBD), and other
characteristic elements, which can test the ability of molecular
structure transformation. The characteristic elements of the
pharmacophore are incorporated into one of the standards for
the generation of compound molecules, which can effectively
avoid the generation of molecular structures with large errors
in similar compounds. The new type of compound generated is
contrary to the design requirements. Then, we select X and Y with
different structure distributions, and test whether our model can
learn transformation rules and apply them to molecules that the
model has not seen before. According to the characteristics of the
pharmacophore elements, the datasets with different features are
divided as follows:

• Aliphatic Rings: Aliphatic Ring compounds refer to the
hydrocarbon group in the molecule containing a carbocyclic
ring, and this carbocyclic ring can be saturated and
unsaturated. The molecule in X has exactly 1 alicyclic ring,
while the molecule in Y has 2 or 3 Aliphatic Rings.
• Aromatic Rings: The molecule in X has exactly 2 Aromatic

Rings, while the molecule in Y has 1, 3, or 4 Aromatic Rings.
• Hydrogen bond acceptor (HBA): The electronegative atom is

the hydrogen acceptor. The molecule in X has 1 hydrogen
bond, and the molecule in Y has 2–3 hydrogen bond acceptors.
• Hydrogen bond donor (HBD): The molecule in X is a

hydrogen bond, and the molecule in Y is 2, 3, or 4 hydrogen
bond donors.

Performance Evaluation Index
We use the evaluation indicators provided by MOSES
(Polykovskiy et al., 2020) to evaluate the generated molecules.
The generative model is evaluated by comparing the fragment
similarity, scaffold similarity, nearest neighbor similarity,
Tanimoto coefficient, Fréchet ChemNet Distance and internal
diversity of the generated set G. Valid judges the generated
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SMILES string and checks the consistency of the valence and
chemical bond of the generated molecule. Filters are part of
the generated molecules, which pass the filters applied during
the construction of the dataset to remove molecules containing
charged atoms. Novelty is the proportion of generated molecules
that do not appear in the training set, and low novelty represents
overfitting. Success rate represents the success rate of molecular
structure transformation. Uniqueness checks whether the model
will collapse and only a few typical molecules are generated.
Non-identity is the score when the generated molecule is
different from the starting molecule.

Fragment similarity (Frag) is defined as the cosine distance
between fragment frequency vectors, such as Eq. (8).

Frag(G, R) = 1− cos(FG, FR) (8)

For the fragment frequency vectors FG and FR of molecule
G and molecule R, the size is equal to the vocabulary of all
chemical fragments in the data set. The corresponding molecular
element indicates the frequency of the corresponding fragment
in the molecular set. This metric shows the similarity of the two
groups of molecules at the chemical fragment level Degree and
distance definition.

Nearest neighbor similarity (SNN) is the average Tanimoto
similarity between the generated molecule and the nearest
molecule in the test set, as in the Eq. (9).

SNN(G, R) =
1
|G|

∑
mG∈G

max
mR∈R

T(mG, mR) (9)

The chemical structure encoded in the fingerprint, the nearest
neighbor molecule mR from the test set R and the molecule mG in
the generating set G.

Internal Diversity (IntDivp) is the average pair-wise similarity
of generated molecules, which is used to evaluate the chemical
diversity in the generating set, as shown in Eq. (10).

IntDivp(G) = 1− P

√
1
|G|2

∑
m1,m2

T(m1, m2)p (10)

FréchetChemNet Distance (FCD) can predict the biological
activity of drugs, as shown in Eq. (11).

FCD(G, R) = ||µG − µR||
2
+ Tr(

∑
G+

∑
R

−2(
∑

G
∑

R)
1
2 ) (11)

µG and µR are mean vectors,
∑

G and
∑

R are the covariance
matrix of the penultimate layer activity on sets G and R.

TABLE 2 | Structural transformations and dataset sizes.

Dataset Aliphatic Rings Aromatic Rings HBA HBD

Xtrain 40,000 80,000 75,000 75,000

Xtest 69,682 18,220 37,149 37,149

Ytrain 40,000 80,000 75,000 75,000

Ytest 10,329 53,717 10,764 12,785

Tanimoto coefficient based on molecular fingerprints is used
to judge the degree of correlation between two data, as shown in
Eq. (12).

T(G, R) =

∑
i Gi ∩ Ri∑
i Gi ∪ Ri

(12)

FIGURE 3 | ZINC-250K data sets are distributed according to specified four
characteristics. (A) Aliphatic Rings; (B) Aromatic Rings;
(C) Hydrogen-Bonding Acceptor; (D) Hydrogen-Bonding Donor.
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Scaffold similarity (Scaff) is the cosine distance between the
frequency vectors of the molecular scaffold as in Eq. (13).

Scaff (G, R) = 1− cos(SG, SR) (13)

SG and SR represent the frequency of the scaffold in molecule
G and molecule R.

The above six indicators comprehensively examine the
characteristics of the generated molecules. In order to
quantitatively compare the distribution of the generated set
and the test set, we use the following three auxiliary indicators:

Molecular weight (MW): It is the sum of the atomic weights
in the molecule.

logP: It reflects the distribution of a substance in oil
and water. This value is the logarithmic value of the ratio

TABLE 3 | Structure conversion assessment of generated molecules.

Model test X → G(X) Y → F(Y)

Data Model Success rate Uniqueness Non-identity Success rate Uniqueness Non-identity

Aliphatic Rings Mol-CycleGAN 0.534 0.976 0.908 0.422 0.990 0.890
LA-CycleGAN 0.617 0.982 0.998 0.494 0.991 0.999

Aromatic Rings Mol-CycleGAN 0.535 0.986 0.908 0.421 0.995 0.889
LA-CycleGAN 0.536 0.990 0.997 0.427 0.999 0.997

HBA Mol-CycleGAN 0.608 0.987 0.697 0.378 0.987 0.684
LA-CycleGAN 0.612 0.996 0.995 0.382 0.993 0.999

HBD Mol-CycleGAN 0.602 0.985 0.658 0.380 0.988 0.648
LA-CycleGAN 0.612 0.991 0.996 0.420 0.994 0.998

The item with the highest data value in the column is indicated in bold.

FIGURE 4 | The distribution of Aliphatic Rings that generate molecules. (A) Distribution of the number of Aliphatic Rings in X and G(X); (B) distribution of the number
of Aliphatic Rings in Y and F(Y).
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of the partition coefficient between n-octanol and water.
The larger the value of logP is, the more fat-soluble the
substance is.

Synthetics Accessibility Score (SA): It used to evaluate the
difficulty of compound synthesis.

RESULTS AND DISCUSSION

Composition of Datasets
The data set is divided based on Aliphatic Rings, Aromatic Rings,
HBA, and HBD. The data set size is shown in Table 2, which

FIGURE 5 | Density map of Tanimoto similarity between corresponding molecules. (A) Tanimoto similarity for the Aliphatic Rings subset; (B) Tanimoto similarity for
the Aromatic Rings subset; (C) Tanimoto similarity for the HBA subset; (D) Tanimoto similarity for the HBD subset. The left panel is from Mol-CycleGAN and the right
panel is from LA-CycleGAN.
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TABLE 4 | Performance evaluation of model on generating molecules.

Data Model Valid (↑) Novelty
(↑)

IntDiv1

(↑)
IntDiv2

(↑)
Filters

(↑)

Aliphatic Mol-CycleGAN 0.998 0.975 0.861 0.856 0.588

Rings LA-CycleGAN 0.998 0.992a 0.869 0.863 0.644

Aromatic Mol-CycleGAN 0.996 0.988 0.867 0.861 0.615

Rings LA-CycleGAN 0.998 0.988 0.868 0.872 0.682

HBA Mol-CycleGAN 0.997 0.977 0.871 0.865 0.606

LA-CycleGAN 0.998 0.987 0.883 0.877 0.674

HBD Mol-CycleGAN 0.996 0.975 0.872 0.866 0.603

LA-CycleGAN 0.998 0.987 0.883 0.866 0.673

aThe bolded data in Table 4 represents the item with the highest data
value in the column.

shows the train size and test size of the molecules in the data set.
In all experiments, we use the training set (Xtrain and Ytrain) to
train and the test set (Xtest and Ytest) to evaluate the model.

Figure 3 shows the experimental data set ratio distribution
map in Table 2. The population of molecules with Aliphatic
Rings, Aromatic Rings, HBA, and HBD and the distribution of
X and Y are shown in Figure 3. In each histogram, the blue
columns represent the distribution of the ZINC-250K data set
according to the four characteristics. The orange bars represent
the distribution of the X data set. The green bars represent the
distribution of the Y data set.

Structure Attributes
In the process of model training, due to the special structure
of CycleGAN, the model will transform and reconstruct the
structure of the molecular data on the two opposite regions X and
Y. In Table 3, the structural performance and structural attributes
of the model in the distribution of different characteristics are
quantitatively computed, including Aliphatic Rings, Aromatic
Rings, HBA, and HBD. A fully symmetrical structure is used in
the model. When the model is constructing, we partly consider
the problem of structural transformation. LA-CycleGAN model
has been improved in terms of Success rate, Uniqueness and
Non-identity as shown as the bolded data in Table 3. Aromatic
Rings has the lowest conversion success rate and is the most

difficult to convert. After optimization, Aliphatic Rings has the
highest success rate for substructure conversion tasks. Under
the distribution of HBA and HBD characteristics, the two
data sets tend to be consistent in the direction of structural
transformation. The success rate of HBA and HBD is only
slightly different. Uniqueness has improved significantly in all
distributions. This result shows that the LA-CycleGAN model
can reduce the probability of repeated generation of molecules
and avoid an increase in the overlap rate of molecules at the
same region. During model verification, the Non-identity of HBA
and HBD has been significantly improved after optimization.
This result shows that the similarity of molecules has been
improved with the conserved Aliphatic Rings. In summary, the
LA-CycleGAN model presents the best ability to obtain data
conversion over Mol-CycleGAN when training on a data set
distributed according to Aliphatic Rings. It also proves that
the data set is easy to change. It is easier to use in tests of
drug production.

As shown in Figure 4, in the distribution of Aliphatic
Rings, without Aliphatic Ring molecules, there is only a
difference in the number of rings between data sets X and
Y. Therefore, the number of Aliphatic Rings in the newly
generated molecular structure is significantly reduced, and the
success rate of obtaining Aliphatic Ring conversion is higher.
In the above-mentioned molecular data conversion processes
based on the distribution of the characteristic element, molecules
that do not contain the above-mentioned characteristic element
are eliminated, which effectively improves the success rate of
molecular transformation. At the same time, the number of
molecules produced by the 3-ring Aliphatic Ring has increased
significantly, and the number of Aliphatic Rings produced by the
1-ring and 2-ring Aliphatic Rings is still the largest as shown in
Figure 4.

Similarity Evaluation
In the chemical space, the similarity of molecular structure will
directly affect the biological activity of similar molecules. In
Figure 5, the Tanimoto similarity evaluation is performed on
the data set of the distribution of various elements. It visually
shows the similarity between each compound vector. Compared
with Mol-CycleGAN, LA-CycleGAN achieve better Tanimoto

TABLE 5 | Evaluation of the similarity of the generated molecules.

Model test FCD (↓) SNN (↑) Frag (↑) Scaff (↑)

Data Model Test TestSF Test TestSF Test TestSF Test TestSF

Aliphatic Rings Mol-CycleGAN 0.574 0.600 0.498 0.486 0.954 0.475 0.277 0.090

LA-CycleGAN 0.568 0.600 0.502a 0.493 0.963 0.664 0.374 0.108

Aromatic Rings Mol-CycleGAN 0.391 0.047 0.142 0.467 0.142 0.109 0.563 0.157

LA-CycleGAN 0.361 0.046 0.481 0.471 0.166 0.471 0.577 0.199

HBA Mol-CycleGAN 0.389 0.442 0.479 0.464 0.331 0.473 0.759 0.134

LA-CycleGAN 0.382 0.417 0.479 0.468 0.347 0.514 0.799 0.141

HBD Mol-CycleGAN 0.392 0.444 0.480 0.464 0.318 0.456 0.660 0.137

LA-CycleGAN 0.384 0.330 0.480 0.468 0.328 0.486 0.689 0.137

aThe bolded data in Table 5 represents the best value for the column.
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similarity distribution between the generated molecules and
the starting molecules. The Tanimoto similarity distribution
also holds true for random molecules in the ZINC-250K
data set. It can be seen that the molecular similarity of the
LA-CycleGAN model is significantly increased. The Attention
mechanism assigns different degrees of attention to different
parts of the input data or feature map. Focused learning
makes the weight distribution obtained in the process of
molecule generation more concentrated, and can retain useful
information. Finally, it will generate highly similar molecules.
The distribution of similarity between the newly generated
molecule and the starting molecule in the LA-CycleGAN
model gradually tends to be consistent in the X and Y
regions. Compared with the original model, the consistency
of the similarity distribution of the optimized model has been
adjusted and improved.To improve the similarity between two
molecules, it is necessary to enhance the discrimination ability
of the discriminator. Extract features from the input, and then
add a dense layer of one-dimensional output to determine
whether the extracted features belong to a specific category.
The problem of judging true and false molecules is transformed
into a binary classification problem. After convergence, the
discriminator is used as a classifier for judging the true and false
of molecular data.

Table 4 shows the prediction and verification of the
model from the data structure of the four different feature
distributions to determine the effectiveness of the model’s
molecular generation. The Valid of the HBA distribution is
the highest in the four different feature distributions. The
Valid of the Aliphatic Rings distribution has not been changed.
The effectiveness of the distribution of Aromatic Rings has
increased the most. Novelty reveals the ability of the optimized
model to generate new molecules. Aliphatic Rings generates
the highest proportion of new molecules and the highest
improvement. The LA-CycleGAN model has the highest IntDiv1
and IntDiv2 scores on the HBA distribution. The HBA molecule
has the best performance in terms of generating internal
diversity. The internal diversity of HBD distribution structure
is slightly lower than that of HBA. It can be seen that the
data structure based on the hydrogen bond system is easy
to modify and reorganize molecules. Aromatic Rings has the
most obvious performance in the Filters evaluation. As part of
generating molecules, it can filter charged particles to satisfy the
effectiveness of generated molecular compounds. At the same
time, inhibiting the generation or deleting molecular fragments
do not meet the designed expectations. In our evaluation,
we divide the dataset according to the characteristics of the
pharmacophore elements without considering the diversity of
molecular skeletons. It would be an interesting study to compare
the detailed effect of diversity of starting molecules on the
diversity of generated molecule by finely tuning the degree
of scaffold similarity in two sets X and Y (Benhenda, 2017;
Gui et al., 2020).

Table 5 shows the four evaluation indicators of FCD,
SNN, Frag, and Scaff for the evaluation of the similarity of
generated molecules. The chemical fragments generated by
the model design have higher similarity and the optimized

model has improved on these four evaluation indicators.
Aliphatic Rings performs well in Fra, Scaff, and SNN. The
fragments of the generated molecule and the starting molecule
have the highest similarity ratio, and have a high degree of
similarity in the direction of the chemical structure, so they

FIGURE 6 | Attribute distribution of generated molecules. LA-CycleGAN
model provides (A) the improved logP, (B) molecule weight (MW) and
(C) Synthetics Accessibility (SA) Score.
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have the same biological response. From an overall point
of view, the performance of the LA-CycleGAN model has
been comprehensively improved. LSTM solves the problem of
gradient disappearance and improves the accuracy of molecule
generation. The generated molecular data has a high proportion
of scaffolds that are the same as the test set. Among the
four data sets distributed according to characteristic elements,
HBA has the most significant improvement and the highest
proportion. FCD is the error function used to measure the
activity of the resulting compound. In the optimized model,
the result of Aromatic Rings achieves the smallest error
and its biological activity is most similar to the starting
molecule. In summary, from the four different chemical structure
distributions, the model can generate pharmacophores with
excellent biological activity.

We evaluate the generated molecules by using the evaluation
indicators provided by MOSES. In Figure 6, the Mol-CycleGAN
model and the LA-CycleGAN model are compared from LogP,
MW, and SA. LogP shows that the concentration ratio of octanol

to water in the LA-CycleGAN model has increased significantly.
Compared with Mol-CycleGAN, our LA-CycleGAN model has
reproduced the best LogP distribution for the set of Aliphatic
Rings, reaching 0.62. The overall Mol-Weight has been improved,
and the overall molecular weight has been increased. Based
on the molecular weight of the generated and tested sets, it
can be judged whether the generated set is biased toward
lighter or heavier molecules. In MW plots, the MW of the
generation set of the improved model has been increased,
which means that the generated set of the new model is biased
toward heavier molecules. SA reveals the difficulty of drug
synthesis and is used to evaluate learning models. Aliphatic
Rings is the most difficult to synthesize drugs. The difficulty
of synthesizing has decreased for the other three groups of
compounds. For example, the SA decreases from 0.71 to 0.53
for the set of HBA.

The visualization process of the Mol-CycleGAN and LA-
CycleGAN model to generate molecules in the four data
distributions is shown in Figures 7, 8. As shown in molecular

FIGURE 7 | Molecular structure diagram. (A) Molecules from the aliphatic ring subset; (B) molecules from aromatic ring subset. In each sub-figure, the upper layer
shows the starting molecules, the middle layer shows the generated molecules, and the bottom layer shows the similarity score.
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FIGURE 8 | Molecular structure diagram. (A) Molecules from the HBA subset; (B) molecules from HBD subset. In each sub-figure, the upper layer shows the
starting molecules, the middle layer shows the generated molecules, and the bottom layer shows the similarity score.

diagram, the obtained molecules are all effective molecules. For
both models, the similarity of X and G(X) is generally higher
than that of Y and F(Y). LA-CycleGAN displays comparative
performance as the Mol-CycleGAN. Especially in the task
of reproducing molecules of HBA and HBD,LA-CycleGAN
produces higher similarity score than the Mol-CycleGAN as
shown in Figure 8. After optimizing the model, HBD obtained
the highest similarity score, indicating that the similarity has been
improved significantly.

CONCLUSION

We proposed LA-CycleGAN as a new method of molecule
generation by embedding LSTM and Attention mechanism in the
CycleGAN model architecture. LSTM and Attention mechanisms
are introduced to solve the problem of gradient disappearance
and improve the accuracy of molecule generation. The generator
in the CycleGAN uses Autoencoder to map the molecular

structure into the latent chemical space. The decoder returns the
sampled potential chemical space to the original space. Finally,
the molecular map is obtained from the potential space of JT-
VAE. The proposed model is evaluated by four subsets with
different feature distributions extracted from the ZINC-250K
dataset. The generated molecules between the Mol-CycleGAN
model and the LA-CycleGAN model are quantitatively evaluated.
The experimental results show that the similarity and success
rate of molecules generated by the LA-CycleGAN model have
been significantly improved over Mol-CycleGAN. The generated
molecules have similar or even the same biological activity
as the starting molecules. LA-CycleGAN model can act as
one of molecule generation method to generate molecules
with similar drug-like compounds. The attention-based deep
neural network can be interpreted by furfure analyzing the
relationship between the attention scores of features and the
expected generated molecules. It would be an attractive work
to make de novo molecular generation model interpretable
in future study.
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