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Genomic prediction has been widely used in multiple areas and various genomic

prediction methods have been developed. The majority of these methods, however,

focus on statistical properties and ignore the abundant useful biological information

like genome annotation or previously discovered causal variants. Therefore, to improve

prediction performance, several methods have been developed to incorporate biological

information into genomic prediction, mostly in single-trait analysis. A commonly used

method to incorporate biological information is allocating molecular markers into different

classes based on the biological information and assigning separate priors to molecular

markers in different classes. It has been shown that such methods can achieve higher

prediction accuracy than conventional methods in some circumstances. However, these

methods mainly focus on single-trait analysis, and available priors of these methods are

limited. Thus, in both single-trait and multiple-trait analysis, we propose the multi-class

Bayesian Alphabet methods, in which multiple Bayesian Alphabet priors, including

RR-BLUP, BayesA, BayesB, BayesC5, and Bayesian LASSO, can be used for markers

allocated to different classes. The superior performance of the multi-class Bayesian

Alphabet in genomic prediction is demonstrated using both real and simulated data.

The software tool JWAS offers open-source routines to perform these analyses.

Keywords: multiple-trait, multi-class, genomic prediction, Bayesian Alphabet, biological information

1. INTRODUCTION

Genomic prediction, proposed by Meuwissen et al. (2001), utilizes genomic information, such
as single-nucleotide polymorphisms (SNPs), to estimate genotypic values or breeding values of
complex traits. In the last decades, with the fast development of genotyping and sequencing
technology, high-density genotype data has become much easier to access (Harris et al., 2011;
Kranis et al., 2013). Accompanied by the high-density data, genomic prediction has been widely
used in many areas, including animal breeding (e.g., Hayes et al., 2009a; Erbe et al., 2012), plant
breeding (e.g., Wang et al., 2018; Moeinizade et al., 2020), and human disease risk prediction (e.g.,
Abraham et al., 2014, 2016).

A large number of genomic prediction methods with different statistical assumptions have
been developed. Among these methods, genomic best linear unbiased prediction (GBLUP) (Habier
et al., 2007; VanRaden, 2008; Hayes et al., 2009b), where a genomic relationship matrix is used to
accommodate the covariances among breeding values, is widely used. GBLUP, however, assumes
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a priori that all marker effects share the same normal distribution,
which may not be biologically meaningful, especially for
traits controlled by a few causal variants. Furthermore, a
collection of Bayesian Alphabet methods (Meuwissen et al., 2001;
Fernando and Garrick, 2013; Cheng et al., 2018b; Gianola and
Fernando, 2020) have been developed to incorporate different
priors on marker effects, e.g., BayesA and BayesB (Meuwissen
et al., 2001). Notice that GBLUP is equivalent to a Bayesian
Alphabet model with a normal prior for the marker effects
(Fernando, 1998; Habier et al., 2007; Strandén and Garrick,
2009). These methods, however, are still developed mainly based
on statistical consideration and ignore the abundant biological
information. To bridge the gap between the statistical model
for genomic prediction and underlying biological architectures,
researchers have proposed several methods to incorporate
biological information into genomic prediction and have shown
that incorporating biological information has the potential to
improve the prediction accuracy in some cases (Zhang et al.,
2014; Gao et al., 2015; Edwards et al., 2016).

One purpose of incorporating biological information is to
relax the assumption that each locus is equally likely to affect
the trait, i.e., all loci share the same prior distribution. This
assumption is less biologically meaningful, e.g., some loci may
be known to lead non-synonymous coding changes or have
functional effects on candidate genes (MacLeod et al., 2016). One
strategy to achieve this purpose is weighting markers based on
the biological information and then integrating the weighting
information into the model construction (Zhang et al., 2014;
Gao et al., 2015). Zhang et al. (2014) incorporated the QTL list
obtained in previous genome-wide association studies (GWAS)
into GBLUP, i.e., when constructing genomic relationshipmatrix,
markers were weighted based on the frequency of corresponding
genomic regions being reported in the QTL list (Zhang et al.,
2014). Gao et al. (2015) incorporated previous GWAS results by
using locus-specific inclusion probability based on the p-values
from GWAS.

In addition to weighting markers, another strategy to
incorporate biological information is marker allocation. It has
been observed that molecular markers from different genomic
regions have different prediction abilities (Erbe et al., 2012;
Morota et al., 2014; Do et al., 2015; Abdollahi-Arpanahi et al.,
2016) and the marker allocation is beneficial if a particular
class is enriched for QTL. To better fit these genomic regions
with different genetic architectures, recent studies have tried to
allocate genome-wide molecular markers into multiple classes
based on the prior biological information and conduct genomic
prediction based on these marker classes jointly. Speed and
Balding (2014) proposed such a method under the GBLUP
framework called MultiBLUP, which divides breeding values
into multiple classes to allow different effect-size variances. A
Bayesian regression method called BayesRC (MacLeod et al.,
2016) was also proposed to allocate SNPs into multiple classes,
where a BayesR prior was assigned to each class. It has been
shown that allocating markers into different classes can improve
predictive accuracy in some circumstances (Speed and Balding,
2014; MacLeod et al., 2016). The idea to allocate markers into
multiple classes has also been used in a haplotype-based genomic

prediction model (Xu et al., 2020), in which effects of haplotype
blocks are estimated using both numerical dosage and categorical
coding strategies (Martini et al., 2017) for each genomic class.

To our knowledge, most methods that allocate SNPs into
different classes, focus on single-trait analysis and available priors
of these methods are limited. Thus, the primary goal of this
research is to present a more general Bayesian Alphabet method
that can handle both single-trait andmultiple-trait analysis, while
is able to assign multiple Bayesian Alphabet priors, including
RR-BLUP, BayesA, BayesB, BayesC5, and Bayesian LASSO, to
markers in different SNP classes. The new genomic prediction
method we implemented is called multi-class Bayesian Alphabet,
where the term “Bayesian Alphabet” denotes a collection of
Bayesian Alphabet priors adopted for marker effects. Our multi-
class Bayesian Alphabet works for both single-trait and multiple-
trait analysis. The performance of the multi-class Bayesian
Alphabet is studied using real and simulated data.

2. MATERIALS AND METHODS

2.1. Multi-Class Bayesian Alphabet Models
For simplicity, the general mean is assumed as the only fixed
effect, thus the general form of the multi-class Bayesian Alphabet
model for ith genotyped observation can be written as:

yi = µ +

g
∑

l=1

∑

fl∈Cl

miflαfl + ei (1)

where yi is a vector of phenotypic values of t traits for observation
i; µ is a vector of overall means for t traits; mifl is the genotype
covariate at locus fl (coded as 0,1,2) in SNP class Cl for
observation i; g is the number of SNP classes; αfl is a vector of
the corresponding allele substitution effects (marker effects) of t
traits for locus fl; and ei is a vector of residuals for observation
i. Note that when the number of traits t = 1, the general form
above simplifies to the single-trait model, and all vectors of effects
in Equation 1 become scalars. The fixed effect µ is assigned a flat
prior. The residuals, ei, are a priori assumed to be independently
and identically distributed multivariate normal vectors with null
mean and covariance matrix R, which is assigned an inverse
Wishart prior distribution,W−1(Se, νe), with degrees of freedom
νe = 4 and scale matrix Se such that the prior mean of R
equals half of the phenotypic variance. Note that when number
of traits t = 1, the prior for R follows a scaled inverted
chi-square distribution.

To incorporate known biological information, marker effects
of SNPs in the same class are assumed to have identical Bayesian
Alphabet prior. Different from conventional Bayesian Alphabet
methods, our multi-class Bayesian Alphabet methods allow
assigning different Bayesian Alphabet priors to marker effect
αfl in different SNP classes. These priors are discussed in the
following section 2.2.
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2.2. Bayesian Prior for Marker Effects
Multiple priors are implemented in our multi-class Bayesian
Alphabet models, including BayesA, BayesB, BayesC5, RR-
BLUP, and Bayesian LASSO. In multiple-trait analysis, with
BayesB and BayesC5 priors, each locus is allowed to affect any
combination of traits (Cheng et al., 2018b). In multiple-trait
BayesB and BayesC5, the vector of marker effects at locus fl
can be written as αfl = Dflβ fl

, where Dfl is a diagonal matrix
whose diagonal elements are δfl = (δfl1, δfl2..., δflt), where δflt
is an indicator variable indicating whether the marker effect of
locus fl for trait t is zero or not. We use numeric labels “1,”
“2,”· · · , “z” to represent all possible combinations for δfl , in which
case the prior distribution for δfl is: p(δfl = “i”) = 51I(δfl = “1”)
+ 52I(δfl = “2”) +...+ 5lI(δfl = “z”) where 5i is the prior
probability that the vector δfl corresponds to the vector labeled
“i” and

∑

5i = 1. A uniform prior distribution is assigned
to 5 = (51,52, ...5l) (Cheng et al., 2018b). In multiple-trait
BayesB, the prior for β fl

is a multivariate normal distribution
with null mean and locus-specific covariance matrix Gfl , which

is assigned an inverse Wishart prior, W−1
t (Sβ , νβ ). In multiple-

trait BayesC5, instead of locus-specific covariance matrix Gfl ,
β fl

is assumed to follow a multivariate normal prior with null
mean and common covariance matrix G, which is assumed to
have an inverse Wishart prior distribution, W−1(Sβ , νβ ), with
degrees of freedom νβ = 4 and scale matrix Sβ such that the
prior mean of genetic variance equals half of the phenotypic
variance. In single-trait analysis, Dfl , Gfl , and marker effect β fl
become scalars. The prior of βfl becomes a univariate normal
distribution; the prior of Gfl becomes an inverted chi-square
distribution, and Dfl is an indicator variable indicating whether
the maker effect is zero or not. In both single-trait and multiple-
trait analysis, BayesA and RR-BLUP are just special cases of
BayesB and BayesC5 respectively, where all markers are assumed
to have effects on all traits (Fernando and Garrick, 2013). The
Bayesian LASSO prior is also included in the multi-class Bayesian
Alphabet. In Bayesian LASSO, the multivariate Laplace prior
distribution with a null mean is assigned to marker effect vector
αfl (Gianola and Fernando, 2020) in multiple-trait analysis.
In single-trait Bayesian LASSO, the prior for αfl is a double
exponential distribution (Tibshirani, 1996; Gianola, 2013).

2.3. Data Analysis
2.3.1. Real Data

Two public datasets are used to evaluate the performance of
multi-class Bayesian Alphabet models. The first dataset, which
is used to evaluate the single-trait analysis, is composed of
genotypic and phenotypic data from Michigan State University
Pig Resource Population (MSUPRP) raised at the Michigan State
University Swine Teaching and Research Farm, East Lansing,MI
(Edwards et al., 2008). After quality control (Duarte et al., 2014),
928 individuals and 42,246 SNPs remain. The trait 13-week tenth
rib backfat (mm) is considered in this analysis. The original data is
available at https://msu.edu/~steibelj/JP_files/GBLUP.html. The
genome annotation information for the pig dataset used in this
paper is obtained from the Ensembl (Rainer et al., 2019) database
using the GALLO package (Fonseca et al., 2020). Five annotation

regions are identified in the pig dataset, and will be used in
our analysis. The number of SNPs in the protein coding, RNA,
processed pseudogene, intergenic, and pseudogene regions are
15084, 1840, 107, 24838, and 377, respectively.

The second dataset, which is used to evaluate themultiple-trait
analysis, is from the Rice Diversity Panel with 370 Oryza sativa
individual accessions (Zhao et al., 2011). Three traits plant height
(PH), flowering time in Arkansas (FTA), and panicle number per
plant (PN) are considered. After removing the genotypes missing
for these three traits or withminor allele frequency< 0.05, 33,519
SNPs are included in our analysis. The phenotypic and genotypic
data are publicly available at http://www.ricediversity.org/. The
genome annotation information for the rice dataset is obtained
from Ensembl (Rainer et al., 2019) database using the biomart
package (Durinck et al., 2009). Four annotation regions are
identified in the rice dataset, and will be used in our analysis. The
number of SNPs in protein coding, RNA, non-translating CDS,
and intergenic regions are 14129, 3, 176, and 19211, respectively.

We identified total 6 genomic annotations: protein coding,
processed pseudogene, pseudogene, non-coding RNA, non-
translating CDS, and intergenic. According to Howe et al.
(2020), the “protein coding” class is comprised of the SNPs
within the gene that contains an open reading frame (ORF).
In other words, these SNPs may be processed into messenger
RNAs (mRNAs) which, after their export to the cytosol, are
translated into proteins (Harrow et al., 2009). The “pseudogene”
class contains SNPs within the genes that have coding-sequence
deficiencies like frameshifts and premature stop codons but
resemble protein-coding genes (Howe et al., 2020; Tutar, 2012).
The “processed pseudogene” class includes the SNPs in the
pseudogene that lack introns and is thought to arise from reverse
transcription of messenger RNA followed by reinsertion of DNA
into the genome (Howe et al., 2020). The “non-coding RNA” class
contains SNPs within RNA that are not translated into a protein
(Howe et al., 2020). The “non-translating CDS” class represents
SNPs in coding sequence regions that are not translated to a
protein (Howe et al., 2020). All other SNPs were allocated to the
class “intergenic”.

2.3.2. Simulated Data

To comprehensively compare multi-class Bayesian Alphabet
with conventional Bayesian Alphabet for genomic prediction,
we conducted simulations based on the real genotypes from
Michigan State University Pig Resource Population (MSUPRP)
described above (Edwards et al., 2008). The simulation strategies
in MacLeod et al. (2016) were applied. 500 QTLs were randomly
selected from SNP class “protein coding”, i.e., SNPs with
the annotation “protein coding”. In addition, 20 QTLs were
randomly selected across the genome. The same QTL positions
were used in our simulation. Two correlated traits of heritabilities
equal to 0.5 and 0.9 were simulated, where pleiotropic QTL effects
were sampled from a multivariate normal distribution with null

mean and covariance matrix G =

(

1 0.5
0.5 1

)

. The trait of

heritability 0.5 was used in our single-trait analysis, and both
traits were used in our multiple-trait analysis. There were total
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TABLE 1 | Mean prediction accuracy comparison between conventional and multi-class Bayesian Alphabet on single-trait simulated data.

Method RR-BLUP BayesA BayesB BayesCπ Bayesian LASSO Ensemble

Conventional 0.542* 0.542 0.547* 0.547* 0.541* 0.545*

Multi-class 0.563* 0.542 0.565* 0.565* 0.563* 0.563*

The comparison of mean prediction accuracy across 150 single-trait validation datasets (30 simulated data × five-fold cross validation) between multi-class Bayesian Alphabet using

genome annotation information and conventional Bayesian Alphabet. The paired t-test (p < 0.1) was used to declare the significant difference. *Denotes that significant differences were

found between multi-class Bayesian Alphabet and conventional Bayesian Alphabet with RR-BLUP, BayesB, BayesCπ Bayesian LASSO, and ensemble approach, respectively (p < 0.1).

TABLE 2 | Mean prediction accuracy comparison between conventional and multi-class Bayesian Alphabet on multiple-trait simulated data.

Method RR-BLUP BayesA BayesB BayesC5 Bayesian LASSO Ensemble

Conventional 0.552* 0.554 0.565* 0.564* 0.552* 0.561*

Multi-class 0.572* 0.553 0.578* 0.577* 0.572* 0.575*

The comparison of mean prediction accuracy across 150 multiple-trait validation datasets (30 simulated data × five-fold cross validation) between multi-class Bayesian Alphabet using

genome annotation information and conventional Bayesian Alphabet. The paired t-test (p < 0.1) was used to declare the significant difference. *Denotes that significant differences were

found between multi-class Baysian Alphabet and conventional Bayesian Alphabet with RR-BLUP, BayesB, BayesCπ , Baysian LASSO, and ensemble approach, respectively (p < 0.1).

FIGURE 1 | The pairwise predication accuracy comparison between conventional and multi-class Bayesian Alphabet on single-trait simulated data. The 30 simulated

datasets were distinguished by color; the x-axis represents the genomic prediction accuracy obtained from conventional Bayesian Alphabet methods; the y-axis

represents the genomic prediction accuracy obtained from multi-class Bayesian Alphabet methods; the diagonal line is used for reference such that a dot above the

line represents a validation with higher accuracy for multi-class Bayesian Alphabet. Significant differences were found between multi-class Bayesian Alphabet and

conventional Bayesian Alphabet with RR-BLUP, BayesB, BayesCπ Bayesian LASSO, and ensemble approach, respectively (p < 0.1).
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30 different datasets being simulated based on the simulation
processes described above.

2.3.3. Cross Validation

The dataset was randomly split into training and validation
datasets following an 8:2 ratio for each replicate. 50
replicates and 5 replicates were applied to the real and
simulated datasets, respectively. The prediction accuracy
was calculated as the mean Pearson correlation between

the estimated breeding values and phenotypic records
of observations in validation datasets. Conventional and
multi-class Bayesian Alphabet methods were compared using
RR-BLUP, BayesA, BayesB, BayesC5, and Bayesian LASSO
priors. In addition to the above five Bayesian methods, an
ensemble approach that uses average estimated breeding
values across five Bayesian methods, was used to integrate
multiple predictions into one summary prediction (Azodi et al.,
2019).

FIGURE 2 | The pairwise predication accuracy comparison between conventional Bayesian Alphabet and multi-class Bayesian Alphabet on multiple-trait simulated

data. The 30 simulated datasets were distinguished by color; the x-axis represents the genomic prediction accuracy obtained from conventional Bayesian Alphabet

method; the y-axis represents the genomic prediction accuracy obtained from multi-class Bayesian Alphabet method; the diagonal line is used for reference such that

a dot above the line represents a validation with higher accuracy for multi-class Bayesian Alphabet. Significant differences were found between multi-class Bayesian

Alphabet and conventional Bayesian Alphabet with RR-BLUP, BayesB, BayesCπ Bayesian LASSO, and ensemble approach, respectively (p < 0.1).

TABLE 3 | Mean prediction accuracy comparison between conventional and multi-class Bayesian Alphabet for real pig data (single-trait) and real rice data (multiple-trait).

Data Method RR-BLUP BayesA BayesB BayesC5 Bayesian LASSO Ensemble

Pig
Conventional 0.516 0.565 0.568 0.532 0.517 0.550

Multi-class 0.516 0.565 0.569 0.532 0.516 0.550

Rice
Conventional 0.378 0.353 0.372 0.384 0.378 0.377

Multi-class 0.374 0.357 0.363 0.375 0.373 0.373

The comparison of mean prediction accuracy on the trait 13-week tenth rib backfat (mm) from pig data and trait FTA of rice real data across 50 validation datasets between multi-class

Bayesian Alphabet using genome annotation information and conventional Bayesian Alphabet. The paired t-test (p < 0.1) was used to declare the significant difference. No significant

differences were found between multi-class and conventional Bayesian Alphabet methods for both real pig and rice data (p < 0.1).
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The molecular markers were allocated into multiple classes
using the genome annotation information. SNP classes were
defined using the genome annotation information, i.e., SNPs with
the same genome annotation were allocated in one class.

We have implemented these methods in JWAS (Cheng
et al., 2018a), an open-source package for single-trait and
multiple-trait genome-enabled prediction and analyses. The
software tool JWAS offers open-source routines to perform
these analyses. The documentation and examples of JWAS
can be found at https://github.com/reworkhow/JWAS.jl. MCMC
chains of length 100,000 with a burn-in of the first 50,000
iterations were used. The Gelman-Rubin test (Gelman and
Rubin, 1992) has been used to verify the convergence of the
MCMC chain.

3. RESULT

3.1. Simulated Data
Multi-class Bayesian Alphabet methods using genome
annotation information were performed for both single-
trait and multiple-trait prediction on the simulated data. In both
single-trait and multiple-trait analysis, 5-fold cross validation

was applied on 30 simulated datasets. The comparisons between
multi-class and conventional Bayesian Alphabet methods
are shown in Table 1 for single-trait analysis and Table 2 for
multiple-trait analysis. The pairwise comparisons across all
30 simulated datasets are also shown in Figure 1 for single-
trait analysis and Figure 2 for multiple-trait analysis. The 30
simulated datasets are distinguished by color. The paired t-test
with a significance level 0.1 is used to declare the significant
difference between prediction accuracies from multi-class and
conventional Bayesian Alphabet methods.

In the single-trait analysis, significant differences in prediction
accuracies were detected between multi-class and conventional
Bayesian Alphabet methods with RR-BLUP, BayesB, BayesCπ ,
Bayesian LASSO priors, and the ensemble approach (p < 0.1).
In detail, the mean prediction accuracies of multi-class Bayesian
Alphabet were higher than conventional Bayesian Alphabet
in 30 out of all 30 datasets with RR-BLUP, BayesB, BayesCπ ,
Bayesian LASSO priors, and ensemble approach. Multi-class
Bayesian Alphabet significantly outperforms conventional
Bayesian Alphabet in the ensemble approach due to the better
performance of multi-class Bayesian Alphabet using these
4 priors.

FIGURE 3 | The pairwise prediction accuracy comparisons between conventional Bayesian method and multi-class Bayesian Alphabet using genome annotation

classes for the trait 13-week tenth rib backfat (mm) from pig real data. The x-axis represents the genomic prediction accuracy obtained from conventional Bayesian

method; the y-axis represents the genomic prediction accuracy obtained from multi-class Bayesian Alphabet method; the diagonal line is used for reference such that

a dot above the line represents a validation with higher accuracy for multi-class Bayesian Alphabet. No significant differences were found (p < 0.1).
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In the multiple-trait analysis, no significant differences were
observed for the higher heritability trait, and results for the
lower heritability trait were presented. Overall, higher prediction
accuracies were usually observed for the same prior in multiple-
trait analysis compared to single-trait analysis. A significant
difference in prediction accuracies was detected between multi-
class and conventional Bayesian Alphabet methods with RR-
BLUP, BayesB, BayesC5, Bayesian LASSO prior (p < 0.1) as
well as the ensemble approach. Similar to single-trait simulation
result, the mean prediction accuracies of multi-class Bayesian
Alphabet were higher than conventional Bayesian Alphabet in
30 out of all 30 simulated datasets with RR-BLUP, BayesB,
BayesCπ Bayesian LASSO priors and the ensemble approach.
The simulated data result shows that the multi-class Bayesian
Alphabet has the potential to improve the prediction accuracy for
both single-trait and multiple-trait analysis.

3.2. Real Data
Multi-class Bayesian Alphabet methods were performed on the
pig data (Edwards et al., 2008) for single-trait analysis and the
rice data (Zhao et al., 2011) for multiple-trait analysis. In the
multiple-trait analysis, three traits PH, FTA and PN showed

similar patterns on the comparison between conventional and
multi-class Bayesian Alphabet methods, so only results of trait
FTA were presented for simplicity. In both single-trait and
multiple-trait analysis, 50-fold cross validation was applied.
The comparison between multi-class and conventional Bayesian
Alphabet methods are shown in Table 3 for single-trait analysis
and multiple-trait analysis. The pairwise comparisons across all
50 validation datasets are also shown in Figure 3 for single-trait
analysis, and Figure 4 formultiple-trait analysis. The paired t-test
with a significance level 0.1 was used to declare the significant
difference between prediction accuracies from multi-class and
conventional Bayesian Alphabet methods.

As shown in Table 3, in both real pig (single-trait) and rice
(multiple-trait) data analysis, the prediction accuracies of multi-
class Bayesian Alphabet using genome annotation information
were not significantly different from conventional Bayesian
Alphabet methods for all priors and ensemble approach.

We further studied the effect of SNP allocation on prediction
accuracy by using other types of known biological information.
For example, we allocated SNPs on the same chromosome
to the same class such that number of chromosomes classes
are fitted in multi-class Bayesian Alphabet methods. As shown

FIGURE 4 | The pairwise accuracy comparisons between conventional Bayesian method and multi-class Bayesian Alphabet using genome annotation classes for the

trait FTA of rice real data. The x-axis represents the genomic prediction accuracy obtained from conventional Bayesian method; the y-axis represents the genomic

prediction accuracy obtained from multi-class Bayesian Alphabet method; the diagonal line is used for reference such that a dot above the line represents a validation

with higher accuracy for multi-class Bayesian Alphabet. No significant differences were found (p < 0.1).
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FIGURE 5 | The pairwise prediction accuracy comparisons of conventional BayesCπ and multi-class BayesCπ using chromosome classes for the trait 13-week tenth

rib backfat (mm) of real pig data. The x-axis represents the genomic prediction accuracy obtained from conventional BayesCπ ; the y-axis represents the genomic

prediction accuracy obtained from multi-class BayesCπ ; the diagonal line is used for reference such that a dot above the line represents a validation with higher

accuracy for multi-class BayesCπ . Multi-class BayesCπ significantly outperformed the conventional BayesCπ (p < 0.1).

in Figure 5, in the real pig (single-trait) data analysis, when
BayesCπ prior is used, multi-class Bayesian Alphabet using
chromosome classes has significantly higher prediction accuracy
than the conventional Bayesian Alphabet (p < 0.1). To further
understand why higher prediction accuracy is achieved in
multi-class BayesCπ using chromosome classes, a genome-wide
association study (GWAS) was performed on the same dataset,
and one significant signal was detected on chromosome 6
(Chen et al., 2017). Thus, we ran another multi-class Bayesian
alphabet analysis by allocating SNPs on chromosome 6 to
one class and the remaining to another for a 2-class Bayesian
Alphabet analysis. Higher prediction accuracy was observed in
this 2-class Bayesian Alphabet analysis. It indicates that assigning
SNPs into classes based on GWAS results may be one useful
strategy to incorporate biological information.

4. DISCUSSION

Most genomic prediction methods usually assume all marker
effects share the same prior distribution. This assumption,
however, is not biologically meaningful and may potentially
reduce the prediction performance when genetic architectures
vary across different genomic regions (Speed and Balding, 2014).
To address this issue, some methods such as MultiBLUP (Speed
and Balding, 2014) and BayesRC (MacLeod et al., 2016) were
proposed to allocate markers into different classes, and the
superior performances of these methods were observed. Most
of these methods, however, focus on single-trait analysis and
have limitations in the priors used for marker effects. Thus,

in this study, we presented the multi-class Bayesian Alphabet
methods, which can perform both single-trait and multiple-
trait analysis and provide multiple Bayesian Alphabet priors for
markers allocated to different classes.

The effect of allocating markers into different classes on
genomic prediction has been studied in some previous studies
(Morota et al., 2014; Speed and Balding, 2014; MacLeod et al.,
2016; Xu et al., 2020). Different effect-size prior distributions
are assigned to molecular markers being split into multiple
classes based on genetic architectures. In this paper, we use
genome annotation to allocate markers into multiple classes.
Note that given the different biological information, the number
of classes and markers inside each class might be different. For
example, we can use the GWAS results, like Zhang et al. (2014)
and Gao et al. (2015), to allocate markers into two classes:
one with identified causal variants and another class with the
remaining markers.

The comparisons between prediction accuracies from
multi-class and conventional Bayesian Alphabet are shown
in Tables 1–3. Multi-class Bayesian Alphabet performs
consistently equivalent to or better than conventional
Bayesian Alphabet in both real and simulated datasets. The
different performances of the multi-class Bayesian Alphabet
may be caused by the genetic architectures across different
genomic regions in the datasets. The methods that allocate
markers into different classes outperform the conventional
methods because these methods allow different priors on
marker effects according to genetic architectures (Speed and
Balding, 2014; MacLeod et al., 2016). If genetic architectures
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are similar across the SNP classes, assigning different priors
will not bring significant improvement. For example, in
comparisons without much difference between multi-class
and conventional methods, e.g., multi-class BayesCπ using
genome annotation information in the real pig data analysis,
relatively small range (0.0001 to 0.03) for the estimated
marker effect variances was observed across SNP classes.
However, in comparison with significant differences, e.g.,
multi-class BayesCπ using chromosome information in the
real pig data analysis, relatively large range (0.0001 to 0.15)
for the estimated marker effect variances was observed across
SNP classes.

Our multi-class Bayesian Alphabet method allows the coexist
of the different types of priors in one model. For example, a
BayesA prior can be assigned to one SNP class and a BayesC5

prior to another. In addition, the samemarker can be allocated to
multiple SNP classes. Compared to other methods that allocate
markers into multiple classes, our multi-class Bayesian Alphabet
provides more flexibility for model construction given the genetic
architectures of the traits of interest and increasing biological
knowledge on the genome for both single-trait and multiple-trait
analysis. However, a naive comparison among multiple multi-
class Bayesian Alphabet methods is computationally intensive.
For example, with 6 SNP classes and 5 types of prior, there are 56

possible combinations, and the computational intensity increases
dramatically as the number of SNP classes grows. An efficient
algorithm to choose biologically meaningful priors for each SNP
class, is needed. In addition, biological knowledge generated from
other projects may help to narrow down the prior candidates for
each SNP class. In our multi-class Bayesian Alphabet methods
tested in this paper, where computational intensities are similar

to conventional methods, equivalent or better performances are
consistently observed. Given that our single-trait and multiple-
trait multi-class Bayesian Alphabet methods are biologically
meaningful and their implementation is available in an open-
source package, we expect it would be widely adopted for
genomic prediction.
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