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Despite the potential to improve patient outcomes, the application of pharmacogenomics 
(PGx) is yet to be routine. A growing number of PGx implementers are leaning toward using 
combinatorial PGx (CPGx) tests (i.e., multigene tests) that are reusable over patients’ lifetimes. 
However, selecting a single best available CPGx test is challenging owing to many patient- 
and population-specific factors, including variant frequency differences across ethnic groups. 
The primary objective of this study was to evaluate the detection rate of currently available 
CPGx tests based on the cytochrome P450 (CYP) gene variants they target. The detection 
rate was defined as the percentage of a given population with an “altered metabolizer” 
genotype predicted phenotype, where a CPGx test targeted both gene variants a prospective 
diplotypes. A potential genotype predicted phenotype was considered an altered metabolizer 
when it resulted in medication therapy modification based on Clinical Pharmacogenetics 
Implementation Consortium (CPIC) guidelines. Targeted variant CPGx tests found in the 
Genetic Testing Registry (GTR), gene selection information, and diplotype frequency data 
from the Pharmacogenomics Knowledge Base (PharmGKB) were used to determine the 
detection rate of each CPGx test. Our results indicated that the detection rate of CPGx tests 
covering CYP2C19, CYP2C9, CYP2D6, and CYP2B6 show significant variation across 
ethnic groups. Specifically, the Sub-Saharan Africans have 63.9% and 77.9% average 
detection rates for CYP2B6 and CYP2C19 assays analyzed, respectively. In addition, East 
Asians (EAs) have an average detection rate of 55.1% for CYP2C9 assays. Therefore, the 
patient’s ethnic background should be carefully considered in selecting CPGx tests.

Keywords: pharmacogenomics, pharmacogenomic tests, variant selection, detection rate, cytochrome P450 
enzymes

INTRODUCTION

Drug-related morbidity and mortality owing to unoptimized medication therapy are estimated 
to cost $528.4 billion annually in the United States alone (Watanabe et al., 2018). Pharmacogenomics 
(PGx) – the study of the role of an individual’s genetic makeup in drug response – has the 
potential to reduce adverse reactions to medications and lower medical costs by individualizing 
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treatments based on genetic makeup. In a study of Medicare 
and Medicaid patients examining over 70 million patient records, 
over half of the patient population received at least one drug 
with PGx implications (Samwald et al., 2016). Studies comparing 
PGx guided therapies vs. non-PGx guided therapies in psychiatric 
patients show both improved therapy outcomes and significant 
cost savings (Hornberger et  al., 2015; Tanner et  al., 2019). 
Clinical PGx practice has the potential to be  relevant to a 
large patient population, bring cost savings, and improve 
therapy outcomes.

Critical to PGx implementation is the availability of genetic 
test results having relevant genes to guide therapy decisions. 
Reactionary approaches to PGx practice, meaning individual 
genes are tested when there is a suspected need, is inefficient 
with respect to cost and time. As clinical decision support 
systems grow, preemptive PGx testing approaches are being 
utilized, allowing genotyping results to be  available prior to 
prescribing decisions and in the planning of therapy 
(Dunnenberger et  al., 2015). Combinatorial PGx tests (CPGx) 
are critical to the development of these programs because they 
offer genotyping results of several different genes simultaneously. 
While utilizing CPGx tests preemptively helps overcome barriers 
to PGx implementation, it is important to ensure the genotyping 
results they provide are reliable. If CPGx tests utilized 
preemptively have limitations, they can cause sub-optimal 
outcomes for subsequent therapeutic decisions.

Cytochrome P450 (CYP) enzyme genotypes are relevant to 
PGx practice for a variety of reasons. CYP enzymes play a 
role in the metabolism of over 90% of available prescription 
medications (Lynch and Price, 2007; McDonnell and Dang, 
2013). In addition to their critical role in drug metabolism, 
the prevalence of genetic polymorphisms of CYP enzymes is 
well documented in diverse patient populations. In a study of 
nearly 10,000 patients screened for common CYP enzyme 
variants, 91% of them had at least one variant linked to changed 
metabolic status (Van Driest et al., 2014). CYP Enzyme genotyping 
plays a central role in PGx practice for these reasons. Given 
this, the success of a preemptive PGx testing program with 
CPGx tests can be greatly influenced by the extent CYP enzyme 
genotypes are accurately characterized.

Gene variant selection of CPGx tests is an essential factor 
to consider that can influence therapeutic decisions (Petry 
et al., 2021). CPGx test performance can vary because laboratories 
providing PGx tests use targeted genotyping technologies to 
screen for specific variants with well-characterized drug-gene 
interactions (Guo et  al., 2019). Currently, all target variant 
CPGx tests that do not find putative variants included in the 
test report the gene as a normal (*1) variant by default (Mukerjee 
et  al., 2018). In a study of CYP2C9 genotype-guided warfarin 
dosing vs. standard clinical dosing in 2013, African American 
patients were in the therapeutic range significantly less with 
genotype-guided doses (Kimmel et al., 2013). Subsequent studies 
incorporating more relevant variants showed significantly 
improved outcomes (Limdi et al., 2015). Determining appropriate 
CPGx tests to be  used for each patient based on relevant gene 
variants is a potential barrier providers face in implementing 
PGx testing services.

One of the challenges in determining an appropriate CPGx 
test is the lack of publicly available information describing them. 
In a study of direct-to-consumer genetic tests in 2016, less than 
one-third of tests identified had specific gene variant selection 
information available (Hall et  al., 2017). The National Institutes 
of Health (NIH) created the Genetic Testing Registry (GTR) in 
2010 to collect genetic test information and to enhance their 
availability, validity, and usefulness (Rubinstein et  al., 2013). 
Information about the tests is voluntarily reported by the 
commercial clinical laboratories who developed them and is 
updated regularly. The GTR is considered one of the most valuable 
genetic testing repositories and is often cited in PGx guidelines.

There are additional resources that support PGx 
implementation. The Clinical Pharmacogenomics Implementation 
Consortium (CPIC) helps by creating, curating, and posting 
freely available, peer-reviewed, evidence-based, updatable, and 
detailed gene/drug clinical practice guidelines (Relling and 
Klein, 2011). The Pharmacogenomics Knowledge Base 
(PharmGKB) is another resource that curates and disseminates 
knowledge about clinically actionable gene-drug associations, 
genotype-phenotype relationships, and gene frequency data 
(Whirl-Carrillo et  al., 2012). Finally, specifically for variant 
selection guidance, the Association for Molecular Pathology 
(AMP) has established a two-tier evidence-based recommendation 
system to help laboratory professionals select appropriate gene 
variants in genotyping assays for CYP2C9 and CYP2C19 (Pratt 
et  al., 2018, 2019). These resources can aid clinicians to know 
what variants would be  appropriate for their patients in 
CPGx tests.

In our study, we  specifically evaluate CPGx tests and their 
variant selection practices with respect to CYP enzymes. This 
is due to the critical role CPGx tests and CYP enzymes play 
in the implementation of preemptive CPGx testing programs. 
We  leverage valuable resources (GTR, CPIC, PharmGKB, and 
AMP) to perform our evaluation of the current landscape of 
detection rates of available CPGx tests based on known variant 
frequencies across various ethnic populations. A list of potential 
CPGx tests were identified utilizing the GTR, which was 
subsequently filtered to only include CYP relevant tests. For 
subsequent analysis, published CPIC guidelines were utilized 
to identify CYP enzyme phenotypes of interest. These in 
combination with PharmGKB gene frequency data allowed us 
to determine the extent genotype predicted phenotypes of 
interest occur in diverse populations and how well CPGx tests 
identify them. In our evaluation, gene coverage percentages 
were determined and the detection rate of CPGx tests were 
calculated covering five CYP enzymes across various 
ethnic groups.

MATERIALS AND METHODS

Identification of PGx Tests
The GTR was used to identify PGx tests from 02/23/2021 to 
02/26/2021. As keywords, “pharmacogenetic” or “pharmacogenetics” 
or “pharmacogenomics” or “pharmacogenomic” were used for 
the search. The resulting PGx test list was filtered based on the 
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following inclusion criteria: assays that used “targeted variant 
analysis” as their test methodology, CPGx tests including at least 
two genes, and publicly available gene variant selection information 
(Supplementary Figure 1). Exclusion criteria for potential CPGx 
tests included assays using alternative sequencing techniques 
(whole genome or exome sequencing), assays only including one 
gene, and CPGx tests without publicly available variant selection 
information. Gene and variant coverage for the CYP enzymes, 
specifically, CYP2B6, CYP2D6, CYP2C9, CYP2C19, and CYP3A5, 
were investigated due to their well-studied gene frequencies and 
role in PGx practice. Variants considered for analysis of gene 
selection, gene coverage percentage, and detection rate were those 
included in PharmGKB gene frequency tables (See 
Supplementary Table  1 for detailed list).

Calculation of CPGx Test Coverage 
Percentage
To illustrate the extent of the number of variants included in 
PGx tests relative to the number of known variants, a variant 
coverage percentage was calculated for each CPGx test. Gene 
coverage percentage is the total number of variants targeted 
by a CPGx test divided by the total known variants (Eq.  1). 
Total known variants were the number of listed variants within 
PharmGKB gene frequency tables.

 

CPGx test coverage percentage
Number of variants targeted

T
=

ootal number of known variants
x 100

Equation 1: Calculation of CPGx test coverage percentage. 
The number of variants targeted was found by identifying 
which variants each CPGx test selected from a search using 
the GTR and other resources. The total number of chosen 
variants were then summed, in which the total number of 
known variants was the number of listed variants within the 
PharmGKB gene frequency tables.

Calculation of Detection Rate
Diplotype to phenotype translation and diplotype frequencies 
were obtained from the PharmGKB database for CYP2B6, 
CYP2D6, CYP2C9, CYP2C19, and CYP3A5. These reported 
frequencies include nine different ethnic groups. The diplotypes 
included in PharmGKB lists are based on the Pharmacogene 
Variation (PharmVar) database and the resulting diplotypes 
from their listed core variants (Gaedigk et  al., 2018). These 
resources, combined with PGx test information from the GTR, 
were used to calculate the detection rate of CPGx tests in the 
different ethnic groups.

Potential diplotypes for CYP enzyme subclasses were filtered 
to only include those that predict “altered metabolizer” 
phenotypes. A genotype-predicted phenotype is considered an 
“altered metabolizer” when it results in a required alteration 
of medication therapy to dosage or medication choice according 
to published CPIC guidelines (Birdwell et al., 2015; Hicks et al., 
2015; Bell et  al., 2017; Hicks et  al., 2017; Desta et  al., 2019; 
Theken et  al., 2020; Crews et  al., 2021; Karnes et  al., 2021; 
Lima et  al., 2021). Genotype-predicted phenotypes leading to 
potential altered metabolizer status are unique to each CYP 

enzyme sub-group (Table 1). Even though, predicted phenotype 
does not guarantee adverse drug reactions or suboptimal 
outcomes, in a pre-emptive approach the resulting predicted 
phenotypes would influence future therapy decisions. Thus, 
for our study, we  rely on these genotype-predicted phenotypes 
to define “altered metabolizers.”

Population altered metabolizer frequency is the sum of all 
altered metabolizer diplotype frequencies for each ethnic group. 
Detectable altered metabolizer frequency represents the total 
frequency of altered metabolizers, where a given CPGx test contains 
both gene variants within its diplotype (detectable diplotypes). 
Detection rate is the proportion of individuals with altered 
metabolizing genotype predicted phenotypes that have detectable 
diplotypes. Therefore, it is calculated by dividing the detectable 
altered metabolizer frequency by the population altered metabolizer 
frequency (Eq. 2). Each ethnic group represented in gene frequency 
tables has a detection rate value calculated for each CPGx test.

 
Detection Rate

Detectable altered metabolizer frequency

Pop
=

uulation altered metabolizer frequency
x100

Equation 2: Calculation of detection rate. Altered metabolizer 
phenotypes are defined as genotype predicted phenotypes 
resulting in an alteration of medication therapy. Detectable 
altered metabolizer frequency is the sum of all altered metabolizer 
diplotypes frequencies, where both gene variants are included 
in the CPGx test. Population altered metabolizer frequency is 
the sum of all altered metabolizer diplotypes frequencies.

TABLE 1 | Genotype-predicted phenotypes for each CYP enzyme that cause 
alteration of medication therapy (altered metabolizing status) based on Clinical 
Pharmacogenomics Implementation Consortium (CPIC) guidelines.

CYP enzyme Genotype-predicted 
phenotypes 
considered an altered 
metabolizer status

CPIC Guidelines 
Referenced

CYP2B6 Intermediate and poor 
metabolizers

Efavirenz and efavirenz- 
Containing Antiretroviral 
Therapy

CYP2C19 Ultra-rapid, rapid, likely 
intermediate, 
intermediate, likely poor, 
and poor metabolizers

Proton Pump Inhibitors

Selective Serotonin 
Reuptake Inhibitors

Tricyclic Antidepressants

Clopidogrel
CYP2C9 Activity scores less than 

2
Phenytoin

Fosphenytoin

NSAIDs
CYP2D6 Activity scores less than 

1.25 and greater than 
2.25

Opioids

Selective Serotonin 
Reuptake Inhibitors

Tricyclic Antidepressants

Atomoxetine

Ondansetron

Tropisetron
CYP3A5 Intermediate and 

extensive metabolizers
Tacrolimus
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Association for Molecular Pathology Tier 1 and Tier 2 
recommendations were evaluated for CYP2C9 and CYP2C19. 
Detection rate was calculated for each tier in the same way 
it was calculated for prospective CPGx tests. These results 
show the extent these recommended tiers are representative 
of diverse ethnic groups and allow for comparison of current 
PGx tests against AMP recommendations. Since only publicly 
available datasets were used and no animal study was 
conducted, this study did not require IRB or IACUC approval. 
All analysis codes are available at https://github.com/sayer108/
CPGx_test_evaluation.

RESULTS

Genetic Testing Registry Search Results
A search of the GTR showed 178 potential PGx tests, 56 of 
them being CPGx tests (Figure 1A). Gene selection information 
was publicly available for 25% of CPGx tests, only 14 of 56 
of them. CYP2C9, CYP2C19, and CYP2D6 were selected by 
11 CPGx tests; only six CPGx tests covered CYP2B6. The 
most commonly selected gene targets in CPGx tests were CYP 
enzymes, with CYP2D6 and CYP2C19 being selected by 50 
different tests (Figure  1B; Diagnostics R, 2021; Genetics C, 
2021; Genetics H, 2021; Genomics A, 2021; Health A, 2021a,b; 
Incorporated CH, 2021; Indiana University School of Medicine 
DoDG-PL, 2021; Invitae, 2021; Laboratories KD, 2021; Lineagen, 
2021; OneOme, 2021; Services PML, 2021).

Prevalence of Altered Metabolizing CYP 
Phenotypes
Altered metabolizer genotype predicted phenotypes make up 
a significant proportion of population for all ethnic groups 
analyzed within each CYP enzyme subclass (Figure  2). The 
average altered metabolizer frequencies (range) across ethnic 
groups for each CYP enzyme subclass were CYP2B6 67% 
(50–87%), CYP2C19 62% (37–96%), CYP2C9 26% (9–40%), 
CYP2D6 23% (32–57%), and CYP3A5 44% (14–73%).

Coverage Percentage and Detection Rate 
of Pharmacogenomic Tests
The detection rate of PGx tests was calculated for 14 CPGx 
tests that covered one or more of the following CYPs: CYP2B6, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A5. The detection rate 
of CPGx tests varied significantly, with values ranging from 24 
to 100%. The average overall detection rate and range of values 
of detection rate of the CPGx tests for all ethnic groups within 
each CYP enzyme sub-group were CYP2B6 (77.6%, 43–100%), 
CYP2C9 (88.4%, 24–100%), CYP2C19 (92.3%, 32–100%), 
CYP2D6 (81.4, 56–100%), and CYP3A5 (100%, 100–100%; 
Supplementary Tables 2–8; Supplementary Figure  2).

The PharmGKB lists 61 potential variants for CYP2C9; gene 
coverage percentage ranged from 4.9 to 23% for CPGx tests 
covering CYP2C9. The detection rate for the East Asian (EA) 
population was lower than the rest of the ethnic groups, with 
an average of 55% across CPGx tests. All other ethnic groups 

had an average detection rate of 70% or higher. AMP Tier 1 
and Tier 2 recommendations also had very low detection rates 
for the EA population, 51 and 55%, respectively. Both tiers had 
detection rates of 95% or higher for all other ethnic groups 
(Figure  3A; Supplementary Tables 1, 3, and 8). The highest 
performing CPGx test among East Asians was the RPRD assay, 
with a detection rate of 92%. However, for other ethnic groups 
like Sub-Saharan African (SSA) and African-American Afro-
Caribbean (AAAC) populations the CPGx test with the highest 
detection rate was the Admera assay with a detection rate of 
99% (Supplementary Table  8). Similarly, the PharmGKB lists 
137 potential variants for CYP2D6 and tests analyzed have gene 
coverage percentage ranging from 15 to 54%. Average detection 
rates for all CPGx tests with respect to all ethnic groups ranged 
from 70 to 90%, with no obvious outliers (Figure  3B; 
Supplementary Tables 1 and 4). All ethnic groups had the 
highest detection rate with the RPRD assay except for East Asian 
populations, where the OneOme assay had the highest detection 
rate. PharmGKB lists 32 potential variants for CYP2C19 with 
gene coverage percentages ranging from 5.7 to 75%. The detection 
rate for the SSA and AAAC populations was lower than the 
rest of the ethnic groups, 77, and 85%, respectively. The rest 
of the ethnic groups had average detection rates of 95% or 
higher for all CPGx tests. RPRD had the highest detection rate 
for AAAC and SSA populations at 100%. Many of the Ethnic 
groups had 100% detection rates with several different assays 
studied. AMP recommended Tier 1 and Tier 2 variants had 
detection rate values of 95% or higher for all ethnic groups 
except the SSA and AAAC populations. Tier 1 had a detection 
rate value of 75% for the SSA population, much lower than 
Tier 2 at 93% (Figure  3C; Supplementary Tables 1, 5, and 8). 
The PharmGKB lists 38 potential variants for CYP2B6; gene 
coverage percentage ranged from 7 to 26.3%. The SSA population 
had an average detection rate of 63.9% for all CPGx tests, the 
lowest compared to all ethnic groups. The rest of the groups 
had average detection rates greater than 70% for all CPGx tests 
(Figure  3D; Supplementary Tables 1 and 6). The RPRD assay 
performed best for the SSA population with a detection rate of 
100%. Results for CYP3A5 showed a 100% detection rate for 
all CPGx tests (Supplementary Tables 2, 7, and 8).

DISCUSSION

In this study, the ranges of detection rates were evaluated for 
currently available CPGx tests to demonstrate the variability 
that can occur depending on ethnic background and PGx test 
selection. Our results showed some ethnic groups clearly have 
higher and more consistent detection rate scores across CYP 
enzymes compared to others. This demonstrates that variant 
selection for the chosen assay can favor some populations 
more than others. Additionally, even patients of the same ethnic 
background can receive CPGx tests with drastically different 
detection rates due to variant selection.

The calculated detection rate of CPGx tests reflected that 
certain ethnic groups had diminished detection rate values for 
almost all the CPGx tests analyzed. For instance, if providers 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://github.com/sayer108/CPGx_test_evaluation
https://github.com/sayer108/CPGx_test_evaluation


Sayer et al. Clinical Implication of Combinatorial Pharmacogenomic Tests

Frontiers in Genetics | www.frontiersin.org 5 September 2021 | Volume 12 | Article 719671

seeking to test patients of East Asian descent for CYP2C9 
metabolizing status utilized any one of the CPGx tests, the 
patients metabolizing status would likely be  mischaracterized. 
Additionally, our results show a large variance in PGx test 
performance, meaning clinicians basing decisions on current 
test results could be  depending on incorrectly characterized 
phenotypes. The greatest example of this variance was observed 
with respect to the Oceanian (Oc) population and CYP2D6. 
While average detection rate was greater than 80% for CPGx 
tests, there were multiple tests with detection rates between 

30 and 40%. If clinicians are aware of the limitations of selective 
CPGx tests with respect to different ethnic groups and their 
variability, they can select an alternative; thus, patients will 
be  less likely to experience sub-optimal therapeutic outcomes.

Evaluation of AMP recommended Tier 1 and Tier 2 alleles 
showed consistent detection rates of 90% or higher across 
ethnic groups with a few notable exceptions. Specifically, East 
Asian and SSA populations had significantly lower detection 
rates for Tier 1 and 2 recommendations for CYP2C9 and 
CYP2C19, respectively. In these cases, there are a significantly 

A

B

FIGURE 1 | (A) The total number of genes selected by pharmacogenomics (PGx) tests as detailed by the test information included in the Genetic Testing Registry 
(GTR). (B) Most commonly selected genes by PGx tests based on gene selection information included in GTR.
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higher number of relevant gene variants compared to the other 
populations. Despite these exceptions, it was concluded that 
the results produced support the implementation of standardized 
gene targets for targeted PGx tests.

Our results demonstrate additional measures that can be taken 
to further increase the clinical utility of CPGx guided medication 
therapy. For three out of the five CYP enzyme genes evaluated, 
peak detection rates were achieved with different CPGx tests 
depending on ethnic background because of gene selection 
variations (Supplementary Table 8). Additionally, while higher 
detection rates were often achieved by tests selecting a higher 
number of variants, tests selecting fewer variants achieved the 
same detection rate in many instances. This is due to the fact 
that low frequency variants contribute minimally to the overall 
detection rates. These results show providers considering ethnic 
background in CPGx test selection can ensure their patients’ 
have the best chance to have their phenotypes correctly identified. 
Physicians and pharmacists can better identify situations when 
more selective tests are sufficient and when broader coverage 
is needed. Careful consideration of CPGx test selection with 
respect to ethnicity and variant selection has the potential to 
improve patient care by better charactering altered metabolizing 
phenotypes. With the growing emphasis on personalized patient 
care, our results show meaningful ways to further individualize 
genetic testing and ultimately improve outcomes.

Our results also provide insight into how the clinical utility 
of informatics approaches can be  enhanced. The findings of this 
study can be  potentially implemented in operationalizing PGx 
test ordering, data sharing, and cascade testing with an integrative 

informatics approach (Roosan et  al., 2021). We  demonstrated 
altered metabolizers are very prevalent in diverse patient 
populations, and some ethnic populations have a significantly 
higher proportion of altered metabolizers. This gene variance 
implies some ethnic populations may be  more likely to benefit 
from the CPGx test. This is consistent with recent data from 
PGx gene frequency studies in large diverse populations (McInnes 
et  al., 2021). If the patient ethnic background was included in 
models predicting patients in need of PGx testing, it could 
improve the models’ performance. Studies have demonstrated 
ethnicity can be  a predictive factor in disease progression and 
medication efficacy with respect to various cardiovascular diseases 
and more effective interventions can be  initiated when it is 
considered (Taylor and Wright, 2005). Besides, incorporating 
ethnic background into the choice of CPGx test can assure 
more reliable PGx results. Patients in need of PGx tests with 
expanded gene coverage can be identified, ensuring metabolizing 
status is assessed correctly. Thus, incorporating factors of ethnicity 
and ethnicity in informatics tools can improve patient selection 
for PGx testing and PGx test choice.

This study chose to evaluate CPGx tests due to the emerging 
evidence showing they are needed to optimize clinical outcomes. 
Studies comparing CPGx testing against single-gene testing to 
guide medication decisions for patients with major depressive 
disorder demonstrated that combinatorial approaches better 
predicted phenotypes and clinical outcomes than single-gene 
tests (Winner and Dechairo, 2015). Additionally, CPGx testing 
approaches provide better opportunities for preemptive PGx 
practice. In a sample of 10,000 patients preemptively genotyped 

FIGURE 2 | The prevalence of altered metabolizing phenotypes of cytochrome P450 (CYP) enzymes across various ethnic groups. Abbreviations for ethnic groups 
are as follows: AAAC, African American/Afro-Caribbean; Amer, American; CSA, Central/South Asian; EA, East Asian; Eur, European; Lat, Latino; NE, Near Eastern; 
Oc, Oceanian; and SSA, Sub-Saharan African. *Values of 0 are due to the lack of variant frequencies documented in the Pharmacogenomics Knowledge Base 
(PharmGKB) database for a specific ethnic group.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sayer et al. Clinical Implication of Combinatorial Pharmacogenomic Tests

Frontiers in Genetics | www.frontiersin.org 7 September 2021 | Volume 12 | Article 719671

within the PREDICT program with Vanderbilt University, 91% 
had at least one actionable variant, and 42% of these patients 
had been exposed to a risk-associated medication in the past 
(Hockings et  al., 2020). Given the growing body of evidence 
supporting the clinical benefits of CPGx testing, it is necessary 
to evaluate these assays.

Utilizing reported racial and ethnic backgrounds in 
healthcare decision-making is challenging for a variety of reasons. 
A recent study suggests that ethnicity-based PGx decision-making 
is limited by intrapopulation genetic variation and fluidity 

(Goodman and Brett, 2021). Additionally, concerns have been 
expressed regarding medical decision tools incorporating ethnicity 
having bias that causes sub-optimal therapeutic outcomes for 
patients of different ethnic backgrounds (Vyas et  al., 2020). 
However, the FDA and current PGx consortiums have adopted 
ethnicity-based recommendations for PGx screenings (Chang 
et al., 2020). This practice has been adopted as a common practice 
with respect to other disease states. For example, ties between 
familial genetic history and breast cancer risk have been well 
documented and this information has been included in decision-
making guidelines to screen patients as well (Owens et al., 2019). 
Until universal PGx testing is widespread, using genetic ancestry 
can prioritize patients most likely to benefit from a more appropriate 
CPGx test representing known genetic variations.

There are several limitations to this study. With respect to 
the availability of data, our evaluation only included voluntarily 
shared commercial clinical laboratory data, which totaled 14 
CPGx tests, 24% of total tests found. This is comparable to 
an evaluation done on direct-to-consumer genetic tests in 2017, 
which found only 20% of tests reporting gene selection data 
(Hall et  al., 2017). Therefore, our evaluation is biased by only 
voluntarily shared data. Gene frequency information is only 
sufficiently studied/reported in PharmGKB to perform our 
analysis on CYP enzymes, even though, there are several other 
genes commonly used in PGx practice.

Including all variants within PharmGKB regardless of their 
function or frequency in our analysis also has its limitations. 
For instance, CYP2D6 has nearly 150 variants identified with 
less than half of them having reported gene frequencies or known 
metabolic function. While a test may report a very low gene 
coverage percentage, it may include several common clinically 
relevant genes to achieve high detection rate. Sound gene selection 
practices would be  reflected in higher detection rate for that 
test in a specific ethnic population. We  considered all known 
variants reported, rare or frequent, in calculating detection rate. 
However, detection rates were not considerably influenced by 
rare variants with unknown or very low frequencies. Diplotype 
combinations occurring at very low frequencies relative to other 
genes contribute very little to the total altered metabolizer 
phenotype frequency in a population. Coverage percentages 
indicate the extent of known variants included in an assay, while 
detection rates indicate how well an assay captures the overall 
diversity of the gene variants in a population. Therefore, both 
gene coverage percentage and detection rate together provide 
useful insight into gene variant selection practices for CPGx tests.

Our results highlight the prevalence of false-negative test results 
when common gene variants are not included in CPGx tests. 
Recent evaluations of the performance of sequencing technologies 
utilized in CPGx tests demonstrate they have precision and 
accuracy values greater than 99.9% (Jablonski et al., 2018). While 
labs are required to meet standards of analytical performance, 
they are not evaluated based on the genes they select. Thus, 
high analytical performance measures can lead to a false sense 
of security for consumers and providers if relevant genes are 
not included in the assay. Conflict with respect to false negative 
test results has come forward with respect to direct-to-consumer 
genetic tests and breast cancer screenings. Many of the home 

A

B

C

D

FIGURE 3 | Heatmaps displaying detection rate values and coverage 
percentage of PGx tests covering (A) CYP2C9, (B) CYP2D6, (C) CYP2C19, 
and (D) CYP2B6. The brighter the red, the higher the detection rate. On the 
contrary, the darker blue, the lower the detection rate. In addition to the PGx 
tests, detection rate was calculated for selected Tier 1 and Tier 2 alleles of 
Association for Molecular Pathology (AMP) recommendations for CYP2C9 
and CYP2C19. PGx test coverage percentage is included with each heatmap 
as a bar chart on the right side of each heatmap. Abbreviations for ethnic 
groups listed on the bottom of the figure are as follows: Amer, American; 
CSA, Central/South Asian; EA, East Asian; Eur, European; Lat, Latino; NE, 
Near Eastern; Oc, Oceanian; and SSA, Sub-Saharan African.
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testing kits incorporate BRCA variants specific to Ashkenazi-
Jewish descent, while not including other variants more common 
in diverse populations leading to false negatives (Landi, 2019). 
Our data show that this oversight leads to potential false negative 
results in CPGx tests used in pharmacogenomics practice as well. 
These false-negatives may significantly impact treatment decisions 
for patients. Our work supports the continued implementation 
of institutions like AMP creating recommended genes to include 
in assays as a standard to ensure reliable results. However, the 
landscape needs to be  continually evaluated as gene frequency 
and gene functionality information becomes more readily available.

In summary, the proportions of altered metabolizers in a 
given population can range from 10 to 90% depending on 
the CYP enzyme sub-class. The majority of assays targeted 
less than 50% of known gene variants listed in the PharmGKB 
gene frequency tables. Calculated detection rates of CPGx tests 
showed high variation across different ethnic groups. Therefore, 
the patient’s ethnicity receiving the PGx test and the variants 
targeted by the test should be  carefully considered to ensure 
the optimal utility of PGx.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be  found in 
online repositories. The names of the repository/repositories 

and accession number(s) can be  found in the article/ 
Supplementary Material. All analysis codes are available at 
https://github.com/sayer108/CPGx_test_evaluation.

AUTHOR CONTRIBUTIONS

MS, ML, KP, JV, BV, and DP performed research, analyzed the 
data, and wrote the manuscript. AD and TN performed research, 
analyzed the data, and reviewed the manuscript. RB and DR 
analyzed the data and gave critical feedback on the manuscript. 
MR designed the study, reviewed data analysis, gave critical feedback 
on manuscript writing, and supervised the research. All authors 
contributed to the article and approved the submitted version.

FUNDING

This study was funded by Chapman University internal grants.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.719671/
full#supplementary-material

 

REFERENCES

Bell, G. C., Caudle, K. E., Whirl-Carrillo, M., Gordon, R. J., Hikino, K., 
Prows, C. A., et al. (2017). Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron 
and tropisetron. Clin. Pharmacol. Ther. 102, 213–218. doi: 10.1002/cpt.598

Birdwell, K. A., Decker, B., Barbarino, J. M., Peterson, J. F., Stein, C. M., 
Sadee, W., et al. (2015). Clinical Pharmacogenetics Implementation Consortium 
(CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. 
Pharmacol. Ther. 98, 19–24. doi: 10.1002/cpt.113

Chang, C. J., Chen, C. B., Hung, S. I., Ji, C., and Chung, W. H. (2020). 
Pharmacogenetic testing for prevention of severe cutaneous adverse drug 
reactions. Front. Pharmacol. 11:969. doi: 10.3389/fphar.2020.00969

Crews, K. R., Monte, A. A., Huddart, R., Caudle, K. E., Kharasch, E. D., Gaedigk, A., 
et al. (2021). Clinical Pharmacogenetics Implementation Consortium guideline 
for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin. 
Pharmacol. Ther. doi: 10.1002/cpt.2149 [Epub ahead of print]

Desta, Z., Gammal, R. S., Gong, L., Whirl-Carrillo, M., Gaur, A. H., Sukasem, C., 
et al. (2019). Clinical Pharmacogenetics Implementation Consortium (CPIC) 
guideline for CYP2B6 and Efavirenz-containing antiretroviral therapy. Clin. 
Pharmacol. Ther. 106, 726–733. doi: 10.1002/cpt.1477

Diagnostics R (2021). RPRD diagnostics Gene Selection Information RPRD 
Diagnostics Web Page: RPRD Diagnostics [2021: This page outlines the 
selected genes for PGx assays offered by RPRD diagnostics]. Available at: 
https://www.rprdx.com/testing/whole-pharmacogenomics-scan-wps/alleles/ 
(Accessed March 10, 2021).

Dunnenberger, H. M., Crews, K. R., Hoffman, J. M., Caudle, K. E., Broeckel, U., 
Howard, S. C., et al. (2015). Preemptive clinical pharmacogenetics 
implementation: current programs in five US medical centers. Annu. Rev. 
Pharmacol. Toxicol. 55, 89–106. doi: 10.1146/annurev-pharmtox- 
010814-124835

Gaedigk, A., Ingelman-Sundberg, M., Miller, N. A., Leeder, J. S., Whirl-Carrillo, M., 
Klein, T. E., et al. (2018). The Pharmacogene Variation (PharmVar) Consortium: 
incorporation of the human cytochrome P450 (CYP) allele nomenclature 
database. Clin. Pharmacol. Ther. 103, 399–401. doi: 10.1002/cpt.910

Genetics C (2021). Antidepressants and antipsychotics pharmacogenetics CGC 
genetics web page: CGC Genetics [2021: General information page about 
CYP2C19 variant selection within Indiana Universities pharmacogenomic 
laboratory]. Available at: https://geneticslab.medicine.iu.edu/dgg_dbadmin/
public/files/documents/2016/01/tech-CYP2C19.pdf (Accessed March 10, 2021).

Genetics H (2021). Warfarin PGx heart genetics web page: heart genetics [2021: 
Description of Heart Genetic’s Warfarin PGx test and the variants it selects]. 
Available at: https://www.heartgenetics.com/genetic-services/pharmacogenetics/
warfarin-pharmacogenetics/ (Accessed March 10, 2021).

Genomics A (2021). Alpha genomics comprehensive extended panel sample 
report alpha genomics web page: Alpha Genomics [2021: Sample report 
for Alpha Genomic’s Comprehensive Extended panel including gene 
selection information]. Available at: http://alphagenomix.com/wp-content/
uploads/2019/09/Sample-Report-8_30_2019.pdf (Accessed March 10, 2021).

Goodman, C. W., and Brett, A. S. (2021). Race and pharmacogenomics-
personalized medicine or misguided practice? JAMA 325, 625–626. doi: 
10.1001/jama.2020.25473

Guo, C., Xie, X., Li, J., Huang, L., Chen, S., Li, X., et al. (2019). Pharmacogenomics 
guidelines: current status and future development. Clin. Exp. Pharmacol. 
Physiol. 46, 689–693. doi: 10.1111/1440-1681.13097

Hall, J. A., Gertz, R., Amato, J., and Pagliari, C. (2017). Transparency of genetic 
testing services for ‘health, wellness and lifestyle’: analysis of online prepurchase 
information for UK consumers. Eur. J. Hum. Genet. 25, 908–917. doi: 10.1038/
ejhg.2017.75

Health A (2021a). Admera Health PGx One Plus Sample Report Admera Health 
Web Page: Admera Health [2021: Sample report for Admera Health’s PGx 
One Plus pharmacogenomic test that includes gene selection information]. 
Available at: https://f.hubspotusercontent30.net/hubfs/3328833/PGxOnePlus_
Domestic_Sample_Report_092320-1.pdf ?__hstc=84769990.49ad2c9f4
3 b 8 9 8 1 8 2 2 3 e d d c 9 c 1 d e 9 e f 7 . 1 6 1 3 4 4 7 3 1 0 9 1 1 . 1 6 1 3 4 4 7 3 1 0 9 1 1 . 
1613447310911.1&__hssc=84769990.6.1613447310911&__hsfp=1359255586 
(Accessed March 10, 2021).

Health A (2021b). Assurex health assurex health web page: Assurex Health 
[2021: Sample report for Assurex health GeneSight Psychotropic assay 
including gene selection information].

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://github.com/sayer108/CPGx_test_evaluation
https://www.frontiersin.org/articles/10.3389/fgene.2021.719671/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.719671/full#supplementary-material
https://doi.org/10.1002/cpt.598
https://doi.org/10.1002/cpt.113
https://doi.org/10.3389/fphar.2020.00969
https://doi.org/10.1002/cpt.2149
https://doi.org/10.1002/cpt.1477
https://www.rprdx.com/testing/whole-pharmacogenomics-scan-wps/alleles/
https://doi.org/10.1146/annurev-pharmtox-010814-124835
https://doi.org/10.1146/annurev-pharmtox-010814-124835
https://doi.org/10.1002/cpt.910
https://geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/tech-CYP2C19.pdf
https://geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/tech-CYP2C19.pdf
https://www.heartgenetics.com/genetic-services/pharmacogenetics/warfarin-pharmacogenetics/
https://www.heartgenetics.com/genetic-services/pharmacogenetics/warfarin-pharmacogenetics/
http://alphagenomix.com/wp-content/uploads/2019/09/Sample-Report-8_30_2019.pdf
http://alphagenomix.com/wp-content/uploads/2019/09/Sample-Report-8_30_2019.pdf
https://doi.org/10.1001/jama.2020.25473
https://doi.org/10.1111/1440-1681.13097
https://doi.org/10.1038/ejhg.2017.75
https://doi.org/10.1038/ejhg.2017.75
https://f.hubspotusercontent30.net/hubfs/3328833/PGxOnePlus_Domestic_Sample_Report_092320-1.pdf?__hstc=84769990.49ad2c9f43b89818223eddc9c1de9ef7.1613447310911.1613447310911.1613447310911.1&__hssc=84769990.6.1613447310911&__hsfp=1359255586
https://f.hubspotusercontent30.net/hubfs/3328833/PGxOnePlus_Domestic_Sample_Report_092320-1.pdf?__hstc=84769990.49ad2c9f43b89818223eddc9c1de9ef7.1613447310911.1613447310911.1613447310911.1&__hssc=84769990.6.1613447310911&__hsfp=1359255586
https://f.hubspotusercontent30.net/hubfs/3328833/PGxOnePlus_Domestic_Sample_Report_092320-1.pdf?__hstc=84769990.49ad2c9f43b89818223eddc9c1de9ef7.1613447310911.1613447310911.1613447310911.1&__hssc=84769990.6.1613447310911&__hsfp=1359255586
https://f.hubspotusercontent30.net/hubfs/3328833/PGxOnePlus_Domestic_Sample_Report_092320-1.pdf?__hstc=84769990.49ad2c9f43b89818223eddc9c1de9ef7.1613447310911.1613447310911.1613447310911.1&__hssc=84769990.6.1613447310911&__hsfp=1359255586


Sayer et al. Clinical Implication of Combinatorial Pharmacogenomic Tests

Frontiers in Genetics | www.frontiersin.org 9 September 2021 | Volume 12 | Article 719671

Hicks, J. K., Bishop, J. R., Sangkuhl, K., Müller, D. J., Ji, Y., Leckband, S. G., 
et al. (2015). Clinical Pharmacogenetics Implementation Consortium (CPIC) 
guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin 
reuptake inhibitors. Clin. Pharmacol. Ther. 98, 127–134. doi: 10.1002/cpt.147

Hicks, J. K., Sangkuhl, K., Swen, J. J., Ellingrod, V. L., Müller, D. J., Shimoda, K., 
et al. (2017). Clinical Pharmacogenetics Implementation Consortium guideline 
(CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic 
antidepressants: 2016 update. Clin. Pharmacol. Ther. 102, 37–44. doi: 10.1002/
cpt.597

Hockings, J. K., Pasternak, A. L., Erwin, A. L., Mason, N. T., Eng, C., and 
Hicks, J. K. (2020). Pharmacogenomics: an evolving clinical tool for precision 
medicine. Cleve. Clin. J. Med. 87, 91–99. doi: 10.3949/ccjm.87a.19073

Hornberger, J., Li, Q., and Quinn, B. (2015). Cost-effectiveness of combinatorial 
pharmacogenomic testing for treatment-resistant major depressive disorder 
patients. Am. J. Manag. Care 21, e357–e365.

Incorporated CH (2021). Learn about the genes color analyzes color health 
incorporated web page: Color Health Incorporated [2021: Gene selection 
information included within Color Health’s pharmacogenomic tests detailed 
on their web page]. Available at: https://www.color.com/learn/color-
genes#Hereditary%20Cancer (Accessed March 10, 2021).

Indiana University School of Medicine DoDG-PL (2021). PGx CYP2C19 
Gentoyping Pharmacogenomics Laboratory Information Page: Indiana 
University [2021: General information page about CYP2C19 variant selection 
within Indiana Universities pharmacogenomic laboratory]. Available at: https://
geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/
tech-CYP2C19.pdf (Accessed March 10, 2021).

Invitae (2021). Genelex PGx testing invitae web page: Invitae [2021: Genelex 
PGx test menu including individual genes tested]. Available at: https://www.
genelex.com/test-menu/ (Accessed March 10, 2021).

Jablonski, M. R., King, N., Wang, Y., Winner, J. G., Watterson, L. R., Gunselman, S., 
et al. (2018). Analytical validation of a psychiatric pharmacogenomic test. 
Perinat. Med. 15, 189–197. doi: 10.2217/pme-2017-0094

Karnes, J. H., Rettie, A. E., Somogyi, A. A., Huddart, R., Fohner, A. E., 
Formea, C. M., et al. (2021). Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and 
phenytoin dosing: 2020 update. Clin. Pharmacol. Ther. 109, 302–309. doi: 
10.1002/cpt.2008

Kimmel, S. E., French, B., Kasner, S. E., Johnson, J. A., Anderson, J. L., 
Gage, B. F., et al. (2013). A pharmacogenetic versus a clinical algorithm 
for warfarin dosing. N. Engl. J. Med. 369, 2283–2293. doi: 10.1056/
NEJMoa1310669

Laboratories KD (2021). CYP2D6 genotyping knight diagnostics web page: 
knight diagnostics [2021: Description of Knight Diagnostics CYP2D6 
genotyping and the variants it selects]. Available at: https://knightdxlabs.
ohsu.edu/home/test-details?id=CYP2D6+Genotyping (Accessed March 10, 
2021).

Landi, H. (2019). 23andMe competitor claims direct-to-consumer cancer risk 
screening produces ‘false negatives’. Fierce Healthcare. Available at: https://
www.fiercehealthcare.com/tech/direct-to-consumer-cancer-risk-screening-tests-
often-produce-falsenegatives-according-to (Accessed May 10, 2021).

Lima, J. J., Thomas, C. D., Barbarino, J., Desta, Z., Van Driest, S. L., El Rouby, N., 
et al. (2021). Clinical Pharmacogenetics Implementation Consortium (CPIC) 
guideline for CYP2C19 and proton pump inhibitor dosing. Clin. Pharmacol. 
Ther. 109, 1417–1423. doi: 10.1002/cpt.2015

Limdi, N. A., Brown, T. M., Yan, Q., Thigpen, J. L., Shendre, A., Liu, N., 
et al. (2015). Race influences warfarin dose changes associated with genetic 
factors. Blood 126, 539–545. doi: 10.1182/blood-2015-02-627042

Lineagen (2021). Lineagen pharmacogenetics extended test sample report 
lineagen web page: Lineagen [2021: This is a sample report for 
Lineagen’s Pharmacogenomics Extended Test, it has gene selection 
information detailed].

Lynch, T., and Price, A. (2007). The effect of cytochrome P450 metabolism 
on drug response, interactions, and adverse effects. Am. Fam. Physician 76, 
391–396.

McDonnell, A. M., and Dang, C. H. (2013). Basic review of the cytochrome 
p450 system. J. Adv. Pract. Oncol. 4, 263–268. doi: 10.6004/jadpro.2013.4.4.7

McInnes, G., Lavertu, A., Sangkuhl, K., Klein, T. E., Whirl-Carrillo, M., and 
Altman, R. B. (2021). Pharmacogenetics at scale: an analysis of the UK 
biobank. Clin. Pharmacol. Ther. 109, 1528–1537. doi: 10.1002/cpt.2122

Mukerjee, G., Huston, A., Kabakchiev, B., Piquette-Miller, M., van Schaik, R., 
and Dorfman, R. (2018). User considerations in assessing pharmacogenomic 
tests and their clinical support tools. NPJ Genom. Med. 3:26. doi: 10.1038/
s41525-018-0065-4

OneOme (2021). Rightmed gene report oneome web page: OneOme [2021: A 
sample report for OneOme’s Rightmed PGx test, includes gene selection 
information]. Available at: https://www-bg2d96gu-staging.s3.amazonaws.com/ 
media/documents/sample_US_RMcomprehensive_report_06.04.21.pdf 
(Accessed March 10, 2021).

Owens, D. K., Davidson, K. W., Krist, A. H., Barry, M. J., Cabana, M., Caughey, A. B., 
et al. (2019). Risk assessment, genetic counseling, and genetic testing for 
BRCA-related cancer: US preventive services task force recommendation 
statement. JAMA 322, 652–665. doi: 10.1001/jama.2019.10987

Petry, N. J., Roosan, M. R., Cicali, E. J., and Duarte, J. D. (2021). “Chapter 
2: implementation: a guide to implementing pharmacogenomics services,” 
in Pharmacogenomics: A Primer for Clinicians. eds. M. Weitz and P. J. Boyle 
(McGraw Hill).

Pratt, V. M., Cavallari, L. H., Del Tredici, A. L., Hachad, H., Ji, Y., Moyer, A. M., 
et al. (2019). Recommendations for clinical CYP2C9 genotyping allele 
selection: a joint recommendation of the Association for Molecular Pathology 
and College of American pathologists. J. Mol. Diagn. 21, 746–555. doi: 
10.1016/j.jmoldx.2019.04.003

Pratt, V. M., Del Tredici, A. L., Hachad, H., Ji, Y., Kalman, L. V., Scott, S. A., 
et al. (2018). Recommendations for clinical CYP2C19 genotyping allele 
selection: a report of the Association for Molecular Pathology. J. Mol. Diagn. 
20, 269–276. doi: 10.1016/j.jmoldx.2018.01.011

Relling, M. V., and Klein, T. E. (2011). CPIC: Clinical Pharmacogenetics 
Implementation Consortium of the pharmacogenomics research network. 
Clin. Pharmacol. Ther. 89, 464–467. doi: 10.1038/clpt.2010.279

Roosan, D., Hwang, A., and Roosan, M. R. (2021). Pharmacogenomics cascade 
testing (PhaCT): a novel approach for preemptive pharmacogenomics testing 
to optimize medication therapy. Pharmacogenomics J. 21, 1–7. doi: 10.1038/
s41397-020-00182-9

Rubinstein, W. S., Maglott, D. R., Lee, J. M., Kattman, B. L., Malheiro, A. J., 
Ovetsky, M., et al. (2013). The NIH Genetic Testing Registry: a new, 
centralized database of genetic tests to enable access to comprehensive 
information and improve transparency. Nucleic Acids Res. 41, D925–D935. 
doi: 10.1093/nar/gks1173

Samwald, M., Xu, H., Blagec, K., Empey, P. E., Malone, D. C., Ahmed, S. M., 
et al. (2016). Incidence of exposure of patients in the United  States to 
multiple drugs for which pharmacogenomic guidelines are available. PLoS 
One 11:e0164972. doi: 10.1371/journal.pone.0164972

Services PML (2021). Prescient Medicine Lab Services LifeKit PreScript Prescient 
Medicine Web Page: Prescient Medicine [2021: Information for Prescient 
Medicine pharmacogenomics testing services including genes and variants 
selected within LifeKit assay]. Available at: https://labservices.prescientmedicine.
com/testpanels/lifekit-prescript (Accessed March 10, 2021).

Tanner, J. A., Brown, L. C., Yu, K., Li, J., and Dechairo, B. M. (2019). Canadian 
medication cost savings associated with combinatorial pharmacogenomic 
guidance for psychiatric medications. Clinicoecon Outcomes Res. 11, 779–787. 
doi: 10.2147/CEOR.S224277

Taylor, A. L., and Wright, J. T. Jr. (2005). Should ethnicity serve as the basis 
for clinical trial design? Importance of race/ethnicity in clinical trials: lessons 
from the African-American Heart Failure Trial (A-HeFT), the African-
American Study Of Kidney Disease and Hypertension (AASK), and the 
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack 
Trial (ALLHAT). Circulation 112, 3654–3660. doi: 10.1161/
CIRCULATIONAHA.105.540443

Theken, K. N., Lee, C. R., Gong, L., Caudle, K. E., Formea, C. M., Gaedigk, A., 
et al. (2020). Clinical Pharmacogenetics Implementation Consortium guideline 
(CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin. Pharmacol. 
Ther. 108, 191–200. doi: 10.1002/cpt.1830

Van Driest, S. L., Shi, Y., Bowton, E. A., Schildcrout, J. S., Peterson, J. F., 
Pulley, J., et al. (2014). Clinically actionable genotypes among 10,000 patients 
with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 95, 423–431. 
doi: 10.1038/clpt.2013.229

Vyas, D. A., Eisenstein, L. G., and Jones, D. S. (2020). Hidden in plain sight – 
reconsidering the use of race correction in clinical algorithms. N. Engl. J. 
Med. 383, 874–882. doi: 10.1056/NEJMms2004740

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://doi.org/10.1002/cpt.147
https://doi.org/10.1002/cpt.597
https://doi.org/10.1002/cpt.597
https://doi.org/10.3949/ccjm.87a.19073
https://www.color.com/learn/color-genes#Hereditary%20Cancer
https://www.color.com/learn/color-genes#Hereditary%20Cancer
https://geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/tech-CYP2C19.pdf
https://geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/tech-CYP2C19.pdf
https://geneticslab.medicine.iu.edu/dgg_dbadmin/public/files/documents/2016/01/tech-CYP2C19.pdf
https://www.genelex.com/test-menu/
https://www.genelex.com/test-menu/
https://doi.org/10.2217/pme-2017-0094
https://doi.org/10.1002/cpt.2008
https://doi.org/10.1056/NEJMoa1310669
https://doi.org/10.1056/NEJMoa1310669
https://knightdxlabs.ohsu.edu/home/test-details?id=CYP2D6+Genotyping
https://knightdxlabs.ohsu.edu/home/test-details?id=CYP2D6+Genotyping
https://www.fiercehealthcare.com/tech/direct-to-consumer-cancer-risk-screening-tests-often-produce-falsenegatives-according-to
https://www.fiercehealthcare.com/tech/direct-to-consumer-cancer-risk-screening-tests-often-produce-falsenegatives-according-to
https://www.fiercehealthcare.com/tech/direct-to-consumer-cancer-risk-screening-tests-often-produce-falsenegatives-according-to
https://doi.org/10.1002/cpt.2015
https://doi.org/10.1182/blood-2015-02-627042
https://doi.org/10.6004/jadpro.2013.4.4.7
https://doi.org/10.1002/cpt.2122
https://doi.org/10.1038/s41525-018-0065-4
https://doi.org/10.1038/s41525-018-0065-4
https://www-bg2d96gu-staging.s3.amazonaws.com/ media/documents/sample_US_RMcomprehensive_report_06.04.21.pdf
https://www-bg2d96gu-staging.s3.amazonaws.com/ media/documents/sample_US_RMcomprehensive_report_06.04.21.pdf
https://doi.org/10.1001/jama.2019.10987
https://doi.org/10.1016/j.jmoldx.2019.04.003
https://doi.org/10.1016/j.jmoldx.2018.01.011
https://doi.org/10.1038/clpt.2010.279
https://doi.org/10.1038/s41397-020-00182-9
https://doi.org/10.1038/s41397-020-00182-9
https://doi.org/10.1093/nar/gks1173
https://doi.org/10.1371/journal.pone.0164972
https://labservices.prescientmedicine.com/testpanels/lifekit-prescript
https://labservices.prescientmedicine.com/testpanels/lifekit-prescript
https://doi.org/10.2147/CEOR.S224277
https://doi.org/10.1161/CIRCULATIONAHA.105.540443
https://doi.org/10.1161/CIRCULATIONAHA.105.540443
https://doi.org/10.1002/cpt.1830
https://doi.org/10.1038/clpt.2013.229
https://doi.org/10.1056/NEJMms2004740


Sayer et al. Clinical Implication of Combinatorial Pharmacogenomic Tests

Frontiers in Genetics | www.frontiersin.org 10 September 2021 | Volume 12 | Article 719671

Watanabe, J. H., McInnis, T., and Hirsch, J. D. (2018). Cost of prescription 
drug-related morbidity and mortality. Ann. Pharmacother. 52, 829–837. doi: 
10.1177/1060028018765159

Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., 
Thorn, C. F., et al. (2012). Pharmacogenomics knowledge for personalized 
medicine. Clin. Pharmacol. Ther. 92, 414–417. doi: 10.1038/clpt.2012.96

Winner, J. G., and Dechairo, B. (2015). Combinatorial versus individual gene 
pharmacogenomic testing in mental health: a perspective on context and 
implications on clinical utility. Yale J. Biol. Med. 88, 375–382.

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Sayer, Duche, Nguyen, Le, Patel, Vu, Pham, Vernick, Beuttler, 
Roosan and Roosan. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) and the 
copyright owner(s) are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://doi.org/10.1177/1060028018765159
https://doi.org/10.1038/clpt.2012.96
http://creativecommons.org/licenses/by/4.0/

	Clinical Implications of Combinatorial Pharmacogenomic Tests Based on Cytochrome P450 Variant Selection
	Introduction
	Materials and Methods
	Identification of PGx Tests
	Calculation of CPGx Test Coverage Percentage
	Calculation of Detection Rate

	Results
	Genetic Testing Registry Search Results
	Prevalence of Altered Metabolizing CYP Phenotypes
	Coverage Percentage and Detection Rate of Pharmacogenomic Tests

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material

	References

