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Background: The abnormal expression of RNA-binding proteins (RBPs) in various
malignant tumors is closely related to the occurrence and development of tumors.
However, the role of RBPs in acute myeloid leukemia (AML) is unclear.

Methods: We downloaded harmonized RNA-seq count data and clinical data for AML
from UCSC Xena, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue
Expression (GTEx), and Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) cohorts. R package edgeR was used for differential expression
analysis of 337 whole-blood data and 173 AML data. The prognostic value of these
RBPs was systematically investigated by using univariate Cox regression analysis,
least absolute shrinkage and selection operator (LASSO)–Cox regression analysis, and
multivariate Cox regression analysis. C-index and calibration diagram were used to judge
the accuracy of the model, and decision curve analysis (DCA) was used to judge the net
benefit. The biological pathways involved were revealed by gene set enrichment analysis
(GSEA). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis and the protein–protein interaction (PPI) network performed
lateral verification on the selected gene set and LASSO results.

Results: A prognostic model of 12-RBP signature was established. In addition, the net
benefit and prediction accuracy of the prognostic model and the mixed model based on
it were significantly higher than that of cytogenetics. It is verified in the TARGET cohort
and shows good prediction effect. Both the selection of our gene set and the LASSO
results have high credibility. Most of these pathways are involved in the development of
the disease, and they also accumulate in leukemia and RNA-related pathways.

Conclusion: The prognosis model of the 12-RBP signature found in this study is an
optimized biomarker that can effectively stratify the risk of AML patients. Nomogram
based on this prognostic model is a reliable method to predict the median survival time
of patients. This study expands our current understanding of the role of RBPs in the
occurrence of AML and may lay the foundation for future treatment of the disease.

Keywords: acute myeloid leukemia, RNA-binding proteins, prognostic signature, bioinformatics, prognostic
model

Abbreviations: TCGA, the cancer genome atlas; GTEx, the genotype-tissue expression; TARGET, therapeutically applicable
research to generate effective treatments; WBC, white blood cell count; BM, bone marrow; PB, peripheral blood; OS, overall
survival; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; PPI, protein–protein interaction.
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INTRODUCTION

Acute myeloid leukemia (AML) is a cancer of myeloid blood
cells, characterized by clonal dilatation of myeloid precursors
at different stages of differentiation, resulting in dysgenesis of
normal blood cells, and bone marrow failure (Board, 2019).
It is the most common subtype of leukemia, with genetic
diversity, a worldwide incidence of 3/100,000 per year, poor
prognosis, and high mortality (Zhou and Chng, 2014; Döhner
et al., 2015). Although most AML patients achieve their first
complete remission after induction therapy, relapse is the
main reason for the high mortality of patients (Ravandi, 2013;
Cornelissen et al., 2015). Postremission therapy (PRT) is an
important means to prevent recurrence. According to the
recommendations of the European LeukemiaNet (ELN), patients
at adverse risk should opt for allogeneic transplantation, and
those at favorable molecular risk should undergo intensive
chemotherapy (Döhner et al., 2017). Thus, prognostic assessment
of the patient is critical to the development of appropriate
treatment decisions and follow-up strategies. Cytogenetics is
an important prognostic factor for AML and is the basis
of current risk classifications for the disease (Döhner et al.,
2010; Grimwade et al., 2010). Many cytogenetic abnormalities
are known to be associated with poor prognosis and a
higher risk of relapse after treatment (Slovak et al., 2000).
However, some patients still relapse in the absence of adverse
risk factors (Röllig et al., 2011). Therefore, in order to
improve the prognosis assessment of AML patients, biomarkers
must be optimized. Current sequencing work has revealed
extensive genomic heterogeneity of AML and provided valuable
information on diagnosis and prognosis, and enabling the
optimization of biomarkers.

RNA-binding proteins (RBPs) are proteins that interact
with RNA through RNA-binding domains. As important
coordinators for maintaining genomic integrity, RBPs are
widely expressed in cells and play a core and conservative
role in gene regulation (Gerstberger et al., 2014; Nishida
et al., 2017). RBPs are involved in regulating all aspects of
RNA metabolism and function, including RNA biogenesis,
maturation, transport, cellular localization, and stability
(Masuda and Kuwano, 2019). When the nuclear RNA
emerges from the RNA polymerase, the RNA transcript is
immediately covered by the RNA-binding protein, exerting its
functions and ultimately affecting the expression of each gene
(Campos-Melo et al., 2014). Given the importance of RBPs in
regulating life processes, it is not surprising that some aberrant,
deregulated RBPs are closely associated with the onset and
progression of disease.

Because of their important role, RBPs have been widely
studied in recent years. RBPs have been found to play a
critical role in tumor development, and hundreds of RBPs are
clearly dysregulated in cancer (Wang et al., 2018). In fact,
previous studies have linked known cancer drivers to RBP
disorders, including AML. Some RBP-encoding genes promote
the development of cancer cells. For example, TRIM21 promotes
the transformation of breast cancer cells from epithelium to
stroma (Jin et al., 2019); FOXK2 promotes colorectal cancer

metastasis by upregulating ZEB1 and EGFR expression (Du
et al., 2019). Wang E. et al. (2019) revealed 21 RBP candidates
upregulated in AML that are critical for maintaining RNA
splicing and survival of AML. Mutations in RPS14, SRBP2,
SF3B1, and U2AF1 can lead to myelodysplastic abnormalities,
hematopoietic dysfunction, AML, and other blood-related
diseases (Ebert et al., 2008; Komeno et al., 2015; Shirai et al., 2015;
Mortera-Blanco et al., 2017; de Rooij et al., 2019).

Taken together, these studies suggest that RBPs is closely
related to the occurrence and development of human tumors.
RBP-encoding genes have been used to build prognostic models
of cancer but are still lacking in AML. For example, Li
et al. (2020) used eight-RBP gene to predict the prognosis
of patients with lung adenocarcinoma. Therefore, in AML,
systematic use of high-throughput transcriptome data to identify
the expression profile of RBP-encoding genes in normal
and tumor tissues is a necessary step to understand its
role in the pathogenesis, which not only contributes to the
understanding of the pathogenesis, but also has a guiding role
in the prognosis.

MATERIALS AND METHODS

Data Collection
UCSC Toil RNA-seq Recompute1 processing more than 20,000
unaligned RNA samples from The Cancer Genome Atlas
(TCGA),2 Therapeutically Applicable Research to Generate
Effective Treatments (TARGET),3 and Genotype-Tissue
Expression (GTEx)4 datasets resulted in a combined cohort free
of computational batch effects between different repository. In
this study, the RNA-seq expression profiles and corresponding
clinical data of AML patients in the TCGA and TARGET were
retrieved, respectively, from the UCSC Toil RNA-seq Recompute.
The AML patients from TCGA-LAML project were chosen as the
training cohort to establish the risk classification system based
on the RBP signatures and to construct predictive model. An
independent dataset (TARGET5) was employed for its external
validation. The case selection criteria for data extraction were
patients diagnosed with AML and available clinical information
such as survival status and overall survival time, age, gender, FAB
classification, and cytogenetic risk stratification.

For RBP-encoding genes, we obtained a reliable correlation
gene summarized by Gerstberger et al. (2014)6. The summation of
all RBP-encoding genes was used to further identify AML-related
features. For clinical characteristics, R package tableone was used
to use chi-square test for classified data, and analysis of Kruskal
test was used for continuous variables, which were represented by
median (Yoshida et al., 2020).

1https://toil.xenahubs.net
2https://portal.gdc.cancer.gov/
3https://ocg.cancer.gov/programs/target
4https://gtexportal.org/home/
5https://ocg.cancer.gov/programs/target/projects/acute-myeloid-leukemia
6https://www.nature.com/articles/nrg3813#supplementary-information
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Identification of Differentially Expressed
mRNA in Acute Myeloid Leukemia
Differential expression analysis was performed between 337
whole blood RNA-seq data of GTEx and 173 AML RNA-seq data
of samples of TCGA using the R package edgeR (Robinson et al.,
2010), and the screening criteria were |log2 (fold change)| ≥ 1.5
and FDR <0.05. The final results were visualized by using ggplot
to plot the volcano for the differences between RBP-encoding
genes and remaining genes (Wickham, 2016).

Construction of the Prognostic
RNA-Binding Protein-Encoding Gene
Signature
Univariate Cox regression analysis and Least absolute shrinkage
and selection operator (LASSO)-Cox regression analysis were
performed to identify the prognosis-related RBP-encoding genes
and construct the prognostic gene signature. We used the TCGA
data set as the training cohort and the TARGET data set as the
validation cohort.

Least absolute shrinkage and selection operator is a popular
method that avoids overfitting by incorporating the best
performance parameters to produce a simpler and more easily
interpreted model, which is widely used in Cox proportional
hazard regression model for high-dimensional data survival
analysis (Simon et al., 2011). The R package survival was used
for Univariate Cox regression analysis, and the RBP-encoding
genes with differential expression of p < 0.01 were screened
and incorporated into the LASSO regression model (Therneau
and Grambsch, 2000). The LASSO regression was analyzed with
R package glmnet, and the prognosis model of RBP-encoding
genes was generated (Friedman et al., 2010). In the LASSO
regression, the setting parameters are cross-verified, and the
partial likelihood deviation satisfies the minimum criterion.
The risk score was constructed based on the expression of
prognostic RBP-encoding genes. The risk score for each sample
was calculated as the following formula:

Risk score =
∑

i
(Coef i × Expi)

Expi is the relative expression of the gene in the patient
signature, and Coefi was the LASSO coefficient of the gene.
The median risk score in the training cohort was used as the
cutoff value for the AML cohort dichotomy. In both the training
and validation sets, patients were divided into high- and low-
risk groups based upon resultant risk score values, respectively.
Kaplan–Meier (KM) survival curve and time-dependent ROC
curve estimates were then performed for each cohort to assess
the predictive power of the prognostic model of RBPs.

Model Construction and Validation
To determine whether genes can be used independent
of clinical information as a prognostic indicator for
AML patients, univariate and multivariate Cox regression
analyses were performed.

Univariate Cox screening index was used, which included
the clinical characteristics common to TCGA cohort and the

TARGET cohort, as well as the high- and low-risk index of base
12 gene construction, to include the index with p < 0.05 into
the multivariate Cox regression model. Then stepwise regression
was employed to further select the best model. Forest plots
provided a visualization of the hazard ratio (HR) and 95%
confidence intervals.

The nomogram is a kind of visual regression model, which
sets the scoring standard according to the regression coefficient
of independent variables, through which we can calculate and
predict the patient outcome by comparing the situation of the
patient (Iasonos et al., 2008). In our study, a combined model of
all independent prognostic characteristics screened by regression
analysis was used to establish a nomogram to assess median
survival in AML patients. The calibration diagram and C index
are used to evaluate the predicted results of the regression model.
The decision curve analysis (DCA) quantifies the net benefit
under different threshold probabilities to determine the clinical
practicability of nomograms and to find the model that predicts
the maximum net benefit, so it is widely used (Vickers and Elkin,
2006). The C index and DCA are used to compare the prediction
accuracy between individual components and composite models.

Protein–Protein Interaction, Gene
Ontology, and Kyoto Encyclopedia of
Genes and Genomes Analyses Were
Used to Further Verify the Results
After differential analysis, differentially expressed RBP-encoding
genes were extracted for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses to
determine whether they were enriched in RBP-related pathways.
We constructed a protein–protein interaction (PPI) network for
the different RBP-encoding genes, identified the core module,
and judged the distribution of genes screened by LASSO in
the module. In the GO analysis and KEGG pathway analysis,
respectively, enrichGO function and enrichKEGG function in
the R package clusterProfiler are used (Yu et al., 2012). Finally,
the bubble chart showing both was used (Yu et al., 2012).
Both p-values and q-values <0.05 were considered statistically
significant. We input the differentially expressed RBP-encoding
genes into the STRING database7 to obtain the protein–
protein interaction network, and the results were visualized
using Cytoscape 3.7.2 software (Franceschini et al., 2012). The
molecular complex detection (MCODE) plug-in was used to
identify the core module, and the distribution of the 12-RBP
signature in the core module was detected, and then the detected
module was displayed.

Gene Set Enrichment Analyses
Gene set enrichment analysis (GSEA) is used to determine
whether a defined set of genes has statistically significant
and consistent differences between two biological states
(Subramanian et al., 2005). Using the R package clusterProfiler
(Yu et al., 2012), the potential biological pathways between high-
and low-risk groups were recognized. The enriched pathways

7http://www.string-db.org/
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in each phenotype were sequenced using nominal p-values and
normalized enrichment scores (NES), and we selected a subset of
these pathways for display.

RESULTS

Patient Characteristics
As shown in Table 1, a total of 151 TCGA cohort samples
and 228 TARGET cohort samples were divided into high- or
low-risk groups by 12 prognostic RBP-encoding genes, and the
data distribution of different clinical characteristics and statistical
tests was calculated. In the TCGA cohort, age, BM blasts,
and cytogenetic risk stratification were considered statistically
significant, while only cytogenetic risk stratification was observed
in the TARGET cohort (Table 1).

Differentially Expressed RNA-Binding
Protein-Encoding Genes Between Acute
Myeloid Leukemia and Normal Tissue
A total of 6,278 genes with significant differences in expression
were identified between TCGA—AML and GTEx—blood
samples, which were tested by quasi-likelihood F-tests and
generalized linear models (glms) in edgeR. A total of 322
differential RBP-encoding genes met the criteria, of which 221
were upregulated and 101 were downregulated (Supplementary
Table 1). Figure 1A shows a volcanic map showing this
differential distribution.

Construction and Validation of
Prognostic RNA-Binding Protein
Signature Model
First, a total of 33 RBP-encoding genes with significant
prognostic correlation were screened for TCGA (training cohort)
by univariate Cox regression analysis (Supplementary Table 2).
LASSO regression analysis was then performed to further
screen genes to avoid overfitting and generate a simpler, more
easily interpreted model (Figures 1B,C). Finally, 12 prognostic
RBP-encoding genes were selected, including LARP1B, TRNT1,
SMN2, MRPL28, TRIM21, RPS19BP1, XPO6, TSR2, ISG20,
HELZ2, EXOSC4, and EIF2AK4. In the training set (TCGA)
and the validation set (TARGET), both differential expression
analyses yield basically the same results of the 12 gene expression
trends between AML and normal samples (Supplementary
Figure 1). The risk score = −0.01322 × expression of LAR
P1B−0.113572× expression of TRNT1−0.16828× expression of
SMN2+0.01175 × expression of MRPL28+0.02097 × expression
of TRIM21+0.06365 × expression of RPS19BP1+0.08799 ×
expression of XPO6+0.09969 × expression of TSR2+0.10
714 × expression of ISG20+0.15339 × expression of
HELZ2+0.18212×expression of EXOSC4+0.29918×expression
of EIF2AK4. The truncated value of the risk score of the patient
was divided into high-risk group and low-risk group according to
the median value of TCGA (training cohort) risk score of−0.085.

In the high- and low-risk groups with truncated boundaries,
the survival analysis showed significant differences in both
the training and validation cohort data sets (Figures 2A,B).

TABLE 1 | Correlation of clinicopathologic characteristics and the 12-gene signature in acute myeloid leukemia (AML).

Training cohort (TCGA) Validation cohort (TARGET)

Characteristics Total patients High risk Low risk p-value Total patients High risk Low risk p-value

Gender 0.679 0.598

Female 70 33 37 116 55 61

Male 81 42 39 112 58 54

Age (median) 57 63.0 51.0 <0.001 10 10.0 9.0 0.359

FAB Category 0.002 0.288

M0 13 5 8 8 6 2

M1 35 20 15 27 12 15

M2 35 17 18 52 20 32

M3 13 2 11 58 26 32

M4 33 12 21 40 25 15

M5 17 14 3 4 2 2

M6 2 2 0 10 6 4

M7 3 3 0 15 7 8

WBC (median) 15.5 12.0 20.0 0.682 36.8 31.1 49.5 0.086

BM Blasts (median) 32 17.0 39.5 0.021 73.2 77.5 72.0 0.546

PB Blasts (median) 71 67.0 72.0 0.254 60 56.5 62.0 0.390

Cytogenetic risk stratification 0.001 <0.001

Favorable 29 6 23 78 24 54

Intermediate 89 47 42 118 69 49

Adverse 31 21 10 22 14 8

WBC, white blood cell count; BM, bone marrow; PB, peripheral blood; TCGA, the cancer genome atlas; TARGET, therapeutically applicable research to generate
effective treatments. The bold value means P < 0.05 with statistically significant.
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FIGURE 1 | Volcano map and least absolute shrinkage and selection operator (LASSO) regression analysis of The Cancer Genome Atlas (TCGA) cohort. The volcano
map shows the differential expression of genes. The up and down arrows represent upregulated and downregulated genes, respectively; red and pink represent
genes with and without differential expression of RNA-binding protein (RBP)-encoding genes, respectively (A). The selection of LASSO regression truncation value
after cross-validation, and the blue dotted line represents the lambda corresponding to the lowest error mean. The red dotted line represents the maximum lambda
corresponding to the error mean within one standard deviation of the minimum (B). Prognosis-related gene selection in the LASSO–Cox regression (C).

A heat map shows the prognosis of the 12-RBP signature in
the distribution of the high- and low-risk groups; one of the
first module contains three protect genes (regression coefficient
is less than zero), and their expression in the low-risk group
is higher than in the high risk group. The second module
contains nine risk genes (regression coefficient is greater than
zero); their expression in the low-risk group is lower than
in the high-risk group (Figures 2C,D). The areas under the
ROC curve of 1-, 3-, and 5-year overall survival (OS) rates for
patient risk score in the training cohort were 0.724, 0.683, and
0.650 (Figure 2E), and 0.724, 0.683, and 0.650, respectively, in
the validation cohort (Figure 2F). Taken together, these results

suggest that the risk score based on 12-RBP signature is a good
predictor of patient prognosis.

The Combination Model Has Good
Predictive Effect
Univariate Cox was used to analyze the risk indicators
constructed based on the 12-RBP signature and the clinical
features including gender, age, FAB category, WBC, BM blasts,
PB blasts, and cytogenetic risk stratification. It was found that
age, cytogenetic risk stratification, and risk indicators were of
significant prognostic value. After that, the stepwise regression

Frontiers in Genetics | www.frontiersin.org 5 September 2021 | Volume 12 | Article 715840

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-715840 September 20, 2021 Time: 13:0 # 6

Luo et al. Prognostic Model Construction of AML

FIGURE 2 | Correlation analysis based on the 12-RBP signature. Survival analysis of high and low risks separated by the median value of the TCGA cohort risk
score in the TCGA (A) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohort (B). The heatmap shows the expression of the
12-RBP signature at high and low risks. The green module indicates protective genes with regression coefficient less than zero, and the purple module indicates risk
genes with regression coefficient greater than zero (C,D). ROC curve of risk score at 1, 3, and 5 years (E,F).

optimization model was further used, and cytogenetic risk
stratification and risk indicators were included in the multivariate
Cox regression. It was found that these two factors had a great
influence on the prognosis of patients in the two data sets, and
they were both independent prognostic factors of OS (Figure 3).

A nomogram was constructed using the two previously
screened indicators, and the median survival time was used to
demonstrate the prognosis of patients (Figure 4A). In order
to verify the accuracy of the model, we calculated the C
index and drew the calibration curve. In the training cohort
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FIGURE 3 | Forest plot of the univariate and multivariate Cox regression analysis in acute myeloid leukemia (AML). Green represents univariate Cox, and red
represents multivariate Cox. TCGA cohort (A); TARGET cohort (B).

(TCGA), the C index of the cytogenetic model, the prognostic
model, and the combined model were 0.590, 0.675, and 0.699
(Table 2), respectively. According to the results of the C
index, the prognostic model constructed by us has a better
prediction effect than the cytogenetic model currently used
in clinical application to judge the prognosis of patients, and
the prediction accuracy of the combined model is significantly
higher than that of the single index model. In addition, the
calibration diagram also shows that the nomogram performs well
(Figure 4B). According to DCA, both the prognostic model and
the combined model had a higher clinical net benefit rate than
the cytogenetic model at 1, 2, and 3 years (Figures 4C–E). In
Supplementary Figure 2, the prognostic model has a good degree
of recognition within clinically relevant subgroups by survival
analysis. Therefore, the model we analyzed is effective for the
heterogeneous disease of AML.

To sum up, the prognostic model constructed by us may
improve the prediction accuracy of traditional cytogenetic model

and bring some net clinical benefits, which is helpful for
clinical management.

The Selection and Subsequent Analysis
of RNA-Binding Protein-Encoding Gene
Data Were Verified to Be Accurate
In differential expression analysis, 322 RBP-encoding genes
were changed between AML and normal samples. According to
the results of GO and KEGG analysis, it was found that the
differentially expressed RBP-encoding genes were enriched in
the processes of synthesis, regulation, transport, and translation
of RNA, indicating the reliability of the source of these RBP-
encoding genes (Figure 5 and Supplementary Table 3). In order
to study the interaction between the differentially expressed RBP-
encoding genes, we created a PPI network, which demonstrated
a total of 3,038 edges and 322 nodes (Figure 6). The MODE
plugin was used to identify a total of 11 core modules
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FIGURE 4 | Building and validation of the nomogram predicting overall survival for AML patients. Nomogram predicting median survival time for patients with AML
(A). The calibration curve for predicting 1–, 2– and 3–year overall survival (OS) for patients with AML (B). The decision curve analysis (DCA) curve shows the 1–, 2–,
and 3–year net benefit rate of the three models. Red, blue, and green, respectively, represent the cytogenetic model, prognostic model, and combined model (C–E).

TABLE 2 | Comparison of the cytogenetic model, prognostic model, and combined model.

Training cohort (TCGA) Validation cohort (TARGET)

Models C-index 95% CI p-value C-index 95% CI p-value

Cytogenetic model 0.59 (0.531–0.65) – 0.62 (0.575–0.665) –

Prognostic model 0.675 (0.629–0.721) <0.001 0.576 (0.53–0.622) <0.001

Combined model 0.699 (0.646–0.751) <0.001 0.646 (0.595–0.696) <0.001

(Supplementary Table 4). We searched the distribution of 12-
RBP signatures in the core modules and found that five of them
were targeted in the five core modules of 1, 3, 5, 8, and 11. These
five core modules are associated with the processes and biogenesis
of ribosome, spliceosome, RNA transport, and degradation
(Supplementary Figure 3 and Supplementary Table 5). In a
word, evidence from pathway enrichment analysis indicating that
the prognostic genes we screened had a high degree of reliability.

Gene Set Enrichment Analyses
Gene set enrichment analyses analyzed 120 significantly enriched
KEGG pathways between the high- and low-risk groups
(Supplementary Table 6). The most enriched pathways are
involved in the development of the disease, and they also
accumulate into pathways associated with leukemia. The majority
of the ABC transporters, hematopoietic cell lineage, NF-kappa
B signaling pathway, chemokine signaling pathway, Toll-like

receptor signaling pathway, VEGF signaling pathway, and JAK-
STAT signaling pathway were enriched in the high-risk group
(Figure 7). These biological processes are highly associated with
promoting cell survival and inhibiting cell death, which play an
important role in AML.

DISCUSSION

RNA-binding proteins are an important class of evolutionarily
conserved proteins involved in regulating all aspects of RNA
metabolism and functions (Nishida et al., 2017; Masuda and
Kuwano, 2019). Disorders of these genes in vitro have been
shown to cause a variety of diseases, including AML. Due to the
important characteristics of RBPs, the use of RBPs to evaluate the
prognosis of some cancers has achieved good results (Wang K.
et al., 2019; Li et al., 2020). AML has a high recurrence rate due to
the avoidance of drugs by leukemic stem cells (LSCs). PRT mode
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FIGURE 5 | Gene Ontology (GO) enrichment analysis (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (B) of differentially expressed
RBP-encoding genes.

FIGURE 6 | Protein–protein interaction (PPI) network and modules analysis. In the PPI network of differential genes, the matching of 12-RBP signature and core
module in LASSO results was demonstrated, among which five core modules contained prognostic gene, and the gray gene represented the matching gene.

selection is the main means to prevent recurrence, but it depends
on reliable prognostic markers to determine the prognosis of
patients. Therefore, our systematic estimation of RBP-encoding

gene changes in AML may be an important way to improve the
prognosis assessment of patients with AML and may shed light
on the underlying biological mechanisms.
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FIGURE 7 | The significantly enriched KEGG pathways by Gene Set Enrichment Analyses (GSEA).

In this study, a new and efficient prognostic feature based
on the 12-RBP signature was determined based on the TCGA
dataset (the training cohort), and its effectiveness was also verified
in the TARGET dataset (the independent external validation
sets). The group defined as high risk had poor prognosis, which
was consistent in validation cohorts. Moreover, this prognostic
feature is independent of other clinical factors, showing a stably
high prognostic value for AML. In addition, it was considered
that both the cytogenetic risk stratification and the risk indicator
were significant prognostic values in AML by Cox regression.
Combining the prognostic feature with the cytogenetic risk
stratification, a combined model was constructed, which has
higher prediction accuracy and clinical net benefit than the
single model and provides a potential theoretical basis for
clinical application.

In our study, 12-RBP signatures were identified and
constructed the prognostic model. The expressions of LARP1B,
TRNT1, and SMN2 were correlated with favorable outcomes. On
the contrary, the expressions of MRPL28, TRIM21, RPS19BP1,
TSR2, XPO6, ISG20, HELZ2, EXOSC4, and EIF2AK4 were
involved in adverse outcomes. According to previous studies,
most of the 12 RBP-encoding genes in our model are strongly
cancer and other diseases. Some genes can be used as biomarkers
for prognosis and diagnosis of diseases. LARP1B is a member
of the evolutionary conserved family of La-related proteins
(LARP) involved in RNA transcription, translation, and B-cell
differentiation, which has been shown to drive tumorigenesis
(Stavraka and Blagden, 2015; Lagou et al., 2018). TRNT1, as

an enzyme necessary for the synthesis of the 3′-terminal CCA
sequence in tRNA molecules, can lead to developmental delay,
sideroblastic anemia, periodic fever, retinitis pigmentosa, B-cell
immunodeficiency, and other diseases when it is abnormal
(Frans et al., 2017; Slade et al., 2020). Spinal muscular atrophy
(SMA) results from the absence or mutation of SMN1, plus
the inability of SMN2 to compensate for the loss of SMN1
due to exon seven jumping (Lorson et al., 1999). MRPL28
encodes mitochondrial ribosomal protein, and its low expression
can reduce the mitochondrial activity of pancreatic tumor cells
and increase glycolysis (Chen et al., 2009). TRIM21, as a E3
ubiquitin ligase with multiple domains, regulates ubiquitination
and proteasomal degradation and is responsible for the control
of cell protein expression. It has been shown to regulate the cell
cycle, cell proliferation and differentiation of cancer, and is a
prognostic marker for hepatocellular carcinoma, breast cancer,
pancreatic cancer, and lymphoma (Brauner et al., 2015; Ding
et al., 2015; Nguyen and Irby, 2017; Zhou et al., 2018). As the
first reported direct regulator of SIRT1 that modulates p53-
mediated growth regulation, RPS19BP1 (also known as AROS)
promotes survival in a panel of human cancer cell lines (Kim
et al., 2007; Knight et al., 2013). TSR2 can induce apoptosis
of laryngeal cancer cells by inhibiting NF-κB signaling pathway
(He et al., 2018). In addition, TSR2 variation is associated
with Diamond–Blackfan anemia (DBA) (Clinton and Gazda,
2009). As a nucleocytoplasmic transporter, XPO6 expression is
closely related to poor prognosis of patients and is a potential
prognostic biomarker for prostate cancer (Hao et al., 2016).
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ISG20 is involved in small nucleolar RNA maturation and
ribosomal biogenesis, and controls RNA stability (Espert et al.,
2006). ISG20 expression has been shown to be elevated in the
course of infection and a potential biomarker for several types
of cancer (Rajkumar et al., 2011; Van Tong et al., 2018; Xu et al.,
2020). Katano-Toki et al. (2013) found that HELZ2 synergistic
with Thrap3 enhances PPAR enzyme-mediated gene activation
and plays an important role in the terminal differentiation
of adipocytes. EXOSC4, one of the noncatalytic members
of RNA exosome complex, is involved in RNA degradation
and has been reported to promote colorectal cancer (Pan
et al., 2018). EIF2AK4 induces subunit phosphorylation of the
translation initiation factor eIF2, which plays an important
role in oncogenesis (Koromilas, 2015). For example, EIF2AK4
participates in the EIF2AK4–EIF2alpha–ATF4 pathway, which is
crucial for maintaining metabolic homeostasis in tumor cells and
a potential target for tumor therapy (Ye et al., 2010; Singleton
and Harris, 2012). Although the role of the 12 RBP-encoding
gene expression in the pathogenesis of AML remains unclear,
these genes mediate important biological processes, and their
abnormalities can lead to disease. What is more, most of these
genes are instructive for the prognosis in different diseases,
indicating the important role of these genes.

CONCLUSION

The 12-RBP signature prognostic model is an optimized
biomarker for predicting the prognosis of AML patients and

can be used to select postremission treatment (PRT) for
AML patients, thereby reducing recurrence rates. Nomogram,
a prognostic model, predicts median survival time. This study
expands our current understanding of the role of RBPs in the
occurrence of AML and may lay the foundation for future
treatment. However, the current study also has some limitations,
and we need to conduct experimental verification of the screened
important genes to further verify our results.
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