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Current Genome-Wide Association Studies (GWAS) rely on genotype imputation to
increase statistical power, improve fine-mapping of association signals, and facilitate
meta-analyses. Due to the complex demographic history of Latin America and the lack of
balanced representation of Native American genomes in current imputation panels, the
discovery of locally relevant disease variants is likely to be missed, limiting the scope and
impact of biomedical research in these populations. Therefore, the necessity of better
diversity representation in genomic databases is a scientific imperative. Here, we expand
the 1,000 Genomes reference panel (1KGP) with 134 Native American genomes (1KGP +
NAT) to assess imputation performance in Latin American individuals of mixed ancestry.
Our panel increased the number of SNPs above the GWAS quality threshold, thus
improving statistical power for association studies in the region. It also increased
imputation accuracy, particularly in low-frequency variants segregating in Native
American ancestry tracts. The improvement is subtle but consistent across countries
and proportional to the number of genomes added from local source populations. To
project the potential improvement with a higher number of reference genomes, we
performed simulations and found that at least 3,000 Native American genomes are
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needed to equal the imputation performance of variants in European ancestry tracts. This
reflects the concerning imbalance of diversity in current references and highlights the
contribution of our work to reducing it while complementing efforts to improve global equity
in genomic research.

Keywords: Imputation, reference panels, GWAS, Native American ancestry, Latin Americans, underrepresented
populations

INTRODUCTION

Over the past years, GWAS have identified thousands of genetic
associations to multiple phenotypes (MacArthur et al., 2017;
Visscher et al., 2017), targets for potential new drugs (Agrawal
and Brown 2014; Flannick et al., 2014; Nelson et al., 2015), and
facilitated disease stratification (Chatterjee, Shi, and García-
Closas 2016). However, most GWAS have been performed in
populations with European ancestry (Popejoy and Fullerton
2016). Unfortunately, the findings of large-scale GWAS
performed in populations of European descent have limited
portability to other ancestry groups (Duncan et al., 2019; Sirugo,
Williams, and Tishkoff 2019) due to population substructure.
This represents a major limitation in the case of Latin American
populations as they are the result of recent admixture primarily
between Native American, European, and African populations,
and only 1.3% of both discovery and replication studies have
been performed in these populations (Mills and Rahal 2019).
Furthermore, the genetic composition of Latin American
populations is heterogeneous between countries (Chacón-
Duque et al., 2018; Soares-Souza et al., 2018) and within
countries (Moreno-Estrada et al., 2014; Harris et al., 2018;
Kehdy et al., 2015). Different demographic histories often
lead to different associated variants to a given phenotype
(Martin et al., 2017). For example, variants in the SLC16A11
gene have been associated with an increased risk of diabetes in
Mexicans and appear to be segregating at low frequency in Latin
American populations specifically (SIGMA Type 2 Diabetes
Consortium et al., 2014). Likewise, risk variants of renal
disease in APOL1 associated with renal disease in west
African populations are also found in the Americas as a
result of the Transatlantic slave trade, differentially shaping
the frequency spectrum of disease variants among Afro-
descendent Latino populations (Nadkarni et al., 2018). If the
current bias in catalogs of human variation persists, many
population-specific variants will be overlooked, and precision
medicine strategies will not benefit all populations equally
(Martin et al., 2019).

A critical step when performing a GWAS is genotype
imputation, which leverages linkage disequilibrium (LD)
structure and haplotype sharing to estimate untyped variation
in a SNP array based on a reference panel (Marchini et al., 2007).
Genotype imputation increases statistical power, improves fine-
mapping of association signals, and facilitates meta-analysis
(Marchini and Howie 2010). Currently, available imputation
panels do not have an explicit representation of Native
American genomes. A previous study showed that in Latin
American populations, SNPs in chromosomal segments with

Native American ancestry have reduced imputation quality
compared to those in chromosomal segments of European
ancestry (Martin et al., 2017). Therefore, association signals
coming from chromosomal segments with Native American
ancestry will be harder to detect. This limits the scope and
impact of biomedical research in the region.

Several projects and initiatives around the world are
contributing to revert this trend (GenomeAsia100K
Consortium 2019; Mulder et al., 2018; Gurdasani et al., 2015;
Magalhães et al., 2018). For example, the Ugandan Genome
Resource (Gurdasani et al., 2019) comprises genome-wide data
for 6,400 individuals, including a subset of 1,978 whole genomes,
which is enabling researchers to explore the genetic substructure
of the region, improve imputation in African populations, and
foster the discovery of novel association signals. In Latin America,
recent sequencing efforts have generated whole-genome data
from dozens of Native American genomes, including the
Peruvian Genome Project (Harris et al., 2018) and the 12G
and 100G-MX Projects (Romero-Hidalgo et al., 2017; Aguilar-
Ordoñez et al., 2021) from the National Institute of Genomic
Medicine (INMEGEN) in Mexico. However, only a subset of the
existing generated data is available to the scientific community
given the data sharing mechanisms implemented in each country.
An ongoing multi-institutional effort in Mexico, the MX Biobank
Project, is generating genome-wide data for more than 6,000
individuals nationwide, including 50 whole genomes of Native
American ancestry representing the genetic variation of
indigenous diversity within Mexico (http://www.
mxbiobankproject.org). At a global scale, the inclusion of
diverse populations in disease association research has been
well demonstrated by the PAGE study (Wojcik et al., 2019),
which combines genome-wide data for 49,839 individuals with
diverse ancestries, enabling the discovery of novel association
signals to well-studied phenotypes. Here, we combine novel and
publicly available data from multiple sources to build a
population-specific reference panel of Native American
variation aimed at improving imputation performance in Latin
American populations by expanding the current and widely used
reference of the 1,000 Genomes Project (1KGP) (The 1000
Genomes Project Consortium et al., 2015) with 134 Native
American genomes. Using a demographic simulation
framework, we also explore the number of additional reference
genomes that should be sequenced to bridge the gap in
imputation quality between different ancestries. Strengthening
these efforts in diverse populations is not only a question of
equality in genomics, but it also entails the scientific advantage of
furthering our understanding of complex phenotypes in
biomedical research.
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MATERIALS AND METHODS

Building a Native American Reference Panel
Our panel consists of 134 Native American individuals broadly
distributed across the continent (Figure 1; Supplementary
Tables S1, S2). We gathered publicly available whole-genome
sequencing (WGS) data from HGDP (Bergström et al., 2020)
(61 individuals), SGDP (Mallick et al., 2016) (11 individuals),
and INMEGEN (Romero-Hidalgo et al., 2017) (12 individuals).
Additionally, we whole-genome sequenced the genome of 50
Mexican individuals with the highest Native American ancestry
(99% on average) from the MX Biobank Project (http://www.
mxbiobankproject.org). These were selected to maximize
indigenous ancestry and geographical representation across
Mexico. Individual genetic ancestry proportions were
estimated using ADMIXTURE (Alexander, Novembre, and

Lange 2009) at K � 3 using Utah residents with Northern
and Western European ancestry (CEU), Yoruba in Ibadan,
Nigeria (YRI), and the Latin Americans (AMR) of 1KGP as
references.

To construct the panel, we restricted the datasets to biallelic
SNPs with no missing data in any individual across each data
source. This was done for all four data sources (Supplementary
Table S3). The data processing was done using VCFtools v0.1.17
(Danecek et al., 2011). Then, we merged the data using bcftools
v1.9 (Danecek et al., 2021) using the flag --missing-to-ref that fills
the missing positions in one panel but present in another with
homozygous reference. To minimize any potential bias
introduced with this strategy, we made sure that any
previously removed position in any of the sources was not
present in the final freeze. The final dataset consists of a total
of 10,981,451 SNPs.

FIGURE 1 | Native American reference panel (NATS). (A) Geographical sampling locations of the NATS reference panel. Colors represent the four data sources:
HGDP (61) (Bergström et al., 2020), SGDP (11) (Mallick et al., 2016), INMEGEN (12) (Romero-Hidalgo et al., 2017), and MX Biobank (50) totaling 134 genomes. (B) SNP
proportions of the union of 1KGP and NATS (1KGP + NATS) by SNP sharing categories. We show the proportion of SNPs unique to 1KGP, SNPs unique to the NATS
panel, and the intersection. (C) Unsupervised ADMIXTURE analysis at K � 3 of the NATS reference panel (far left, N � 134) together with 104 European (CEU), 113
African (YRI), and 347 admixed Latin American (AMR) samples from 1KGP. Genetic ancestry abbreviations: AFR—African, EUR—European, NAT—Native American.
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Finally, we phased the data using SHAPEIT2 v2. r837
(Delaneau et al., 2014) using the following flags: --window 0.5
--states 500 --burn 10 --prune 10 --main 50. Then, we converted
the data to the reference format used by IMPUTE2 (Howie et al.,
2012). We named this panel NATS.

Whole-Genome Sequencing and Variant
Calling
Fifty individuals from the MX Biobank Project were sequenced at
40X on Illumina HiSeqX instruments using dual indexed
barcodes. The raw reads were aligned to the human genome
assembly GRCh37 using BWA v.0.7.17-r1198-dirty (Li and
Durbin 2009). We added the mate tags with Samblaster
v0.1.24 (Faust and Hall 2014) and used Sambamba v0.7.1
(Tarasov et al., 2015) for file conversion and sorting. To
generate the alignment statistics, we used Samtools v1.10 (Li
2011) with the option depth -a. Finally, we performed variant
calling and generated the final gvcf files with GATK v4.1.9.0
(McKenna et al., 2010) using the human genome assembly
GRCh37 as the reference genome. Details are available as part
of the Supplementary Material (Supplementary Table S2;
Supplementary Figure S9).

Creating a SNP Array Subset From WGS
Data for Imputation Performance
Evaluation
To evaluate the performance of our panel, we used WGS data
from the 347 AMR individuals in 1KGP as target individuals for
imputation. Namely, Puerto Ricans in Puerto Rico (PUR),
Peruvians in Lima (PEL), Colombian in Medellin (CLM), and
Mexican ancestry in Los Angeles (MXL). We generated an array
dataset by subsetting the AMR individual genomes to the existing
positions in the Multi-Ethnic Global Array (MEGA) using
VCFtools v.0.1.17 and saved the removed positions from the
WGS data to use for imputation validation. Illumina’s MEGA
array includes nearly 1.8 M markers (1,779,819) genome-wide
distributed and was designed to leverage SNP content from
various global sequencing efforts, mostly Phase 3 of the 1,000
Genomes Project. To better approximate a real scenario, we
unphased the array dataset with Plink v1.9 (Chang et al.,
2015) by transforming the data to bed format. Finally, we
phased the dataset again with SHAPEIT2 v2. r837 using 1KGP
as a phasing reference.

Local Ancestry Inference
To evaluate the performance by ancestry, we deconvoluted local
ancestry for the Latin American individuals from 1,000 Genomes.
We used 70 YRI individuals in 1KGP as the African reference, 70
CEU individuals from 1KGP as the European reference, and 70
Native American individuals from (Moreno-Estrada et al., 2014)
as the Native American reference. The selected individuals had
the highest African, European, and Native American genetic
components, respectively. We used the PopPhased version of
RFMix v.1.5.4 (Maples et al., 2013) with the following flags: -w 0.2
-e 0 --forward-backward.

Imputation and Imputation Performance
We implemented a leave-one-out strategy for imputation.
Namely, the target individual was removed from the 1KGP
reference. We performed imputation with IMPUTE2 for
chromosomes 2 and 9. These chromosomes, being the largest
and of intermediate size, respectively, were selected to ensure a
representative subset of variants across the genome while keeping
the project within the available computational capacity. We used
1KGP and 1KGP + NATS as reference panels. When using 1KGP
as a reference, we used the flag --k_haps 1,000, and when using
1KGP + NATS, we used the flags --merge-ref-panels and
--k_haps 1,250.

We obtained the imputed dosages with the formula: P(Aa) +
2P(aa). We computed the Pearson squared correlation (r2)
between the imputed dosages and the real dosages for each
individual using R software. Overall imputation accuracy was
stratified by minor allele frequency and local ancestry diplotype
(AFR_AFR, AFR_EUR, AFR_NAT, EUR_EUR, EUR_NAT,
NAT_NAT). We also compared the number of SNPs above
the GWAS quality threshold (MAF >�0.01 and INFO >0.3)
for both reference panels stratified by local ancestry diplotype
in the target individuals.

Demographic Simulation
We simulated neutral genetic sequence data under a coalescent
model. We used the msprime (Kelleher, Etheridge, and McVean
2016) option of stdpopsim (Adrion et al., 2020) to simulate a
previously defined American admixture model for Latinos
(Browning et al., 2018). It models African, European, and
Asian (as Native American proxy) demographic history and
an admixture event taking place 12 generations ago. In the
absence of realistic admixture models that use Native
American instead of East Asian genomes as proxy in the
simulations and based on the framework described by
Browning et al. (2018), we will now refer to the simulated
Asian population as Native American for the purpose of
predicting imputation performance at incremental numbers of
reference genomes in a similar scenario to the Latin American
admixture. The simulated admixed population ancestral
proportions are 1/6 African, ⅓ European, and ½ Native
American. In total, we simulated chromosome 9 for 661
Africans, 503 Europeans, 3,000 Native Americans, and 657
admixed individuals. We selected all the Africans, Europeans,
and the first 347 admixed individuals to serve as the base
reference panel (note that these numbers mirror the sample
sizes of 1KGP for each ancestry). The remaining 300 admixed
individuals were used as imputation targets, and incremental
subsets of the 3,000 Native American genomes were added
sequentially to the base reference panel.

To simulate genotype array data for the target individuals, we
downsampled the simulated neutral sequence to match the allele
frequency spectrum in European populations of 1KGP and the
average distance between SNPs of the MEGA array. We used the
European populations in 1KGP to mirror the ascertainment bias
towards European ancestry in current array designs. We
estimated local ancestry using RFMix for the 300 admixed
individuals used as imputation targets. We randomly selected
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100 simulated individuals from each ancestral population
(African, European, and Asian) as references for the local
ancestry inference. Here, again, we used Asians as the closest
proxy for Native Americans in the available simulation model.

We conducted imputation with the base reference panel plus a
varying number of additional reference genomes (0, 100, 134,
200, 400, 600, 800, 1,000, 1,500, 2000, and 3,000). Finally, we
compared imputation r2 of using different reference panels
stratified by local ancestry and allele frequency in the target
individual genomes.

RESULTS

TheNative American Reference Panel NATS
We built a Native American reference panel (NATS)
representing indigenous populations across Latin America.
The panel consists of publicly available data [HGDP
(Bergström et al., 2020), SGDP (Mallick et al., 2016), and
INMEGEN (Romero-Hidalgo et al., 2017)] and 50 new
genomes from the MX Biobank Project (Materials and
Methods, and Supplementary Table S2). While most of the
genomes in the panel are from indigenous groups in Mexico
(103 of 134; 76.8%) (Figure 1A; Supplementary Table S1), our
panel also encompasses native groups from Colombia, Brazil,
and Peru. When merging NATS with 1KGP, the total number
of SNPs is 102,336,497, of which 24,518,242 (24%) are unique
to our panel (Figure 1B). The amount of non-indigenous
admixture in our panel is less than 1.5% overall
(Figure 1C). Only some Mayan individuals from HGDP
show between 0.8 and 23% of European admixture (on
average 6%) (Supplementary Table S1). Overall, our panel
has 98.5% of Native American genetic ancestry. We
acknowledge that, while this panel includes as many
genomes as possible from those publicly available at the
time of publication, it does not fully capture the genetic
variation of the vast ethnic diversity in the continent. It is
intended to serve as a first approximation to evaluate the
impact of ancestry representation in imputation performance.

Imputation Performance of the NATS
Reference Panel
To assess the impact of our panel on imputation performance, we
imputed the AMR individuals (from Colombia, Peru, Puerto

Rico, and Mexico in 1KGP) at SNPs not found on the MEGA
array using a leave-one-out strategy, with either 1KGP or 1KGP +
NATS as reference panels (Materials andMethods). We chose the
MEGA array because it was specifically designed to capture global
variation better. We compared the mean number of SNPs above
the standard quality threshold for human genetic studies (MAF
>� 1% and INFO >� 0.3) using the two reference panels. We were
able to increase the number of SNPs above the quality threshold
across the four populations using our NATS panel (Table 1). The
magnitude of the increase is correlated with the individual’s
proportion of native ancestry (Supplementary Figure S1).
Furthermore, the majority of these SNPs fall into diploid
European tracts of the genome (Supplementary Figure S2)
regardless of the ancestry composition of each population, and
which reference panel was used for imputation. This is because
even though the 1KGP has as many African individuals as
Europeans, European ancestry is more predominant in AMR
individuals.

To determine imputation accuracy, we computed the
correlation between the real allele dosages and the imputed
dosages (Materials and Methods). We checked imputation
accuracy in 1KGP admixed individuals trimmed down to SNP
array positions stratified by diploid ancestry (Figure 2A). Overall,
imputation accuracy is worse in AMR populations with the
highest proportion of Native American ancestry
(Supplementary Figure S3). As previously reported (Martin
et al., 2017), the ancestry tracts that perform the worst are the
ones that are underrepresented in the reference panel, specifically
African and Native American. Next, we evaluated imputation
accuracy using our panel (1KGP + NATS). We were able to
increase imputation accuracy particularly in rare alleles
(frequency >0.003 and <0.008) with diploid Native ancestry of
the Mexican population (p-value < 0.05 two-tailed paired t-test)
(Figure 2B) but not for the other populations (Supplementary
Figure S3) or in common frequencies (Supplementary Figure
S4). Interestingly, we do not see the same increase in the Peruvian
population, which has the highest proportion of Native American
ancestry overall. This could be explained by the fact that the
majority of our reference data comes from native Mexicans
(Figure 1A; Supplementary Table S1). Since rare variants
tend to be more private to each population (Biddanda, Rice,
and Novembre 2020), we could better impute rare alleles in
admixed Mexicans. This suggests that, to see a similar
improvement in accuracy in the other populations, we would
need to include more native individuals from each local region.

TABLE 1 | SNPs above the standard quality threshold using both panels after imputing missing variants. We show the average number of SNPs with MAF >� 0.01 and INFO
>� 0.3 using both reference panels and the overall proportion of Native American ancestry of the population. p-value was calculated with a two-tailed paired t-test. The
average number of SNPs with MAF <0.01 and INFO >0.3 for both panels is shown in Supplementary Table S4.

Population SNPs above quality
threshold (1KGP)

SNPs above quality
threshold (1KGP +

NATS)

Increase of SNPs
using 1KGP +

NATS

Average proportion of
Nat. American ancestry

Peru (PEL) 244,818 248,087 3,269 (p-value � 2.03e-49) 0.70
Mexico (MXL) 265,619 268,254 2,635 (p-value � 6.5e-31) 0.42
Colombia (CLM) 279,828 281,911 2,163 (p-value � 8.3e-47) 0.18
Puerto Rico (PUR) 291,035 292,734 1,699 (p-value � 2.9e-67) 0.06
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Surprisingly, we could also see an improvement in
diploid European ancestry tracts in the Mexican population
(p-value < 0.05 two-tailed paired t-test for SNPs with
frequency >0.003) (Figure 2B). One possible explanation is
that because our NATS reference panel still keeps a minor
fraction of European ancestry, some European haplotypes at
higher frequency in Mexico could be better captured by
reference genomes with such a genetic mixture. In some cases,
like variants of frequency <0.02 and >0.009 with diploid Native
ancestry in PEL, we could also observe a slight decrease in
imputation accuracy using NATS. This could result from the

uncertainty added to the data in the cross-imputation step that
IMPUTE2 performs when merging two reference panels (Howie,
Marchini, and Stephens 2011).

Predicting Imputation Improvement From
Additional Native American Genomes Using
Simulations
Our results show that after adding 134 Native American
genomes to the most widely used reference panel of global
variation, we observe a promising trend of improvement. Still,

FIGURE 2 | Imputation accuracy by local ancestry and population using both reference panels. (A) Imputation accuracy of the four AMR populations stratified by
diploid local ancestry for the MEGA array using 1KGP as reference panel. (B) Imputation accuracy for the Native and European diploid ancestries using 1KGP and 1KGP
+ NATS as reference panel focusing on rare alleles. Imputation accuracy was calculated with the Pearson squared correlation between imputed and real allele dosages.
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we do not come close enough to equal the imputation
performance for other better represented ancestries. The
question remains of how many additional genomes are still
needed to close the gap. To explore this, we employed
demographic simulations using stdpopsim (Adrion et al.,
2020) and msprime (Kelleher, Etheridge, and McVean 2016)
to generate data for a previously defined American admixture
model (Browning et al., 2018). This approach allows us to
explore a simulated scenario where three divergent
populations intermingle to form a new admixed population
(like it occurred in Latin America). With this, we can replicate
the current situation where reference data are mostly available
for two of the three source populations. By being able to
simulate any amount of data, we can assess how many
genomes of the underrepresented population (in our case,
Native Americans) are necessary to equal imputation
performance across ancestries. Briefly, the model simulates
African, European, and Asian source populations. In the
context of this analysis, the Asian population serves as a
proxy for a Native American reference. We do not directly
simulate a Native American population due to the lack of
realistic admixture models that incorporate Native American
instead of East Asian genomes as proxy in the inference of
demographic parameters, which are needed to properly
run the simulations. Building such demographic model is
beyond the scope of this study, so given the available model
and since this project focuses on Latin American
populations, we will refer to the simulated Asian
population as Native American. The model also simulates
an admixed population that consists of 1/6 African, ⅓

European, and ½ Native American. We generated a base
reference panel consisting of 661 Africans, 503 Europeans,
and 347 admixed individuals (matching 1KGP sample sizes
for those ancestries), as well as 3,000 Native American
individuals to add sequentially to the base reference, and
300 additional admixed individuals as imputation targets
(Materials and Methods).

We confirmed the ancestry proportions of our simulated data
usingADMIXTURE (Supplementary Figure S5). To replicate the
imputation pipeline, we created a genotype array dataset for the
simulated target individuals by matching mean distance between
markers and frequency in the European population of SNPs in
the MEGA array to the simulated array, to mirror the bias in
standard arrays (Materials and Methods and Supplementary
Figure S6). Then, we imputed the 300 target individuals with
the base reference plus either 0, 100, 134 (to mirror the sample
size in NATS), 200, 400, 600, 800, 1,000, 1,500, 2000, or 3,000
Native Americans. We were able to recover roughly the same
pattern of imputation accuracy (Supplementary Figure S7).
Namely, accuracy decreased the less represented the ancestry
was in the base reference with the Native American as the worst-
performing ancestry. One caveat is that the best-performing
ancestry is African contrary to what we see in the real data
(Figure 2A). This is likely because the 661 African individuals are
from the population that contributed to the admixed population
in the simulation, which is not the case for real data. Different
African ancestries contributed more or less to different Latin

American populations (Micheletti et al., 2020) and not all are
present in 1KGP.

When incorporating additional Native American genomes,
imputation accuracy only increased in those tracts with any
Native ancestry (Supplementary Figure S8). Furthermore, for
imputation accuracy in Native American diploid ancestry tracts
to equal that in European diploid ancestry tracts, 3,000 Native
genomes were needed for variants with frequency>�2%, while
1,500 were enough for variants with frequency <2% (Figure 3A).
To ask whether we reach a saturation point in the increase of
imputation accuracy in the Native diploid ancestry, we compared
the difference between accuracy in the base reference versus each
additional reference. As expected, the behavior is different for
common (frequency >0.05), low (frequency <0.05 and >0.01),
and rare (frequency <0.01) variants (Figure 3B). Neither of them
seems to show a saturation point at 3,000 newly added Native
genomes. The steepest increase is achieved for the rare alleles,
whereas for the common alleles, the increase is slower. This agrees
with the previous result where more genomes were needed to
match the Native imputation accuracy to the European one for
common variants. It is also evident that the variants of common
frequency are closest to saturation in accuracy as their values were
already close to one (Figure 3A).

DISCUSSION

GWAS requires large sample sizes to detect genetic associations
to complex phenotypes, and more so as the field moves toward
studying rare variants (Collins 2012; Amendola et al., 2018; Abul-
Husn and Kenny 2019). Therefore, SNP array platforms will
continue to inform GWAS even as whole-genome sequencing
costs continue to drop. In this scenario, imputation tools and
genome variation resources are vital to increasing the statistical
power to discover associations in understudied populations. So
far, GWAS have mainly focused on populations with European
ancestry (Popejoy and Fullerton 2016; Mills and Rahal 2019) and,
over the past years, interesting discoveries have been made
(Visscher et al., 2017). However, not all GWAS results are
portable between populations (Martin et al., 2017; Duncan
et al., 2019; Sirugo, Williams, and Tishkoff 2019). To ensure
that these advances reach all people equitably, we must expand
these studies to other populations. Other recent projects around
the world have sought to reverse this trend (Gurdasani et al.,
2015, 2019; GenomeAsia100K Consortium 2019; Magalhães
et al., 2018; Mulder et al., 2018) improving imputation
accuracy, fine mapping of associations, and discovering novel
associations to well-studied phenotypes. We sought to add to this
trend by creating a Native American imputation reference panel
merging publicly available Native American genomes (Mallick
et al., 2016; Romero-Hidalgo et al., 2017; Bergström et al., 2020)
with 50 novel genomes.

One major caveat of our panel is that it does not
comprehensively reflect the indigenous genetic variation across
the Americas. Most of the data come from individuals from
Mexico. Furthermore, the 134 genomes added are only a small
increment (5%) with respect to 1KGP. The contribution of this
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FIGURE 3 | Predicted imputation accuracy according to demographic simulations. (A) Imputation accuracy in the diploid Native American (solid colored lines) and
diploid European (thick dashed line) ancestries using different simulated reference panels of incremental sizes. Ref 0 stands for the base reference (as it has 0 additional
reference genomes). Given the available demographic model (Browning et al., 2018), a simulated Asian population was used as a proxy for Native American ancestry for
the purpose of reproducing a three-way admixture process with similar ancestry proportions of African, European, and Native American sources to that observed in
admixed Latino populations (see Methods for details). (B) Increase in imputation accuracy from the base reference in the Native American diploid ancestry at increasing
sizes of the reference panel by allele frequency [common (0.5–0.05), low (0.05–0.01), and rare (0.01–0.003)].
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panel is small in comparison to projects like the Uganda Genome
Resource that sequenced 1,978 novel genomes (Gurdasani et al.,
2019). Even with these limitations in mind, we were able to
quantify the consequences of the lack of Native American
genomes in commonly used imputation reference panels using
empirical and simulated data analyses, while highlighting what
this means for ongoing and future studies in the region.

Our panel increased the number of SNPs above the standard
quality threshold for human genetic studies increasing statistical
power in the four AMR populations of 1KGP. This mirrors what
has been achieved by other studies in other populations (Ahmad
et al., 2017; Magalhães et al., 2018; Gurdasani et al., 2019). The
magnitude of this increase is positively correlated with the
proportion of Native American ancestry. In other words, our
panel has a stronger impact on individuals with higher Native
American ancestry. However, even after using our panel, the
majority of SNPs that were above the quality threshold are in
chromosomal segments of the genome with European diploid
ancestry, regardless of the proportion of European ancestry in the
population, due to an over-representation of this ancestry in the
reference panel. This means that, when doing a GWAS, the
genetic signals predominantly found on the European ancestry
will be easier to detect.

We were able to increase imputation accuracy in rare variants
of Native American diploid ancestry in the MXL population. This
was not the case for the other three populations. We expected
that, since PEL is the population with the highest Native
American ancestry proportion, it would also be the population
most benefited by the use of our extended panel. However, there
can be high levels of genetic differentiation among Native
American groups, even if they are geographically close
(Moreno-Estrada et al., 2014). In light of this fact, it is not a
surprise that our panel, constructed with a majority of Native
American individuals from Mexico, only improves accuracy in
the MXL population. This suggests that to observe similar results
in other populations, we should include more individuals of those
populations in our panel. We also observed an increase in
accuracy in some variants of European diploid ancestry. This
could be attributed to the small fraction of European admixture
present in the whole genomes of our extended panel, despite
being enriched for Native American ancestry. Also, some of these
European haplotypes could have better-captured variation found
in European ancestry segments of MXL individuals. Finally, to
achieve an overall increase in imputation accuracy across the
whole spectrum of variant frequencies as achieved in other
studies (Ahmad et al., 2017; Gurdasani et al., 2019), we would
need a larger Native American reference panel, as quantified by
our simulations.

These results are important with regard to not only GWAS but
also their further applications. For instance, one of the
applications of GWAS summary statistics is Polygenic Risk
Scores (PRS). PRS calculates the genetic “risk” of an individual
for a particular phenotype by summing the risk alleles present in
that individual (Torkamani, Wineinger, and Topol 2018). PRS
necessitates summary statistics calculated in a population as close
as possible to the target individuals to be accurate. Previous
studies have shown that this is not a trivial task (Tropf et al.,

2017; Sirugo, Williams, and Tishkoff 2019; Mostafavi et al., 2020).
Even among European populations, PRS estimates vary widely
depending on the source of summary statistics due to population
structure (Berg et al., 2019; Sohail et al., 2019). To have accurate
PRS for the Latin American population, we need to have more
studies in the region. Furthermore, our results show that we also
need a better imputation panel for these populations to avoid a
bias towards identifying genetic signals present on the European
ancestry background.

The question of how much data are needed remained. To
answer it, we employed demographic simulations. We
replicated the same pattern of imputation accuracy of our
data and of previous studies (Martin et al., 2017). Our
strategy shows that we would need at least 3,000 Native
American genomes to equal imputation accuracy of Native
diploid ancestry to that of European diploid ancestry across
all variant frequencies. This number holds for populations such
as MXL with roughly similar ancestral proportions as the
simulated admixed population. The minimum number of
necessary new genomes will change depending on the
proportion of native ancestry of the target population. Our
study provides a framework for future projects to decide how
many resources to allocate to the generation of whole-genome
data. Furthermore, we have shown that rare variants are the
most benefited by the addition of new data. This will prove
particularly relevant as the field moves towards studying that
end of the variant frequency spectrum (Cirulli et al., 2020;
Minikel et al., 2020). Overall, our results show the
importance of generating more diverse imputation panels to
enable genetic discoveries in a broader spectrum of human
diversity and to procure equity as scientific advancements in
precision medicine should extend globally in benefit of all.
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