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Since their inception, genome-wide association studies (GWAS) have identified more
than a hundred thousand single nucleotide polymorphism (SNP) loci that are associated
with various complex human diseases or traits. The majority of GWAS discoveries are
located in non-coding regions of the human genome and have unknown functions.
The valley between non-coding GWAS discoveries and downstream affected genes
hinders the investigation of complex disease mechanism and the utilization of human
genetics for the improvement of clinical care. Meanwhile, advances in high-throughput
sequencing technologies reveal important genomic regulatory roles that non-coding
regions play in the transcriptional activities of genes. In this review, we focus on
data integrative bioinformatics methods that combine GWAS with functional genomics
knowledge to identify genetically regulated genes. We categorize and describe two
types of data integrative methods. First, we describe fine-mapping methods. Fine-
mapping is an exploratory approach that calibrates likely causal variants underneath
GWAS signals. Fine-mapping methods connect GWAS signals to potentially causal
genes through statistical methods and/or functional annotations. Second, we discuss
gene-prioritization methods. These are hypothesis generating approaches that evaluate
whether genetic variants regulate genes via certain genetic regulatory mechanisms
to influence complex traits, including colocalization, mendelian randomization, and
the transcriptome-wide association study (TWAS). TWAS is a gene-based association
approach that investigates associations between genetically regulated gene expression
and complex diseases or traits. TWAS has gained popularity over the years due
to its ability to reduce multiple testing burden in comparison to other variant-based
analytic approaches. Multiple types of TWAS methods have been developed with varied
methodological designs and biological hypotheses over the past 5 years. We dive
into discussions of how TWAS methods differ in many aspects and the challenges
that different TWAS methods face. Overall, TWAS is a powerful tool for identifying
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complex trait-associated genes. With the advent of single-cell sequencing, chromosome
conformation capture, gene editing technologies, and multiplexing reporter assays,
we are expecting a more comprehensive understanding of genomic regulation and
genetically regulated genes underlying complex human diseases and traits in the future.

Keywords: TWAS, GWAS, summary statistics, data integration, eQTL, functional annotation, fine-mapping

INTRODUCTION

For the last two decades, genome-wide association studies
(GWAS) have been a successful approach for associating
single nucleotide polymorphism (SNP) loci to a variety of
complex human traits. In fact, as of July 2021, the NHGRI-EBI
GWAS catalog includes more than 167,000 SNPs associated
with human diseases and traits (Buniello et al., 2019). The
abundant discoveries of SNP associations with complex human
diseases have led to significant enthusiasm and growth in
interdisciplinary, translational medicine studies. Translational
medicine aims to translate genomic discoveries of complex
human diseases to clinical settings to achieve precision
medicine (Collins and Varmus, 2015) and to improve the
overall quality of health care. The expedition from bench to
bedside investigates genetically determined disease susceptibility
and inter-individual variability in treatment response to
develop genomics-informed diagnosis and prognosis tools as
well as individually tailored treatment plans. However, the
majority (∼90%) of statistically significant GWAS signals
are located in non-coding regions of the human genome
(Maurano et al., 2012). Thus, connecting these non-coding
variants to downstream affected genes is a nontrivial task.
The gap between non-coding GWAS signals and affected
genes hinders the translation of GWAS discoveries to
clinical settings.

Increased volume and improved precision of omics data,
newly invented molecular technologies, and recently developed
bioinformatics algorithms, together reveal novel avenues
in translational medicine to walk from GWAS signals to
downstream affected genes. Non-coding regions of the human
genome, including intergenic and intronic regions, can act
as regulatory elements that have effects on transcriptional or
translational activities of genes. Several classes of widely-studied
functional elements include enhancers, promoters, transcription
factor binding sites (TFBS), CCCTC-binding factor (CTCF);
and these functional elements can host genetic variants, like
expression quantitative trait loci (eQTLs), splicing quantitative
trait loci (sQTLs), and protein quantitative trait loci (pQTLs),
which participate in various transcriptional and translational
regulatory mechanisms [Visel et al., 2007; The FANTOM
Consortium and the RIKEN PMI and CLST (DGT), 2014;
Andersson et al., 2014; Roadmap Epigenomics Consortium
et al., 2015; Sun et al., 2018; ENCODE Project Consortium
et al., 2020; GTEx Consortium, 2020]. Each class of functional
element describes a type of regulatory mechanism by which
genetic variants may modulate genes. The goals of many
developed bioinformatics methods in the post-GWAS era are
to identify genetically regulated genes from GWAS discoveries

by integrating functional genomics knowledge. Transcriptome-
wide association studies (TWAS) are one type of data integrative
bioinformatics method that aims to identify genes that lead
to manifestation of complex human traits due to genetically
regulated transcriptional activity.

Transcriptome-wide association studies has gained popularity
over the years due to its distinct ability to perform gene-
level association analyses and generate interpretable transcription
hypotheses between genes and complex diseases and traits.
Here, we first review updates in functional genomics. We also
summarize bioinformatics methods that embrace functional
genomics data to identify complex trait-associated genes. Then,
we dive into the specifics of TWAS and assess the pros and
cons of several developed TWAS methods. Next, we discuss
several influential factors in the experimental design of TWAS
that may potentially sway interpretation of results. Finally, we
review challenges for TWAS and opportunities to maximize the
utility of TWAS in the future.

OVERVIEW

The technological advances to identify genomic regulation
provide opportunities to prioritize genetically regulated genes
from GWAS signals from new perspectives. Fine-mapping of
GWAS causal signals has relied heavily on linkage disequilibrium
(LD). A common practice following GWAS is to map genetic
variants to the residing genes, or nearby genes based on
haplotypes and LD structures derived from the study cohort or
from a fully sequenced reference panel of presumably similar
ancestry [such as an ancestrally similar subset of the 1000
Genomes Project (1000 Genomes Project Consortium et al.,
2015)]. This approach has led to identification of complex disease
and trait-associated loci, but does not recognize the widespread,
complex transcriptional regulatory mechanisms which do not
necessarily take place in genes’ proximity (Heidari et al., 2014;
Javierre et al., 2016; Pan et al., 2018).

Genetic variants, regardless of their chromosome locations
relevant to genes, can modulate transcriptional activities of target
genes up to several mega base pairs (Mbp) away if located
in regulatory elements, such as enhancers and transcriptional
factor (TF) binding sites, or having suggestive effects on
genes, like expression quantitative trait loci (eQTLs) (Javierre
et al., 2016; GTEx Consortium, 2020). The distal genomic
regulations are accomplished via formations of chromatin loops.
As more knowledge about three-dimensional (3D) genome
structure becomes available through chromosome conformation
capture (3C) technology and its derivatives (Davies et al., 2017),
it becomes well-recognized that chromatin looping plays an
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important role in controlling transcriptional activities (Dixon
et al., 2012; Rao et al., 2014). Chromatin looping allows distal
regulatory elements to skip intervening genes to contact distant
target genes. For example, using the 3C-carbon copy (5C)
approach, Sanyal et al. (2012) observed that only ∼7% of
chromatin looping interactions took place between an element
(putative enhancers, promotors or CTCF binding sites) and the
nearest transcription start site (TSS) in the pilot regions that
represented 1% of the human genome in GM12878, K562, and
HeLa-S3 cell lines (ENCODE Project Consortium, 2012). Even
though Sanyal et al. (2012) inspected only a small proportion
of the human genome, the frequency of distal regulatory
interactions is profound. Proximity to genes or short-range cis-
LD structures may not be sufficient tools to pinpoint causal
genes of complex traits and diseases given the continuously
updating knowledge of genomic regulation. Integration of genetic
regulatory knowledge with GWAS results has become necessary
to capture the complexity of biological regulatory mechanisms
and prioritize genes from GWAS signals. Figure 1 provides
an overview of some of the strategies for post-GWAS gene-
mapping procedures.

As of today, there have been various statistical and
computational methods that incorporate functional genomics
data to unveil complex trait-related genes. In this review, we
categorize these methods into two types. First we describe
the fine-mapping approach. Second we discuss the gene-
prioritization approach.

Fine-Mapping for Post-GWAS Analysis
Fine-mapping is one common option for post-GWAS analyses
seeking to identify causal variants or genes for complex diseases
or traits (Schaid et al., 2018; Broekema et al., 2020). Traditionally,
fine-mapping of potential causal variants relies heavily on LD
structures and haplotypes blocks based on the premise that
causal variants and tag variants have a non-random chance
to be inherited together due to co-segregation during meiotic
recombination (Table 1). Recently, there have also been multiple
studies on alternative functional fine-mapping strategies that aim
to identify potential causal functional elements, instead of a single
variant, tagged by GWAS signals. These functional fine-mapping
studies investigate downstream affected genes by understanding
the likely impacted biological regulatory mechanisms. This shift
of focus in GWAS fine-mapping is transformative for studies
which are perplexed by non-coding GWAS signals and their
connections to downstream affected genes (Table 1).

Fine-mapped GWAS signals may occur outside of coding
regions and be situated in a distant non-coding functional
element. Identification of non-coding causal functional elements
is imperative for understanding the functional roles of GWAS
variants. Examples of non-coding functional roles are enhancers,
promoters, TF binding sites, candidate cis-regulatory elements
(ccREs), and DNaseI hypersensitive sites. The identification
of functional elements underlying GWAS pave the way to
engage chromosome conformation information to locate the
downstream target genes interacting with the functional regions
of interest. The Washington Epigenome Browser (Zhou et al.,
2011; Li et al., 2019) and 3D genome browser (Wang Y. et al.,

2018) host several different kinds of cell line-specific or tissue-
specific 3C, 5C, Hi-C, or capture Hi-C data. Both browsers
provide necessary visualization tools to inspect the 3D chromatin
loop-aided interactions for genomic regions of interest. FUMA
developed by Watanabe et al. (2017) is another data integrative
computational tool to assist functional annotation of fine-
mapped GWAS variants and functional regions. Watanabe
et al. (2017) assembles positional, eQTL, and chromosome
confirmation mappings in FUMA. FUMA offers interactive visual
aids for post-GWAS functional annotation and prioritization of
potential complex trait-related genes based on multiple types of
functional genomics data.

Table 1 lists exemplary methods of two major types of
fine-mapping approaches. The statistical mapping focuses on
the statistical approaches and models. The functional mapping
focuses on the varied ways of using different functional genomic
data for fine-mapping purposes. These two types of fine-mapping
approaches are not mutually exclusive. A fine-mapping method
can also fall into both categories depending on the method or
study design. To summarize, fine-mapping methods integrate
various types of omics data to deduct possible variant-gene
relationships and biological mechanisms underpinning complex
diseases or traits.

Gene-Prioritization for Post-GWAS
Analysis
The capability of high-throughput sequencing technologies to
quantify intermediate molecular traits, such as gene expression
levels and protein abundance, enables the estimation of statistical
significance of molecular mechanisms behind complex diseases
and traits. Here, we discuss three different types of gene-
prioritization methods that to evaluate how genetic variants
can modify complex disease risk by exerting effects on an
intermediate molecular trait.

One such integrative gene-prioritization method is
colocalization (Table 1; Hukku et al., 2021). In general,
colocalization analyzes the co-occurring patterns between
QTLs (for example, eQTLs) and GWAS signals. Colocalization
assesses the biological hypothesis of whether a causal locus or
a genetic variant contribute to both the intermediate molecular
changes and the complex trait of interest. A GWAS signal
that is colocalized with a QTL is more likely to be functional.
Colocalization analyses can be performed at a locus level
or at a SNP level.

The locus-level colocalization methods assume that a group
of SNPs in a tight LD region contain both a causal eQTL and
a causal disease GWAS signal (Table 1). One will observe no
marginal effect of a causal eQTL by conditioning on the most
significant disease GWAS signal, and vice versa (Nica et al., 2010).
An alternative method states that one will observe a maximum
joint likelihood of associations if the two traits of interest are
driven by the same causal variant (Chun et al., 2017).

The SNP-level colocalization methods focus on quantifying
the probability of colocalization signals of two distinct
traits surrounding a suspected causal variant (hence,
at the single SNP/variant resolution) (Table 1). Several
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FIGURE 1 | An overview of strategies for gene-mapping following GWAS or parallel to GWAS.

TABLE 1 | Toolbox of gene-mapping methods and gene-prioritization methods (see Table 2 for TWAS).

Gene mapping approaches Type Examples

Fine-mapping Statistical mappinga Heuristic approaches Haploview Barrett et al., 2005, LocusZoom Pruim et al., 2010

Penalized regression LASSO Tibshirani, 1996, Elastic Net Zou and Hastie, 2005

Bayesian methods CAVIAR Hormozdiari et al., 2014, PAINTOR Kichaev et al., 2014

Functional mappingb Integrative annotation tools
to infer functions

VEP McLaren et al., 2016, ANNOVAR Wang et al., 2010, HaploReg
Ward and Kellis, 2011; Ward and Kellis, 2016, RegulomeDB Boyle
et al., 2012, ENCODE SCREEN ENCODE Project Consortium et al.,
2020, INFERNO Amlie-Wolf et al., 2018

Visual annotation tools of
3D genome interactions

3D genome browser Wang Y. et al., 2018, WashU genome browser
Zhou et al., 2011; Li et al., 2019, FUMA Watanabe et al., 2017

Colocalizationc Locus-level RTC Nica et al., 2010, JLIM
Chun et al., 2017

Variant-level eCAVIAR Hormozdiari
et al., 2016, coloc
Giambartolomei et al.,
2014, ENLOC Wen et al.,
2017

Mendelian randomizationd SMR Zhu et al., 2016,
MR-JTI Zhou et al., 2020

a For detailed review of statistical fine-mapping, see Schaid et al. (2018); b For detailed review of functional fine-mapping, see Broekema et al. (2020); c See Hukku et al.
(2021) for a detailed review of colocalization methods; d See Davies et al. (2018) for practical guidelines for clinical implementation of MR.
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exemplary SNP-level colocalization methods include
eCAVIAR (Hormozdiari et al., 2016), COLOC (Giambartolomei
et al., 2014), ENLOC (Wen et al., 2017), and fastENLOC
(Pividori et al., 2020).

Mendelian Randomization (MR) is another approach, which
makes causal inference between a modifiable exposure and
complex disease risk (Holmes et al., 2017). The modifiable
exposure can be blood concentrations of low-density lipoprotein
cholesterol (LDL-c). The complex disease can be coronary heart
disease (CHD). LDL-c related genetic variants are used in the
process as instrumental variables to estimate the causal effects of
LDL-c on CHD risk. One rising MR approach harnesses eQTLs
to investigate whether one or more genetic variants influence
both gene expression and a complex trait at the same time. This
approach estimates, for example, if a PCSK9 eQTL regulates
PCSK9 gene expression levels to impact blood LDL-c levels
(Taylor et al., 2019; Richardson et al., 2020). eQTL-instrumented
MR analyses are an innovative means to investigate LDL-related
genes, which may further contribute to CHD risk. However, the
success and accurate interpretation of MR results depend on
three key assumptions (Holmes et al., 2017; Davies et al., 2018).
Following the PCSK9 eQTL and LDL-c example: (1) the genetic
variant must be associated with gene expression levels; (2) there
cannot be unmeasured confounding effects between the genetic
variant and LDL-c; and (3) the genetic variant affects LDL-c only
through their effects on gene expression levels.

Transcriptome-wide association study is a gene-based
association approach first developed by Gamazon et al. (2015).
TWAS integrates GWAS data with eQTL information to identify
transcriptionally regulated genes underlying complex traits and
diseases. TWAS first imputes the genetically regulated gene
expression levels by combining individual-level genotype data
or GWAS summary statistics with externally estimated eQTLs.
At the second step, TWAS assesses the associations between
imputed gene expression levels and a complex trait or disease
(see section “Introduction to TWAS”).

Transcriptome-wide association studies and mendelian
randomization are similar in the way that TWAS is equivalent
to a two-stage weighted allele score-based MR. The first stage
estimates the aggregate effect of multiple instrumental variables
on the exposure (for example, eQTLs’ aggregate effect on a gene).
The second stage regresses the outcome on the fitted values
of the exposure from the first stage (for example, regression
of continuous or categorial disease-related phenotype on the
predicted genetically regulated gene expression levels). More
interdisciplinary details can be found in Burgess et al. (2017);
Burgess and Thompson (2013), and Pierce and Burgess (2013).
The rest of this review focuses on the statistical aspects of TWAS
as a gene-based association approach.

Transcriptome-wide association studies have attracted much
interest in the field of complex disease due to its ability to
perform gene-level association testing. This feature distinguishes
TWAS from variant-based analytic approaches, such as some of
the aforementioned fine-mapping, colocalization, or MR. These
variant-based analytic approaches rely greatly on GWAS ability
to identify complex trait or disease-related genetic variants.
However, detecting variants with small to moderate effects

requires considerable sample sizes in order to reach satisfactory
statistical power (McCarthy et al., 2008; Manolio et al., 2009).
TWAS overcomes this issue by aggregating regulatory effects
of multiple eQTLs and directly testing associations between
genes and diseases. Moreover, TWAS has a substantially smaller
multiple testing burden by performing gene-level tests in
comparison with variant-based analyses. Furthermore, TWAS is
a flexible bioinformatics tool. TWAS can be used as an accessory
to GWAS to support GWAS discoveries; or independently from
GWAS (Figure 1). Some studies include TWAS as a parallel
approach to their GWAS to identify putative causal genes
associated with complex disease risk. The following sections focus
on the variations of TWAS methods and the influential factors
of TWAS studies.

TRANSCRIPTOME-WIDE ASSOCIATION
STUDIES (TWAS)

Introduction to TWAS
Transcriptome-wide association studies can be considered a
subclass of locus-based methods or multi-marker association
approaches that are an alternative to variant-based association
methods. The growth of locus-based methods is attributable
to the wider recognition and appreciation of the polygenic
architecture of complex diseases and traits. In other words, the
proportion of disease phenotype variation explained by each
genetic variant, on average, is small. Nevertheless, the cumulative
effect of genetic variants in many genes, collectively, account
for a substantial proportion of inter-individual phenotypic
variation. Methodologically, locus-based methods take multiple
genetic variants’ effects into account to assess the overall
contribution of a gene or a genetic region (a more interpretable
functional unit in comparison to non-coding variants) to
complex disease susceptibility. Meanwhile, advances in high-
throughput sequencing technologies have enriched the discovery
that genetic variants are tightly involved in regulation of
transcription and translation of genetic material. eQTLs are one
type of important regulatory variants. Recently, the detection of
eQTLs has been aided by even lower cost RNA sequencing (RNA-
seq) technology, sophisticated statistical models, increasing
computational power, and scientific community efforts to
consolidate eQTL research resources.

Similar to the shift in the GWAS field from variants with
large effect sizes to variants with moderate to small effect sizes by
involving greater sample sizes, eQTL research has gone through
the same trend. eQTLs with large effect have elucidated molecular
mechanisms behind a variety of complex diseases. For example,
a promoter eQTL has a dominant genetic effect on DARC, a
gene expressing malaria parasite receptor. The specific form
of the eQTL interrupts GATA-1 binding sites and diminishes
DARC gene expression in specific erythroid cells, which explains
malaria resistance found in a certain West African population
(Tournamille et al., 1995). Examples like the DARC promoter
eQTL with a silencing effect are not common. The ability of the
community to assemble even larger study cohorts allows for the
observations of additional eQTLs, albeit with smaller effect sizes,
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and in a diverse pool of tissue types other than blood. TWAS
adopts this polygenic view including multiple small effect eQTLs
for exploring the genetic architecture of complex disease risk.

Transcriptome-wide association studies exploit the genotype
and phenotype data from GWAS along with reference
transcriptome data to conduct gene-level association testing
(Gamazon et al., 2015; Gusev et al., 2016; Barbeira et al., 2018,
2019; Hu et al., 2019; Pividori et al., 2020). TWAS tests the
hypothesis that one or multiple eQTLs collectively regulate the
transcriptional activities of a gene, and the genetically altered
gene expression levels result in modulated disease risk.

Provided individual-level genome-wide genotype data, TWAS
performs a two-step analysis to test this transcriptional
hypothesis. For any given gene, step 1 imputes genetically
regulated gene expression levels by combining transcriptional
regulatory effects of the eQTLs for a gene under an additive
genetic model. Step 1 can be done in multiple tissues of interest
separately in each tissue or jointly across tissues (see section about
“eQTL Detection”). Various eQTL models are available for step 1
thanks to the efforts of consortia, like GTEx (GTEx Consortium,
2020), BLUEPRINT (Chen et al., 2016), eQTLGEN (Võsa et al.,
2018), and MESA (Mogil et al., 2018). Let N denote the sample
size of a study cohort and M denote the number of eQTLs in a
certain gene. Prediction of the gene’s genetically regulated gene
expression levels can be expressed as follows:

E = XŴ (1)

where E is the N× 1 vector of predicted genetically regulated gene
expression levels of the gene, X is the N×M matrix of genotypes
of eQTLs, and Ŵ is the M× 1 vector of eQTLs’ regulatory effects
on the gene, which are estimated from an independent reference
transcriptome data panel. While the first step of TWAS is merely
to capture genetic components of gene expression levels, TWAS
has shown to have a good prediction accuracy for genes that are
highly locally heritable (h2

≥ 0.5) (Gamazon et al., 2015; Li et al.,
2018).

The second step is to aggregate the imputed gene expression
levels from step 1 with a disease phenotype of interest to estimate
the statistical significance of each gene-disease association. Let Y
denote the phenotype of a study cohort. Y is the N× 1 vector
of phenotype, which can be dichotomous, such as case/control
status of a complex disease, or continuous measures of health
outcomes, such as blood laboratory values. Step 2 calculates the
regression coefficient of the phenotype Y on each genes’ predicted
gene expression levels E, Given its design, TWAS conducts
genomic association analyses with an innate transcriptional
regulatory hypothesis.

Transcriptome-wide association studies have several
advantages over traditional variant-based genomic analyses.
First, TWAS is a gene-based analytic approach that has the
potential to extend GWAS toward a functional understanding of
disease mechanisms. Second, the two analytic steps in TWAS are
decoupled and can be conducted independently. For multi-trait
or phenome-wide studies, the first step of predicting gene
expression levels only needs to be performed once for a given
dataset. Predicted genetically regulated gene expression levels can

be then evaluated for statistical association with different disease
phenotypes or complex traits at step 2. Meanwhile, the technical
independence of step 2 gives ample research opportunities for the
development of sophisticated statistical models for gene-disease
association analyses. Third, multiple testing burden is lower
in TWAS in comparison to a genome-wide variant-based test;
here, one only needs to adjust for the number of genes tested
in the TWAS. For a given trait, a TWAS only needs to adjust
for approximately twenty-thousand genes (this is a Bonferroni
p-value threshold of approximately 2.5× 10−6). Meanwhile,
the number of statistical tests goes up to millions for a GWAS.
As such, the multiple testing burden is orders of magnitude
heavier in GWAS than in TWAS. The lower multiple testing
burden allowed Thériault et al. (2018) to identify the association
between PALMD and calcific aortic valve stenosis (CAVS) in
the QUEBEC-CAVS cohort with a sample size of N = 2,000).
The PALMD-CAVS association was successfully replicated in
the much larger UK Biobank CAVS GWAS (N = 353,000).
However, the same association was not statistically significant
in the QUEBEC-CAVS GWAS due to the great multiple testing
burden relative to the limited GWAS sample size (QUEBEC-
CAVS N = 2,000). Fourth, TWAS are tissue-specific. TWAS
has the capability to predict tissue-specific genetically regulated
gene expression levels and investigate gene-trait associations in
disease-related or potentially pathological tissues.

A TWAS study is subject to several influential factors
which merit cautious interpretations of results (Table 2). These
influential factors include: (1) the nature of input GWAS data,
in other words, individual-level genotype and phenotype data
versus GWAS summary statistics, (2) the eQTL models, and (3)
the association method used to estimate gene-trait associations.
In the following sections, we expand on each of these factors.

Individual-Level Data-Based TWAS
Versus GWAS Summary Statistics-Based
TWAS
Transcriptome-wide association studies can take different forms
of input data types. The first published TWAS method,
PrediXcan, developed by Gamazon et al. (2015), accepts
individual-level major variant dosages of eQTLs or genotype calls
as input. However, individual-level genotype data are not easily
obtainable from published GWAS studies for a TWAS follow-up
study. As a solution and an alternative TWAS method, FUSION,
developed by Gusev et al. (2016), quickly followed the release
of PrediXcan. FUSION imputes the regression statistics between
the gene expression level of each gene and a trait (hereafter
denoted as zg) directly from GWAS summary statistics. Let Z
denote a vector of standardized SNP-trait effect sizes (z-scores)
from a GWAS and only include GWAS SNPs that are also
eQTLs in a given eQTL-gene expression model; and 6 denote
the covariance matrix among all eQTLs (LD). In FUSION, zg are
imputed as a linear combination of elements of Z with weights Ŵ.
When there is no SNP-trait association (no signals), Z∼ N (0, 6)

and therefore, zg has a zero mean and variance Ŵ
′

6Ŵ. For a
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TABLE 2 | Summary of TWAS methods.

Comparison PrediXcan S-PrediXcan FUSION MultiXcan S-MultiXcan UTMOST

Input GWAS data type Individual-level genotype data GWAS summary statistics GWAS summary statistics Individual-level genotype
data

GWAS summary statistics GWAS summary statistics

Statistical models for
eQTL identifications

Elastic Net
Fine-mapped MASHR-based models
Joint-Tissue Imputation (JTI) models

Same as PrediXcan Bayesian sparse linear
mixed model (BSLMM)

Same as PrediXcan Same as PrediXcan Group LASSO with
specialized regularization

Source reference
panels

GTEx, MESA, CommonMind, StarNet,
DGN, PsychENCODE

Same as PrediXcan GTEx, TCGA Same as PrediXcan Same as PrediXcan GTEx, StarNet,
BLUEPRINT

eQTL Databases http://predictdb.org/
https://zenodo.org/record/3842289#
.YNVbJBOpGdY

http://predictdb.org/ http://gusevlab.org/
projects/fusion/

http://predictdb.org/ http://predictdb.org/ https://github.com/Joker-
Jerome/UTMOST

Current GTEx versiona GTEx v8 GTEx v8 GTEx v7 GTEx v8 GTEx v8 GTEx v6p

Gene-trait association
methods

Linear or logistic regression Dependent on GWAS
method

Dependent on GWAS
method

Principal component
regression

Singular value
decomposition (analogous
to MultiXcan)

Generalized Berk-Jones
test

Tissue-specificity Tissue-specific Tissue-specific Tissue-specific Cross-tissue Cross-tissue Cross-tissue

Output Single-tissue gene-trait associations Single-tissue gene-trait
associations

Single-tissue gene-trait
associations

Cross-tissue gene-trait
associations

Cross-tissue gene-trait
associations

Cross-tissue gene-trait
associations

Pros Up-to-date eQTL databases;
Accurate representation of test cohort
LD

Computationally efficient;
Up-to-date eQTL
databases;

Computationally efficient Up-to-date eQTL
databases;

Computationally efficient;
Up-to-date eQTL
databases;

Computationally efficient

Cons Multiple testing burden;
Computationally burdensome in
comparison to summary-statistics
based TWAS;

Reference LD matrix can
introduce noises

Multiple testing burden;
Reference LD matrix can
introduce noises

Computationally
burdensome;

Reference LD matrix can
introduce noises

Reference LD matrix can
introduce noises;

References using PMID 26258848, 32917697, 33020666 29739930 30926970 30668570 30668570 30804563

a Dated August 2021.
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given gene, the effect of genetically regulated gene expression
level on the phenotype can be obtained as follows in FUSION:

zg =
Ŵ
′

Z√
Ŵ ′

6Ŵ
(2)

In comparison to individual-level data-based TWAS, GWAS
summary statistics-based TWAS is more computationally
efficient and has the ability to analyze a larger GWAS dataset as
it is less central processing unit (CPU) and memory intensive.
Various GWAS summary statistics-based TWAS methods have
emerged since FUSION, including S-PrediXcan (Barbeira et al.,
2018) and UTMOST (Hu et al., 2019) (Table 2).

The primary difference between TWAS that uses individual-
level data and those that use GWAS summary statistics is in
the estimation of LD structure for testing populations. The
individual-level genotype data are usually not easily accessible
from most published GWAS studies, making it difficult to
examine the LD structure among eQTLs in each GWAS dataset.
GWAS summary statistics-based TWAS circumvents this issue
by deriving an LD matrix from a reference set, either the
reference panel used for eQTL discovery, or a multi-ancestry,
deeply sequenced reference panel like 1000 Genomes Project
(1000 Genomes Project Consortium et al., 2015). Nevertheless,
seldom does a reference population panel perfectly resemble the
population structure of a specific study cohort. The discrepancy
between the reference LD matrix and the actual LD structure of
a study cohort will likely introduce noise and may lead to false
positive or false negative results in GWAS summary statistics-
based TWAS, despite a general good concordance between
individual-level and summary statistics-based TWAS (Barbeira
et al., 2018). The silver lining is the increasing sample sizes in
reference population panels for more accurate estimates of an
LD structure, which matters for GWAS summary statistics-based
studies (Benner et al., 2017).

Overall, individual-level TWAS provides more accurate
estimates of gene-trait associations. However, it usually takes
up significant computational resources; and individual-level
genotype data are not always accessible to the research
community. On the other hand, GWAS summary statistics-
based TWAS is advantageous in its capability to prioritize genes
using only GWAS summary statistics and also computation
speeds that are orders of magnitude faster than individual-
level TWAS. Nevertheless, as mentioned above GWAS summary
statistics-based TWAS can introduce noise to association results
as the commonly used reference LD matrix cannot perfectly
resemble the LD structure of the study cohort. GWAS summary
statistics-based TWAS will require a greater GWAS sample
size to achieve satisfactory statistical power. Because of these
limitations, GWAS summary statistics-based TWAS generally
needs additional validation and careful interpretation.

eQTL Detection
The choice of eQTL database is important in TWAS (see
“Statistical models for eQTL identifications” in Table 2). Quality
of the eQTL databases impacts the prediction accuracy of
gene expression levels. Transcriptome and genotype data of

higher quality can capture greater proportions of the genetic
components of gene expression regulation, identify eQTLs with
moderate to small effect sizes, and improve the precision of
eQTLs in complex gene regions that share the same locus control
region or express multiple isoforms.

The power to detect eQTLs from transcriptome and genotype
datasets is partially dependent on the sample size. Over the past
decade, not only the sample sizes of reference transcriptome
data, but also the diversity of human tissues and cell lines,
have grown to support a deeper and broader understanding
of genetic architecture of eQTLs. Better quality eQTL data in
more diverse tissues have been made publicly available thanks
to several consortia, including ScanDB (Gamazon et al., 2010),
GTEx (GTEx Consortium, 2020), ImmVar (Ye et al., 2014),
BLUEPRINT (Chen et al., 2016), CAGE (Lloyd-Jones et al.,
2017), PsychENCODE (Wang D. et al., 2018), eQTLGen (Võsa
et al., 2018). ScanDB is one of the earliest centralized eQTL
databases that explores eQTLs in 176 HapMap Lymphoblastoid
Cell Lines, made up by 87 CEPH from Utah (CEU) and 89 Yoruba
from Ibadan (YRI) (Gamazon et al., 2010). Approximately
five thousand eQTLs were discovered in the CEU and YRI,
respectively, and are hosted on ScanDB website1 (Duan et al.,
2008). Following ScanDB, one of the most well-known eQTL
studies is the Genotype-Tissue Expression (GTEx) project that
was launched in 2010 (GTEx Consortium, 2015). The latest
release version of GTEx (GTEx v8) extended the search of eQTLs
in 838 donors (15,201 postmortem biospecimen) for 49 primary
human tissues and two cell lines (GTEx Consortium, 2020).
GTEx provides tissue-specific eQTLs and splicing quantitative
trait loci (sQTLs) for 18,262 protein-coding and 5,006 long
intergenic non-coding RNA (lincRNA) genes after biological
and statistical quality control. GTEx brings the awareness of
widespread eQTL effects that almost all protein coding genes
and ∼67% of lincRNA genes have been detected to be under
the influence of cis-eQTLs in at least one tissue. An even greater
eQTL detection sample size than the GTEx project has been
assembled through the effort of the eQTLGen consortium2.
eQTLGen meta-analyzed 31,684 blood samples (majority of
European ancestry) from 37 datasets whose gene expression levels
were profiled by three gene expression arrays and one RNA-seq
platform (Võsa et al., 2018). The magnitude of the sample size
allows eQTLGen to identify not only cis-eQTLs (within 1 Mbp to
a gene), but also trans-eQTLs that are more than 5 Mbp away
from a gene or on another chromosome. A single-cell version
of eQTLGen is expected to further unravel the transcriptional
regulatory mechanism behind complex disease and traits in
delicate individual immune cell types (van der Wijst et al., 2020).

Interpretation of eQTL effects and TWAS results should
consider the fact that transcriptional regulation is a
spatiotemporal process that can differ from tissue to tissue
and between life and death. Ferreira et al. (2018) found that a
proportion of genes displayed drastic transcript-level changes
over the postmortem intervals due to postmortem ischemia,
regulatory changes, and RNA degradation. Genes that are

1http://www.scandb.org/
2https://www.eqtlgen.org/
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affected by postmortem gene regulation differ from tissue to
tissue (Ferreira et al., 2018). While postmortem effects on
transcriptome are still largely unknown, postmortem tissues,
including blood samples, remain irreplaceable natural resources
to explore tissue-specific molecular mechanisms of complex
diseases. Given the transcriptional regulatory difference between
life and death, it is important to validate the effects of eQTLs
and transcriptional changes of genes in complex trait or disease-
relevant biospecimens using RNA-seq or high-throughput
massively parallel reporter assay (MPRA) (Tewhey et al., 2018).

Methods to detect eQTLs are developed based on different
biological hypotheses and statistical models. eQTL detection
methods can differ in two parts: (1) the assumptions of the genetic
architecture of transcriptional regulation, and (2) adoption of
a tissue-by-tissue analytic model versus a cross-tissue method
design. Due to a wider acknowledgement of the polygenic
genetic architecture of intermediate molecular traits (Zhang
et al., 2011; King et al., 2014), eQTL studies have set off to
detect multiple potential causal eQTLs at a genetic locus, as
opposed to only a single eQTL at a locus as would be done
in a monogenic model. For example, Gusev et al. (2016) used
Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou et al.,
2013) to detect eQTLs that were later used to predict gene
expression levels (Table 2). BSLMM fits all SNPs nearby a gene
into the model and allows two types of genetic components,
one sparse (i.e., a small set of eQTLs with large effect sizes) and
one vastly polygenic (i.e., all SNPs at a locus having marginal
effect sizes). BSLMM attained a better prediction performance
than a prediction estimated by merely using the top eQTL at a
locus (Gusev et al., 2016). This suggests a non-monogenic genetic
architecture of gene expression regulation, which is further
supported by another contemporary study by Gamazon et al.
(2015) that compared the top SNP (monogenic), polygenic score
(polygenic), and elastic net (polygenic). To further understand
the sparsity of polygenic genetic architecture behind gene
expression, Wheeler et al. (2016) evaluated the contribution of
sparse and polygenic components for transcriptional regulations,
using BSLMM (sparse and polygenic), LASSO (sparse) and
elastic net/ridge (polygenic) regression models. They compared
the genetic heritability of gene expression explained by each
method to determine the local genetic contribution of eQTLs to
gene expression variation. They found that cis gene expression
regulation was dominated by a small number of genetic variants
rather than a large collection of genetic variants of marginal effect
sizes. The discovery by Wheeler et al. (2016) strongly suggests a
non-monogenic, sparse genetic architecture of cis transcriptional
regulation. However, research in this area is in general impeded
by limited sample sizes of transcriptome data.

Cross-tissue meta-analyses of transcriptome data have gained
greater attention due to their capability of overcoming the sample
size constraint as seen in the tissue-by-tissue eQTL detection
approaches (Table 2). Research of cross-tissue eQTL detection
is fostered by the discovery that an obvious proportion of cis-
eQTLs are shared across all tissues and have correlated effect sizes
across tissues (Battle et al., 2017). Flutre et al. (2013) introduced a
cross-tissue Bayesian model that allows a proportion of eQTLs
being shared across tissues and accounts for intra-individual

correlations among tissues. Their hierarchical model can estimate
heterogeneous effects of eQTLs in different tissues and identify
eQTL active tissues. A similar approach is Meta-Tissue by Sul
et al. (2013) that adopts a linear mixed model, which specifically
leverages the random effects model developed by Han and Eskin
(2011), to achieve similar goals as the Flutre et al. (2013). More
cross-tissue eQTL detection methods have followed over years,
including work by Acharya et al. (2016), RECOV by Duong et al.
(2017), a sparse group LASSO model embedded in UTMOST by
Hu et al. (2019), and a Joint Tissue Imputation (JTI) approach
by Zhou et al. (2020). In general, cross-tissue eQTL detection
methods have shown greater power in simulation studies in
comparison to tissue-by-tissue approaches and a substantial
increase in the numbers of identified eQTLs and eGenes (Genes
that are regulated by at least one statistically significant eQTLs)
(Han and Eskin, 2011; Flutre et al., 2013; Sul et al., 2013; Acharya
et al., 2016; Duong et al., 2017; Hu et al., 2019; Zhou et al., 2020)
(see “Statistical models for eQTL identifications” in Table 2).

Variety of Gene-Trait Association
Methods
In addition to eQTL discovery, integrative cross-tissue analyses
flourish in the evaluation of TWAS gene-disease associations
(Table 2). Earliest design of TWAS, i.e., PrediXcan, investigates
gene-trait associations in a tissue-specific manner. Naturally,
PrediXcan estimates the statistical significance of association
between a disease of interest and predicted gene expression
levels tissue-by-tissue. However, tissue-specific TWAS faces four
issues. First, limited sample sizes of reference transcriptome data
not only restrict statistical power to identify eQTLs, but also
TWAS power. This can happen in a way where certain tissues
do not have sufficient sample sizes and power to detect eQTLs
for a functional gene. As a result, TWAS will not be able to
predict the gene’s expression levels, let alone test for gene-trait
associations in an underpowered tissue. Second, causal tissues of
many complex diseases or traits can be unclear or unavailable,
making it difficult to determine specific tissues or cell lines on
which one should conduct TWAS. Third, when causal tissues are
unclear, one might choose to conduct an exploratory TWAS on
multiple tissues. This kind of study design invites a substantial
multiple testing burden. In an exploratory situation, one will need
to correct TWAS association results for 49 primary human tissues
or cell lines (available by GTEx), when perhaps only one or two
tissues were causal to a complex disease. On the other hand,
this test-all-tissue approach also carries an implicit assumption
that TWAS will only assign statistical significance to tissues that
are biologically relevant to the complex trait of interest. This
assumption, however, can be easily violated due to the fourth
issue. Fourth, cumulative evidence has suggested that there is
shared local genetic architecture of gene expression regulation
and similar cis-eQTL effect sizes across tissues (Battle et al., 2017;
Liu et al., 2017; Ongen et al., 2017). The shared eQTL effects
across tissues indicates that TWAS cannot distinguish disease-
relevant tissues from irrelevant tissues that share similar gene
expression levels from a statistical perspective (Wainberg et al.,
2019). Cross-tissue TWAS is thus promoted to resolve some of
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these issues with tissue-specific TWAS. Essentially, cross-tissue
TWAS methods aggregate evidence across tissues to test the joint
effect of gene expression levels on complex diseases or traits.

Different cross-tissue TWAS methods have been developed
and provide various options for either individual-level genotype
data or GWAS summary statistics (Table 2). MultiXcan
by Barbeira et al. (2019) is a cross-tissue TWAS method
provided within the MetaXcan method package. MultiXcan uses
individual-level genotype data to predict gene expression levels
in each single tissue and then fits the predictions across tissues
against a phenotype in a statistical model to estimate the joint
effect of a gene on a complex trait of interest. To avoid inflation
of results due to correlated gene expression levels across tissues,
MultiXcan adopts the principal component regression which
specifically uses the first several orthogonal principal components
of the predicted gene expression data matrix as explanatory
variables. The GWAS summary statistics version of MultiXcan
is called S-MulTiXcan (Barbeira et al., 2019). An alternative to
S-MulTiXcan is a method called UTMOST developed by Hu et al.
(2019) UTMOST uses a generalized Berk-Jones (GBJ) test which
carries out a secondary test to examine if a gene is statistically
significantly associated with a disease in at least one of the tested
tissues. GBJ tests in UTMOST handles correlated gene expression
levels across tissues by taking the covariance among single-tissue
TWAS test statistics into account (Sun and Lin, 2020).

Cross-tissue TWAS has advantages and disadvantages in
comparison to single-tissue TWAS. Cross-tissue TWAS methods
have shown improved power to identify gene-level association
in both simulated and natural data (Barbeira et al., 2019; Hu
et al., 2019). Nevertheless, cross-tissue TWAS results are not
tissue-specific and thus, cannot reveal tissue-specific genetic
regulatory mechanisms. Computing resources and time required
by cross-tissue TWAS methods are much higher than the
corresponding single-tissue counterparts. Despite pros and cons,
further validation, such as replication in independent datasets
or functional validation, are needed by either single-tissue or
cross-tissue TWAS.

Cross-tissue TWAS methods are not restricted to the eQTL
models that come with the method. In general, a state-of-the-art
eQTL method with better prediction accuracy of gene expression
levels is preferred. In other words, cross-tissue TWAS methods
such as MultiXcan, S-MulTiXcan (Barbeira et al., 2019) and
UTMOST (Sun and Lin, 2020) can use the cross-tissue JTI-based
eQTL models (Zhou et al., 2020) that is developed separately.
The same principle applies to single-tissue TWAS methods.
PrediXcan, S-PrediXcan and FUSION can use, for example, the
cross-tissue JTI-based eQTL models which provides an improved
prediction accuracy of gene expression levels (Gamazon et al.,
2015; Gusev et al., 2016; Barbeira et al., 2018; Zhou et al., 2020).

CHALLENGES

While promising methods for disease gene discovery, TWAS
faces several challenges. First, prediction accuracy of gene
expression levels is limited by the heritability (h2) of each gene.
The heritability (h2) of a gene’s expression levels determines the

upper bound of prediction accuracy by eQTLs. On the one hand,
different studies have shown that TWAS can accurately predict
the expression levels for genes that are highly locally heritable
(h2
≥ 0.5) (Gamazon et al., 2015; Li et al., 2018). And 59% of genes

in the DGN whole blood have well estimated local h2 (FDR < 0.1)
(Wheeler et al., 2016). On the other hand, some genes have little
to negligible estimated local heritability and should be removed
from TWAS to avoid false positives. Nonetheless, much is still
unclear about the heritability of gene expression levels across
tissues and beyond cis-eQTLs.

Thus far, TWAS has only been using cis-eQTLs within a
certain distance from genes. This is consistent with observations
in several studies that the majority of cis-eQTLs cluster around
the transcription start site of the target gene (Nica et al., 2011;
GTEx Consortium, 2015). However, gene can be regulated by
both cis and trans-regulatory elements in the human genome.
Many studies seek to identify trans-eQTLs, which have been
absent in gene expression heritability estimation due to technical
limitations. Several previous studies estimated that ∼70% of the
genetic heritability of gene expression levels could be attributable
to trans-eQTLs that are on another chromosome or more than
5 Mb away (Boyle et al., 2017; Liu et al., 2019), indicating
the importance of trans-eQTLs in transcriptional regulation.
However, trans-eQTL studies face enormous multiple testing
burden. Studies to identify trans-eQTLs will need to test all
possible intra and inter-chromosome variant-gene pairs. The
total number of statistical tests is orders of magnitude greater
than that of cis-eQTLs, which only considers proximal variant-
gene pairs. A great number of samples is thus needed for trans-
eQTL research to guarantee sufficient statistical power (Westra
et al., 2013). Even if trans-eQTL data are made available, as
in blood-related cell lines by eQTLGen (Võsa et al., 2018),
TWAS may still have difficulty utilizing trans-eQTLs due to
two key factors. First is the possible overlapping effects between
the trans and cis-eQTLs for a target gene. Trans-eQTLs likely
regulate expression of a trans-acting TF, which subsequently
functions by binding to a cis-regulatory element where a cis-
eQTL resides (Võsa et al., 2018). Second is the difficulty of
calculating LD among eQTLs. The computing time and resources
needed for such a task are exponentially greater than that for
cis-eQTLs.

Another challenge in TWAS is the lack of eQTL data
from different ancestry groups, diseases, medical conditions,
sex, etc. The majority of samples used for large-scale eQTL
studies were of European ancestry. eQTL databases that were
prepared by a few earlier TWAS methods were exclusively
European ancestry individuals (Gamazon et al., 2015; Gusev
et al., 2016; Barbeira et al., 2018). Ancestry-specific eQTL
data are available for some ancestry groups, but these
resources are generally limited. The Multi-Ethnic Study of
Atherosclerosis (MESA) characterized eQTLs in African
American (N = 233), Hispanic (N = 352), and European
(N = 578) populations, separately (Mogil et al., 2018). However,
the MESA genotype and RNA-seq data were collected from
only CD14+ monocytes and individuals free of clinical
cardiovascular diseases (CVD) at recruitment. Although,
individuals with CVD and other medical conditions are likely
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to experience different transcriptional regulation from their
healthy peers. Overall, much is still to explore about the
eQTLs in different ancestries, medical conditions, age, sex, etc.
(Piasecka et al., 2018).

It is hard to quantify TWAS power due to the complexity
of transcriptional regulation and varied genetic backgrounds of
different complex diseases or traits (Veturi and Ritchie, 2018; Li
et al., 2021). For example, TWAS power can be influenced by
the quality of gene expression prediction (sample sizes used for
eQTL detection, concordance between transcriptome reference
population and testing populations, coverage of eQTLs in the
test dataset, etc.), or genetic factors (e.g., genetic heritability of
gene expression levels, heritability of the phenotype, sample size,
MAF, etc.). On top of the aforementioned factors, TWAS is also
challenged by the fact that causal tissues or cell types are unclear
in the majority of complex diseases or traits. Overall, TWAS
statistical power is contingent on so many varied factors that
it is hard to estimate TWAS power without making a delicate
set of assumptions; and one should be careful when interpreting
TWAS power.

Transcriptome-wide association studies need fine-mapping.
Statistically significant TWAS results indicate only association,
but not causation. Statistically significant genes are likely tag
genes for other causal genes in its proximity, but achieve the
greatest statistical significance due to various reasons (Wainberg
et al., 2019). One solution is to fine-map causal genes by
leveraging the LD structure among genes. For example, the
method FOCUS estimates a set of credible genes that are tagged
by a statistically significant gene by analyzing the patterns of
eQTLs, GWAS signals and surrounding LD structure (Mancuso
et al., 2019). One will have certain degree of statistical confidence
(90 or 95% by choice) that causal genes are within the set
of credible genes. The fine-mapping capability of FOCUS was
supported by its success in recovering SORT1 gene as one of the
LDL risk genes. More work is expected in this field of research
(Mancuso et al., 2019; Wu and Pan, 2020).

FUTURE DIRECTIONS

Understanding the genetic architecture of complex diseases and
traits is still an ongoing task for the field of translational medicine.
The journey from bench science to bed-side care requires the
knowledge of causal genes, pathways, and mechanisms behind
complex traits. The cumulative number of non-coding GWAS
discoveries, time and again, stresses the need to fill the gap
between non-coding genetic variants and downstream affected
genes in order to uncover complex trait mechanisms. In this
review, we categorize two types of methods that integrate GWAS
with functional genomics data to bridge the variant-to-gene gap –
fine-mapping approaches and gene prioritization approaches.
We discuss the background, pros and cons of several classes
of developed TWAS methods, influential factors in TWAS
analyses, and challenges.

We expect greater endeavors in TWAS and functional
genomic studies for a variety of geographical ancestry groups
in the next 10 years, including but not limited to African,

Asian, Hispanic or Latin, Greater Middle Eastern, Native
American, Oceanian, and admixed populations (Lavange et al.,
2010; H3Africa Consortium et al., 2014; Kowalski et al., 2019;
Choudhury et al., 2020; Gay et al., 2020; Shang et al., 2020).
Generation of these eQTL data will require resources and
efforts from the research communities in different parts of
the world.

High-throughput next-generation sequencing technology
and array-based platforms will continue to generate informative
functional genomics data. Ripening 3C and 3C-derived
technologies will generate more knowledge about chromatin
loop-assisted cis and trans regulatory interactions. Increasing
evidence suggests the prevalence of distal regulatory mechanisms
that cannot be easily captured with local LD structure (Whalen
and Pollard, 2019; GTEx Consortium, 2020). Mumbach et al.
(2017) recently developed HiChIP that generates high-resolution
contact maps for enhancer-promoter interactions in a human
coronary artery disease-related (CAD-related) cell type. They
found that ∼89% of the coronary artery disease-associated SNPs
skipped at least one gene to reach predicted target genes. The
extent to which distal transcriptional regulation occurs is still
unknown in the majority of complex human diseases or traits.
But genomic regulatory information will be useful to decipher
functionality of non-coding variants and map non-coding
variants to their downstream affected genes.

Another highly expected sequencing technology by the field
of eQTL and TWAS studies is the single-cell RNA sequencing
(scRNA-seq) (Tang et al., 2009). Bulk RNA-seq of a tissue sample
is the most economical way to obtaining transcriptome data in a
large scale, despite the fact that a tissue sample comprises more
than one cell type. Different cell types undergo distinguished
genetic regulation that makes up their specific cellular identities.
A gene’s expression levels in a tissue, thus, are likely to differ
from a cell type to another cell type. scRNA-seq profiles cell
type composition in a tissue at a refined resolution and allows
exploration of transcriptome heterogeneity across cell types
(Snijder and Pelkmans, 2011). Growing scRNA-seq data and
analytic methods will pave a new avenue in eQTL research
that performs eQTL studies in various cell types in a tissue
(van der Wijst et al., 2018). This will improve precision and
accuracy of eQTLs. On the other hand, having a grasp on which
causal tissues or cell types are important for a given complex
disease will be essential for developing a better understanding
of disease mechanism and clinical treatment. scRNA-seq data
promise greater statistical power to identify complex trait-
relevant tissues or cell types by providing distinguishable
transcriptome profiles among cell types (Ongen et al., 2017;
Finucane et al., 2018). Several scientific consortia have initiated
the effort in generating scRNA-seq data in large sample sizes
and multiple tissues, including the Human Cell Atlas (Regev
et al., 2017), Single-cell eQTLGen (van der Wijst et al., 2020)
and the LifeTime consortium (Rajewsky et al., 2020). At this
dawn of single-cell omics sequencing technology, sample sizes
and diversity of tissues and cell types will likely continue to
be limited.

Even though genes are considered functional and heritable
units, there is a shortage of gene-centric functional annotation
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models. Existing functional annotation models focus on
generating regulatory hypotheses for non-coding variants on
a variant-centric basis. For most genes, it is unclear how the
gene is regulated by different genetic regulatory elements, despite
the fact that an average of 3.9 distal elements interact with the
transcription start site (TSS) of a gene (Sanyal et al., 2012).
The shortage of gene-centric functional annotation models also
prevents locus-based statistical methods from combining cis and
trans-regulation. With the advances in sequencing technologies,
we are expecting a better understanding of genomic regulation
that incorporates cis and trans-regulation to investigate how
dysregulation of a gene, as a functional unit, contributes to
complex diseases or traits.

More than a decade into GWAS research of complex
disease, the molecular mechanisms behind most complex
diseases remains unclear due to the valley between non-coding
GWAS signals and the downstream affected genes. The next
two decades await more research that sheds new light on
complex disease mechanisms to promote novel therapeutics and
precision medicine.
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