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Background: Emerging scientific evidence has shown that long non-coding RNAs
(lncRNAs) exert critical roles in genomic instability (GI), which is considered a hallmark
of cancer. To date, the prognostic value of GI-associated lncRNAs (GI-lncRNAs) remains
largely unexplored in lung adenocarcinoma (LUAC). The aims of this study were to identify
GI-lncRNAs associated with the survival of LUAC patients, and to develop a novel GI-
lncRNA-based prognostic model (GI-lncRNA model) for LUAC.

Methods: Clinicopathological data of LUAC patients, and their expression profiles of
lncRNAs and somatic mutations were obtained from The Cancer Genome Atlas database.
Pearson correlation analysis was conducted to identify the co-expressed mRNAs of GI-
lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment
analyses were conducted to determine the main biological function and molecular
pathways of the differentially expressed GI-lncRNAs. Univariate and multivariate Cox
proportional hazard regression analyses were performed to identify GI-lncRNAs
significantly related to overall survival (OS) for construction of the GI-lncRNA model.
Kaplan–Meier survival analysis and receiver operating characteristic curve analysis were
performed to evaluate the predictive accuracy. The performance of the newly developed
GI-lncRNA model was compared with the recently published lncRNA-based prognostic
index models.

Results: A total of 19 GI-lncRNAs were found to be significantly associated with OS, of
which 9 were identified bymultivariate analysis to construct the GI-lncRNAmodel. Notably,
the GI-lncRNA model showed a prognostic value independent of key clinical
characteristics. Further performance evaluation indicated that the area under the curve
(AUC) of the GI-lncRNA model was 0.771, which was greater than that of the TP53
mutation status and three existing lncRNA-based models in predicting the prognosis of
patients with LUAC. In addition, the GI-lncRNA model was highly correlated with
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programed death ligand 1 (PD-L1) expression and tumor mutational burden in
immunotherapy for LUAC.

Conclusion: The GI-lncRNAmodel was established and its performance was found to be
superior to existing lncRNA-based models. As such, the GI-lncRNA model holds promise
as a more accurate prognostic tool for the prediction of prognosis and response to
immunotherapy in patients with LUAC.
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INTRODUCTION

Lung cancer is one of the most common malignancies and causes
the largest number of cancer-related deaths globally (Bray et al.,
2018; Siegel et al., 2019). Lung cancer is histologically
heterogeneous with lung adenocarcinoma (LUAC) as the most
common pathological subtype, accounting for approximately
40% of all lung cancer cases (Denisenko et al., 2018).
Although substantial progress and advances have been made
in both the diagnosis and treatment of LUAC (e.g., surgical
resection, immunotherapy, chemotherapy, targeted therapy),
which have greatly improved the clinical outcome of LUAC
patients, the prognosis of LUAC is still far from satisfactory
with a 5-years survival rate as low as 21% (Macheleidt et al., 2018).
Therefore, the development of a reliable prognostic tool is needed
to precisely identify high-risk patients, and the implementation of
optimal interventions is of great significance to improve patient
prognosis in LUAC.

Genomic instability (GI), usually referred to as the high frequency
of genetic mutations, is a hallmark of cancer, and these mutations
allow cancer cells to adapt to environmental stress and drive the
development of more aggressive cancer cells (Lengauer et al., 1998;
Negrini et al., 2010). Abnormal transcriptional or post-
transcriptional regulation potentially leads to gene mutations and
chromosomal aberrations such as cell cycle checkpoints, DNA
replication, DNA repair, mitosis, and epigenetic regulation (Soca-
Chafre et al., 2019; Tam et al., 2019). For example, the aberrant
expression of cell cycle-associated genes, such as cyclins and cyclin-
dependent kinases, causes chromosomal change and promotes
tumor progression (Broustas and Lieberman, 2014). A previous
study revealed that nearly 2.5% of cancers can be attributed to
mutations in DNA repair genes (Parry et al., 2017). Notably, lung
cancer has the second highest frequency of somatic mutations
(Kandoth et al., 2013), with an abnormal number of
chromosomes, namely aneuploidy, which is detected in more
than 60% of patients with non-small cell lung cancer, and
genomic duplication occurs in more than 40% of patients with
lung cancer (Burgess et al., 2020). These previous findings indicate
the pivotal role of GI in the development and progression of lung
cancer.

Long non-coding RNAs (lncRNAs), an emerging class of
ncRNAs (Mattick and Rinn, 2015), exert regulatory roles in both
genomic stability and GI (Liu, 2016; Nair et al., 2020). For example,
the lncRNA GUARDIN promotes the expression of telomeric
repeat-binding factor 2 by competitively binding to microRNA-
23a, thus maintaining genomic stability (Hu et al., 2018). LncRNA

LINC00657 inhibits mitosis, DNA repair, and DNA replication via
binding to PUMILIO protein, which is essential for the maintenance
of genomic stability (Elguindy et al., 2019). In contrast, lncRNA
CCAT2 promotes carcinogenesis and GI (Chen et al., 2020). Given
that lncRNAs have unique roles in maintaining genomic stability
and promoting GI, we hypothesized that GI-associated lncRNAs
may have prognostic value in LUAC.

In this study, we comprehensively analyzed the gene
expression profiles, somatic mutations, and corresponding
clinical data of LUCA patients from The Cancer Genome
Atlas (TCGA) database, with the aim of developing a novel
GI-lncRNA prognostic model to better predict the clinical
outcomes of LUAC patients.

MATERIALS AND METHODS

Data Acquisition and Processing
The level 3 transcriptome profiles of 535 LUAC tissues and 59
histologically normal tissues, somaticmutation profiles of 561 LUAC
samples, and corresponding clinicopathological data of 522LUAC
cases were acquired from TCGA database. For transcriptome
profiles, mRNA data and lncRNA data were separated into a
mRNA expression matrix and lncRNA expression matrix. For
somatic mutation profiles, total mutation frequency of each case
and frequency of themutant gene were computed in all LUAC cases.
After the LUAC cases with a survival time less than 30 days or
incomplete follow-up information were excluded from further
analyses, 490 patients with LUAC were randomly allocated into
two cohorts: a training cohort (n � 246) and testing cohort (n � 244).
The training cohort was used to identify GI-lncRNAs independently
associated with overall survival (OS) for development of the
prognostic index model, while the testing and total cohorts were
used for validation of the newly developed model. The
clinicopathological characteristics of patients in the training and
testing cohorts are presented in Table 1.

Identification of GI-Associated lncRNAs in
LUAC
To identify GI-lncRNAs in LUAC, we initially computed the total
somatic mutations of each case and integrated them with the
lncRNA expression matrix by the sample names. According to
the mutator hypothesis-derived computational frame as
previously described (Bao et al., 2019), we ranked the LUAC
patients by total somatic mutations, and defined the top 25% of
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cases as the genome unstable-like (GU-like) group and the last
25% cases as the genome stable-like (GS-like) group. Then we
performed differential expression analyses between the GU-like
group and GS-like group using the “limma” R package, and
lncRNAs with a false discovery rate (FDR) less than 0.05 and |
logFC| > 1 were identified as GI-lncRNAs. A heatmap and
volcano plot were constructed to visualize these differentially
expressed lncRNAs using the “igraph” R package.

Hierarchical Clustering Analysis of the
Differentially Expressed lncRNAs
We performed hierarchical clustering analysis of GI-lncRNAs in
the LUAC cases. Briefly, “sparcl,” “pheatmap,” and “limma” R
packages were used to compute Euclidean distances, and LUAC
cases were stratified into two clusters. Then the clusters matrix
was integrated with total somatic mutations count matrix. By
comparing the median mutation counts of two clusters, the
cluster with lower mutation count was defined as the GS-like
cluster, while the other was defined as the GU-like cluster. Then
the difference in total somatic mutation counts between two
clusters was explored using the “limma” R package. Given that
ubiquilin-4 (UBQLN4) has been demonstrated to be a driver gene
of GI and is overexpressed in malignant tumors (Jachimowicz
et al., 2019), we compared the expression levels of UBQLN4
between the two clusters in this study.

Gene Co-expression Network and
Functional Enrichment Analysis
To reveal the potential biological function and molecular
pathways of GI-lncRNAs, we performed gene co-expression

analysis to identify their co-expressed mRNAs. Pearson
correlation analysis was performed to identify mRNAs that
were co-expressed with the GI-lncRNAs using the “limma” R
package by the threshold of correlation coefficient >0.3 and p <
0.05. The top 10 co-expressed mRNAs were selected for
subsequent analyses of the gene co-expression network using
the “igraph” R package. Then Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed for the co-expressed mRNAs by the
“clusterProfiler” R package. Molecular pathways with p < 0.05
were considered significantly enriched.

Construction and Validation of the
GI-Associated lncRNA Signature
The training cohort was used to identify GI-lncRNAs
independently associated with OS for construction of the
prognostic index model. In brief, univariate Cox regression
analysis was performed to identify GI-lncRNAs significantly
related to OS (p < 0.05) using the “survival” R package. These
GI-lncRNAs were subsequently subjected to multivariate Cox
proportional hazard regression analysis to construct the optimal
prognostic model (termed GI-lncRNAsSig) using the “survival”
and “survminer” R packages. Patients’ risk score of the GI-lncSig
was calculated as follows: risk score � Σ (ExpmRNAn ×
βmRNAn). According to the median risk score, patients were
stratified into high- and low-risk groups. Kaplan–Meier survival
analysis and receiver operating characteristic (ROC) analysis
were used to evaluate the performance of the GI-lncRNAsSig
for the prediction of OS using the “survminer” and
“survivalROC” R packages. Finally, the testing cohort was used
to validate the prognostic performance of the developed GI-
lncRNAsSig in patients with LUAC.

Clinical Risk Stratification and Independent
Prognostic Value of the GI-lncRNA-Based
Model
To explore the applicability of the GI-lncRNA-based prognostic
model, we performed clinical risk stratification in the total TCGA
cohort. In brief, LUAC patients were stratified into subgroups
based on clinical characteristics including age (≤65 and >65),
gender (female and male), tumor stage (I–II and III–IV),
pathologic T classification (T1-2 and T3–4), pathologic N
classification (N0 and N1–3), and pathologic M classification
(M0 andM1). Each subgroup was further stratified into high- and
low-risk groups according to the median risk score of the newly
developed GI-lncRNA-based model. Kaplan–Meier survival
analysis was performed to explore the survival difference
between the high- and low-risk groups. Multivariate Cox
regression analysis was performed to determine whether the
GI-lncRNA-based model could have independent prognostic
value in the training, testing, and total cohorts.

Statistical Analyses
Statistical analyses were conducted using R software version 4.0.2.
The Mann–Whitney test was used to compare quantitative data

TABLE 1 | Characteristics of patients in the training, testing, and total cohorts.

Covariates Training cohort Testing cohort Total cohort p Value

Age (%)
≤65 years 116 (47.15%) 115 (47.13%) 231 (47.14%) 0.999
>65 years 124 (50.41%) 125 (51.23%) 249 (50.82%) —

Unknown 6 (2.44%) 4 (1.64%) 10 (2.04%) —

Gender (%)
Female 127 (51.63%) 135 (55.33%) 262 (53.47%) 0.465
Male 119 (48.37%) 109 (44.67%) 228 (46.53%) —

Clinical stage (%)
Stage I-II 192 (78.05%) 186 (76.23%) 378 (77.14%) 0.704
Stage III-IV 50 (20.33%) 54 (22.13%) 104 (21.22%) —

Unknown 4 (1.63%) 4 (1.64%) 8 (1.63%) —

T stage (%)
T1-2 212 (86.18%) 214 (87.7%) 426 (86.94%) 0.620
T3-4 33 (13.41%) 28 (11.48%) 61 (12.45%) —

Unknown 1 (0.41%) 2 (0.82%) 3 (0.61%) —

N stage (%)
N0 162 (65.85%) 155 (63.52%) 317 (64.69%) 0.520
N1-3 77 (31.3%) 85 (34.84%) 162 (33.06%) —

Unknown 7 (2.85%) 4 (1.64%) 11 (2.24%) —

M stage (%)
M0 160 (65.04%) 164 (67.21%) 324 (66.12%) 0.810
M1 13 (5.28%) 11 (4.51%) 24 (4.9%) —

Unknown 73 (29.67%) 69 (28.28%) 142 (28.98%) —
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between different groups, and the chi-squared test was used to
compare categorical data between groups. p < 0.05 (if not
specified) was considered statistically significant.

RESULTS

Identification of GI-lncRNAs in LUAC
We initially performed comprehensive analyses of the somatic
mutation profiles of 561 LUAC cases, and the resulting data are
presented in Supplementary Tables S1, S2 and Supplementary
Figure S1. Somatic mutations were detected in the majority of
LUAC tumor tissues (449/561, 88.95%) affecting 18,498 genes. The
tumor protein p53 (TP53) (n � 272), giant-muscle filament titin (n �
265), mucoprotein-16 (n � 244), ryanodine receptor 2 (n � 228), and
CUB and sushi multiple domains 3 (n � 215) were the top five most
frequently mutated genes. After integrating the lncRNA expression
matrixwith the somaticmutations by the sample names, the top 25%
cases with the highest mutation frequency were defined as the GU-
like group, and the last 25% cases with the lowest mutation
frequency were defined as the GS-like group. Differential analyses
with the heatmap and volcano plot revealed that the expression levels
of 138 lncRNAs were significantly different between the GU-like
group and GS-like group, in which 59 were significantly upregulated
and 79 were significantly downregulated (FDR <0.05, |logFC| > 1)
(Figure 1). Based on the 138 differentially expressed lncRNAs, 490
LUAC patients were stratified into two clusters by hierarchical
clustering analysis (Figure 2A). The cluster with the higher
somatic mutation count was defined as the GU-like cluster, while
the other was defined as the GS-like cluster. As shown in Figure 2B,
the total somatic mutation count of the GU-like cluster was

significantly higher than that of the GS-like cluster (p < 0.001).
Notably, the expression of UBQLN4, a driver gene of GI, was
significantly upregulated in the GU-like cluster (p < 0.001;
Figure 2C). These results suggest that the 138 differentially
expressed lncRNAs could be considered GI-lncRANs in LUAC.

Functional Annotation and Molecular
Pathway Analysis of GI-LncRNAs in LUAC
To reveal the potential biological functions and disrupted molecular
pathways of the 138 GI-lncRNAs, we performed GO and KEGG
enrichment analyses for their co-expressed mRNAs, which were
identified by Pearson correlation analysis using a threshold of
correlation coefficient >0.3 and p < 0.05. As shown in
Figure 2D, a lncRNA-mRNA co-expression network was
conducted using the GI-lncRNAs and their top 10 co-expressed
mRNAs by the “igraph” R package. GO enrichment analysis
indicated that the biological processes of the co-expressed
mRNAs were mainly related to the formation of GI including
cell cycle regulation, double-strand break repair, and DNA
integrity checkpoint (Figure 2E). KEGG enrichment analysis
indicated that these co-expressed mRNAs were enriched in
molecular pathways associated with GI including cell cycle
regulation, p53 signalling pathway, transcriptional dysregulation,
nucleotide excision repair, and base excision repair (Figure 2F).
Interestingly, programmed death-ligand 1 (PD-L1) expression and
the programmed cell death protein 1 (PD-1) checkpoint pathway
was enriched in these co-expressed mRNAs. Together, these results
suggest that these 138 lncRNAs are closely associated with GI, and
their aberrant expression may disrupt the lncRNA-mRNA
regulatory network, thus promoting GI.

FIGURE 1 | Heatmap and volcano plot of differentially expressed lncRNAs in LUAC. (A) Heatmap of differentially expressed lncRNAs in the GS-like group versus
the GU-like group. The upregulated lncRNAs are denoted in red, and the downregulated lncRNAs are indicated in green; (B) Volcano plot of differentially expressed
lncRNAs in the GS-like group versus the GU-like group. The upregulated lncRNAs are denoted in red, the downregulated lncRNAs are indicated in green, and the
unaltered lncRNAs are denoted in black.
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FIGURE 2 | Functional annotation of GI-lncRNAs in LUAC patients. (A) Hierarchical clustering analysis of differentially expressed lncRNAs in the two clusters: GS-
like cluster and GU-like cluster; (B) Somatic mutation counts in the GS-like cluster and GU-like cluster; (C) Comparison of expression levels of UBQLN4, a driver gene of
GI, between the GS-like cluster and the GU-like cluster; (D) Network analysis of the relationship between GI-lncRNAs and mRNAs; (E) GO analysis; (F) KEGG pathway
analysis.
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Construction and Validation of the
GI-lncRNA-Based Prognostic Model
To identify GI-lncRNAs with prognostic value, univariate Cox
regression analysis was performed in the training cohort. Among
the 138 GI-lncRNAs, 19 were significantly associated with OS,
including 9 risk factors for OS and 10 protective factors
(Figure 3). Furthermore, multivariate Cox proportional hazard
regression analysis identified nine GI-lncRNAs to construct the
optimal prognostic model. The risk score to predict OS in LUAC
patients was calculated as follows: risk score � (−0.192 *
expression of LINC02159) + (−0.059 * expression of
AC025154.2) + (0.049 * expression of LINC01671) + (0.051 *
expression of FAM83A-AS1) + (−0.113 * expression of
AC125603.1) + (0.423 * expression of AC021218.1) + (−0.409
* expression of AF131215.5) + −0.126 * expression of RHOXF1-
AS1) + (0.151 * expression of LINC01116).

The performance of the newly constructed prognostic model
was initially evaluated in the training cohort. After LUAC
patients were stratified into high- and low-risk groups based
on the median risk score of the prognostic model
(Supplementary Table S3), Kaplan–Meier survival analysis
showed a significant difference in OS between the groups
(Figure 4A), with significantly poorer prognosis found in the
high-risk group compared to the low-risk group (p < 0.001;
Figure 4B). ROC curve analysis revealed that the area under
the curve (AUC) value of the newly developed model was 0.771,
indicating good performance in predicting the prognosis of
patients with LUAC (Figure 4C). The prognostic model was
validated using the testing cohort and total cohort in which
LUAC patients were stratified into high- and low-risk groups
in accordance with the median risk score of the prognostic model

(Supplementary Tables S4, S5). Kaplan–Meier curve analysis
indicated a significantly worse OS in the high-risk group (p �
0.024; Figure 4D) with the poorer OS correlated with higher risk
scores (Figure 4E). The AUC value was 0.747. Similar results
were obtained in the total cohort (Figures 4G–I). These results
indicated that the performance of the newly develop GI-lncRNA-
based prognostic model was well validated for the prediction of
OS in patients with LUAC.

Determination of the Independent
Prognostic Value of the GI-lncRNA-Based
Model for LUAC
To determine if the newly developed GI-lncRNA model could
independently predict prognosis, we initially performed risk
stratification analysis based on key clinical characteristics of
LUAC patients and risk scores of the GI-lncRNA model.
Patients were stratified into different subgroups by key clinical
characteristics, including age (≤65 and >65), gender (female and
male), tumor stage (I-II and III-IV), pathologic T classification
(T1-2 and T3-4), pathologic N classification (N0 and N1-3), and
pathologic M classification (M0 and M1). Patients in each
subgroup were further stratified into the high- and low-risk
groups according to the risk scores of the GI-lncRNA model.
As shown in Figure 5, Kaplan–Meier analysis showed that the OS
of patients in the high-risk group was significantly worse than
that of the low-risk group in all subgroups (p < 0.05), except for
patients in the M1 subgroup and patients in the racial group of
African American, which could be due to the relatively small
sample size of the two subgroups. However, the OS of the low-risk
group was better than that of the high-risk group in both
subgroups, whereas there was no significant difference. To

FIGURE 3 | GI-lncRNAs associated with the prognosis of LUAC patients in the univariate Cox regression analysis. A total of 19 GI-lncRNAs were significantly
associated with OS, including 9 risk factors for OS and 10 protective factors.
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further determine whether the GI-lncRNA-based prognostic
model could independently predict OS, we performed
univariate Cox regression and multivariate Cox regression
analyses in the training cohort, testing cohort, and total
cohort. As illustrated in Table 2, the GI-lncRNA-based
prognostic model was independent of key clinical
characteristics to predict OS in LUAC patients in the training,
testing, and total cohorts (all p < 0.05).

Performance Comparison of the Newly
Developed GI-lncRNA Model With TP53
Mutation Status and Existing
LncRNA-Based Models for Predicting the
OS of LUAC Patients
In this study, TP53 was found to be the most frequently mutated
gene in LUAC (Supplementary Figure S1), therefore, we

FIGURE 4 | Performance evaluation and validation of the newly developed GI-lncRNA-based model for the prediction of OS in LUAC patients. Kaplan–Meier
analysis of OS between the high-risk group and low-risk group in (A) the training cohort, (D) the testing cohort, and (G) the total cohort; The relationship between OS and
risk-risk scores of the new prognostic model in the (B) the training cohort, (E) the testing cohort, and (H) the total cohort; The receiver operating curves for the new
prognostic model in (C) the training cohort, (F) the testing cohort, and (I) the total cohort.
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FIGURE 5 | Kaplan–Meier analysis of OS between the high-risk and low-risk groups in LUAC patients with different clinical characteristics. Kaplan–Meier curves of
LUAC patients with different clinical characteristics, including (A) age (≤65/>65); (B) gender (female/male); (C) race (Caucasian American/African American); (D) stage of
lung cancer (Stage I-II/III-IV); (E) pathologic T stage (T1-2/T3-4); (F) pathologic N stage (N0/N1-3); (G) pathologic M stage (M0/M1).
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analyzed the TP53 mutation pattern between the high- and low-
risk groups as stratified by the newly developed GI-lncRNA
model. As shown in Figures 6A–C, the frequency of TP53
mutation was different in the high- and low-risk groups. In
the training cohort, TP53 mutation was detected in 60.7% of
patients in the high-risk group, which was significantly higher
than the 41.7% in the low-risk group (p � 0.005; Figure 6A).
Similar results were obtained in the testing cohort (Figure 6B)
and total cohort (Figure 6C). Given that TP53 mutation status is
closely related to GI and it has been proposed as a biomarker with
prognostic value in lung cancer (Zhou et al., 2019; Freudenstein
et al., 2020), we further evaluated the performance between the
newly developed GI-lncRNAs and TP53 mutation status in
predicting the OS of patients with LUAC. According to the
TP53 mutation status and risk score of the GI-lncRNA model,
LUAC patients were further classified into four groups: TP53
Wild/high risk group, TP53 Wild/low risk group, TP53,
Mutation/high risk group, and TP53 Mutation/low risk group.
As illustrated in Figure 6D, Kaplan–Meier analysis indicated the
OS was significantly different among these four groups (p <
0.001). In the TP53 wild-type (WT) group, patients with a high
risk score (referred to as TP53 Wild/high risk) had a worse OS
than those with low risk score (referred to as Wild/low risk). In
the TP53 mutation group, patients with a high risk score (referred
to as TP53 Mutation/high risk) also had a worse OS than those
with a low risk score (referred to as TP53 Mutation/low risk). In
the low-risk group, patients with WT TP53 (TP53 Wild/high
risk) had a better OS than those with TP53 mutation status (TP53
Mutation/high risk). However, in the high-risk group, the OS of
patients with TP53 wild-type (TP53 Wild/high risk) was similar

to those with TP53 mutation type (TP53 Mutation/high risk),
indicating that TP53mutation status failed to discriminate the OS
of patients in the high-risk group. Interestingly, the OS of the
TP53 Mutation/low risk group was better than that of the TP53
Wild/high risk group. Thus, these findings indicate the overall
better prognostic value of the GI-lncRNA model than the TP53
mutation status.

We further conducted a performance comparison of the GI-
lncRNAs with three recently published lncRNA-based prognostic
models, including 7 lncRNA signatures from Li et al. (referred to
as LiLncSig) (Li et al., 2020), 7 lncRNA signatures from Zhou
et al. (referred to as JinLncSig) (Jin et al., 2020), and 13 lncRNA
signatures from Zhou et al. (referred to ZhouLncSig) (Zhou et al.,
2020). As shown in Figure 7, the AUC for the newly developed
GI-lncRNAmodel was 0.757, which was significantly greater than
that of LiLncSig (AUC, 0.653), JinLncSig (AUC, 0.696), and
ZhouLncSig (AUC, 0.689). These data indicate that the newly
developed GI-lncRNA model is superior to the three published
lncRNA-based models.

Value of the GI-lncRNA Model in Predicting
Response to Immunotherapy
KEGG enrichment analysis showed that PD-L1 expression and the
PD-1 checkpoint pathway was enriched in the co-expressed mRNAs
of GI-lncRNAs; thus, we further examined the expression pattern of
PD-L1 and PD-1 in patients in different risk groups to explore the
potential value of the newly developed GI-lncRNA model in
predicting response to immunotherapy. As shown in Figures
8A,B, despite the significantly worse OS of patients in the high-

TABLE 2 | Univariate and multivariate analyses of risk factors associated with the prognosis of LUAC patients.

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H Pvalue HR HR.95L HR.95H Pvalue

Training cohort (n � 246)
Age — 0.998 0.974 1.022 0.842 — — — —

Gender Male/Female 0.941 0.577 1.535 0.808 — — — —

Clinical stage (III + IV)/(I + II) 1.629 1.293 2.051 <0.001 1.247 0.888 1.752 0.202
T stage (T3+T4)/(T1+T2) 1.588 1.202 2.099 0.001 1.049 0.737 1.494 0.790
N stage (N1+N2+N3)/N0 2.743 1.663 4.525 <0.001 2.207 1.193 4.082 0.012
M stage M1/M0 1.977 0.840 4.649 0.118 — — — —

Risk score High/Low 1.283 1.194 1.379 <0.001 1.303 1.197 1.417 <0.001
Testing cohort (n � 244)
Age — 0.995 0.969 1.022 0.735 — — — —

Gender Male/Female 1.282 0.796 2.064 0.307 — — — —

Clinical stage (III + IV)/(I + II) 1.529 1.230 1.901 <0.001 1.223 0.885 1.692 0.223
T stage (T3+T4)/(T1+T2) 1.657 1.228 2.235 0.001 1.330 0.967 1.828 0.079
N stage (N1+N2+N3)/N0 2.579 1.588 4.187 <0.001 1.944 1.041 3.630 0.037
M stage M1/M0 1.670 0.760 3.670 0.202 — — — —

Risk score High/Low 1.003 1.001 1.005 0.007 1.003 1.001 1.006 0.003
Total cohort (n � 490)

Age — 0.997 0.979 1.014 0.700 — — — —

Gender Male/Female 1.076 0.765 1.512 0.675 — — — —

Clinical stage (III + IV)/(I + II) 1.585 1.353 1.858 <0.001 1.268 0.879 1.830 0.205
T stage (T3+T4)/(T1+T2) 1.588 1.301 1.939 <0.001 1.272 1.007 1.607 0.043
N stage (N1+N2+N3)/N0 2.561 1.817 3.609 <0.001 1.813 1.078 3.047 0.025
M stage M1/M0 1.897 1.068 3.371 0.029 0.982 0.403 2.393 0.969
Risk score High/Low 1.003 1.001 1.005 0.004 1.003 1.001 1.006 0.002
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FIGURE 6 |Comparison of the GI-lncRNA-basedmodel and TP53 status for the prediction of OS in LUAC. Comparison of TP53mutation status between the high-
risk group and low-risk group stratified by the risk scores of the GI-lncRNA-based model in (A) the training cohort, (B) the testing cohort, and (C) the total cohort; (D)
Kaplan–Meier analyses of LUAC patients in the following four groups stratified by the TP53 mutation status and risk score of the GI-lncRNA-based model: TP53 Wild/
high risk group, TP53 Wild/low risk group, TP53 Mutation/high risk group, and TP53 Mutation/low risk group.
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risk and high PD-1 (PDCD1) group (p < 0.001), there was no
significant difference in PD-1 expression between the high-
and low-risk groups (p � 0.338), whereas the expression level
of PD-L1 (CD274) in the high-risk group was significantly
higher than that in the low-risk group (p � 0.006; Figure 8C)
and the OS of the high-risk and high PD-L1 groups was
significantly worse than that of the low-risk and PD-L1
groups (p < 0.001; Figure 8D). These findings indicate
that the GI-lncRNA model can be used to predict the
response to anti-PD-L1 immunotherapy. Combining tumor
mutational burden (TMB) and PD-L1 expression greatly
enhances the predictive power of response to
immunotherapy efficacy (Hellmann et al., 2018). Given the
hypothesis that patients with increased GI may have a higher
frequency of somatic mutations and TMB, we further
compared the difference in TMB between the high- and
low-risk groups. Interestingly, the TMB of the high-risk
group was significantly higher than that of the low-risk
group (p < 0.001; Figure 8E), and Kaplan–Meier analysis
indicated a significantly worse OS in patients with high TMB
and in the high-risk group (p < 0.001; Figure 8F). In addition,
we assessed the correlation between the GI-lncRNA model
and PD-L1/TMB in the training cohort and testing cohort. As
shown in Supplementary Figure S1, PD-L1/TMB was
significantly higher in both cohorts. Therefore, LUAC
patients in the high-risk group may benefit more from
immunotherapy compared with those in the low-risk
group, suggesting the value of the newly developed GI-
lncRNA model for predicting the response to
immunotherapy in patients with LUAC.

DISCUSSION

The prognostic value of GI-lncRNAs in patients with LUAC remains
largely unexplored. The key novel findings of this study were as
follows. Nineteen GI-lncRNAs associated with OS were identified in
patients with LUAC. Nine GI-lncRNAs were significantly correlated
with OS, which were used to generate the newly developed GI-
lncRNA-based prognostic model. The GI-lncRNA model performed
well with an AUC of 0.771, which was greater than the AUCs of the
TP53 mutation status and three reported lncRNA-based models in
predicting prognosis of patients with LUAC. The GI-lncRNA model
showed a prognostic value independent of key clinical characteristics.
TheGI-lncRNAmodel was strongly correlatedwith PD-L1 andTMB,
suggesting its value in predicting the response to immunotherapy in
patients with LUAC. Together, these findings support the newly
established GI-lncRNA model as a potentially better prognostic
approach to predicting the prognosis and response to
immunotherapy in LUAC patients.

Despite great advances in the diagnosis and treatment of lung
cancer, OS is still considerably low and lung cancer remains the most
common cause of cancer-related deaths globally (Lee et al., 2018).
Traditional clinical parameters such as tumor-node-metastasis stage,
tumor size, regional lymph node metastasis, and distant metastasis
have long been used for prognosis prediction in lung cancer. However,
these conventional prognostic factors are not always convincible, as
patients with the same clinical and pathological characteristics may
encounter completely different clinical outcomes (Liu et al., 2019).
Therefore, a prognostic approach with high accuracy may assist
clinicians in making optimal treatment decisions to improve the
patient survival. The past several decades have witnessed great
progress in understanding the biological mechanisms of
tumorigenesis, development, and progression. One of the major
breakthroughs was the involvement of GI in tumorigenesis and
the therapeutic response (Negrini et al., 2010). Lung cancer has the
second highest somatic mutation burden, just second to melanoma,
indicating the potential prognostic and diagnostic value of GI
(Kandoth et al., 2013). An increasing number of studies have
suggested that the aberrant expression of lncRNAs plays a key role
in GI (Liu, 2016; Nair et al., 2020). Therefore, identifying GI-lncRNAs
in the whole genome and exploring their prognostic value are of great
significance.

In this study, we identified 138 GI-lncRNAs in LUAC using
the computational frame as previously reported by Bao et al.
(2019). GO analysis showed that the biological processes of the
co-expressed mRNAs of 138 lncRNAs were enriched in
pathways of cell cycle regulation and DNA damage
response, such as cell cycle checkpoint and double-strand
break repair. Cell cycle checkpoints are the dynamically
surveillance mechanism of major events in cell cycle that
ensure the order, integrity and fidelity of cell replication,
and dysregulation of cell cycle checkpoints that often
accompany GI (Anand et al., 2020). For example, p53, a
major cell cycle checkpoint of G2/M phase, plays an
important role in DNA replication by halting the cell cycle
at G2 phase and allowing the repair mechanism to restore
genomic stability (Williams and Schumacher, 2016). Double-
strand break repair is another important mechanism for

FIGURE 7 | Performance comparison of the GI-lncRNA-based model
with existing lncRNA-based prognostic models for LUAC. The receiver
operating curves for the new prognostic model and the recently published
lncRNA-based models for predicting the prognosis of LUAC patients.
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maintaining genomic stability (Terasawa et al., 2014). In light
of KEGG analysis, the co-expressed mRNAs were also
enriched in molecular pathways of cell cycle regulation
and DNA damage repair (e.g., cell cycle, transcriptional

dysregulation in cancer, p53 signaling pathway, and
nucleotide excision repair) in association with maintenance
of genomic stability. These results further confirmed that
these 138 lncRNAs were closely linked to GI. In addition, the

FIGURE 8 | Value of the GI-lncRNA model for predicting the response to immunotherapy. Comparison of expression levels of (A) PDCD1, (C) CD274 between the
low-risk and high-risk groups stratified by the risk scores of the GI-lncRNA-based model; Kaplan–Meier curve analysis of OS in (B) the low-risk group with low PDCD1
versus high-risk group with high PDCD1, and (D) low-risk group with low CD274 versus high-risk group with high CD274; (E) Comparison of difference in tumor
mutational burden (TMB) between the high- and low-risk groups; (F) Kaplan–Meier analysis of OS in the low-risk group with low TMB versus high-risk group with
high TMB.
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co-expressed mRNAs were enriched in the MAPK signaling
pathway, which is involved in cancer invasion and metastasis
(Wei et al., 2017; Wen et al., 2019). Therefore, we postulated
that the abnormal expression of these differentially expressed
lncRNAs may disrupt the lncRNA-mRNA regulatory network,
thereby leading to GI and promoting the invasive and metastatic
capacity of tumor cells. Then we identified GI-lncRNAs related to
OS and constructed a GI-lncRNA model consisting of nine
lncRNAs to predict clinical outcomes in the training cohort.
Among the nine GI-lncRNAs used for construction of the GI-
lncRNA model, the biological functions of FAM83A-AS1 and
LNC01116 have been well illustrated in LUAC. LncRNA
FAM83A-AS1 promotes LUAC cell proliferation, migration,
invasion and the epithelial–mesenchymal transition (EMT) by
competitively combining miR-150-5p with MMP14, and Wang
et al. reported that FAM83A-AS1 promotes the progression of
LUAC by enhancing its pre-mRNA FAM83A via the ERK
signaling pathway (Xiao et al., 2019). Zeng et al. reported that
the overexpression of LINC01116 contributes to tumor
proliferation and metastasis of LUAC cells, and Wang et al.
reported that LINC01116 contributes to cisplatin resistance via
the EMT process (Wang et al., 2020; Zeng et al., 2020). Although
the biological functions of AF131215.5 and RHOXF1-AS1 have not
been reported in cancer, our results are in accordance with previous
findings showing that these two lncRNAs are associated with the
OS of LUAC (Hou and Yao, 2021). The remaining five lncRNAs
have not been reported in lung cancer or other human cancers.
Their prognostic value and biological function need to be further
investigated in future research. The GI-lncRNA model stratified
LUAC patients into high- and low-risk groups with significantly
different OS, and ROC curve analysis showed the high sensitivity
and specificity of the GI-lncRNA model, which were further
confirmed in the testing cohort and total cohort. Stratification
analysis showed that the GI-lncRNA model was applicable for all
clinical subgroups, and multivariate Cox regression analysis
revealed that the GI-lncRNA model was an independent
prognostic factor for OS in the training, testing, and total
cohorts. These results indicate that the GI-lncRNA model may
be a promising non-invasive biomarker for OS prediction
in LUAC.

In the functional enrichment analysis, we found that the co-
expressed mRNAs were enriched in the PD-L1 expression and
PD-1 checkpoint pathway, and further analyses revealed higher
PD-L1 expression with a significantly worse OS in the high-risk
group, indicating that GI-lncRNAs may also have regulatory
effects on PD-L1 expression. PD-L1 contributes to the
immune evasion of tumor cells by binding to PD-1 and
negatively modulating T-cell receptor signaling (Blank et al.,
2005; Pardoll, 2012). In recent years, unprecedented
achievements have been made in immune checkpoint
inhibitors (ICIs) targeting PD-1 or its ligand PD-L1 such as
nivolumab, atezolizumabm and pembrolizumab (Doroshow
et al., 2021). In fact, PD-L1 expression is the only test
approved by the U.S. Food and Drug Administration (FDA)
for ICI first-line treatment decision-making in lung cancer
(Borghaei et al., 2015). However, PD-L1 expression to predict
immunotherapy has limitations (e.g., variability and intra-tumor

heterogeneity) (McLaughlin et al., 2016). Moreover, patients with
low or no expression of PD-L1 may also have favorable responses
to ICIs (Frigola et al., 2021). TMB is another promising
biomarker for ICI response, which was approved by FDA for
the treatment decision of pembrolizumab in 2020 (Subbiah et al.,
2020). Though TMB and PD-L1 expression are unrelated, greater
benefit was found in patients with high TMB and high PD-L1
expression treated with anti-PD-1 and anti-PD-L1 agents in lung
cancer, indicating synergistic association of the two independent
biomarkers (Carbone et al., 2017; Peters et al., 2017; Hellmann
et al., 2018). Based on the hypothesis that accumulating genetic
alterations resulting from GI may lead to a higher TMB, we
further analyzed the pattern of TMB between different risk
groups, and found a significantly higher TMB in the high-risk
group. According to the above results, we infer that the GI-
lncRNAs may have potential for selecting LUAC patients who
will benefit more from immunotherapy.

This study had several limitations. First, the GI-lncRNAmodel
was developed and validated with retrospective data from TCGA
database. Although we tried to further validate it in the Gene
Expression Omnibus (GEO) database, some of the lncRNAs in
the GI-lncRNA model could not be found in the GEO datasets
due to a limited number of lncRNAs conserved in the Affymetrix
platform. Therefore, a prospective study in the real world will be
required to verify its clinical application value. Second, the
findings in this study could not explain how these lncRNAs
affect GI and malignant behaviors of tumor cells, for which future
in-depth mechanistic investigation is warranted to illustrate their
biological function and underlying mechanism. Third, it is worth
noting that the correlation between the GI-lncRNA model and
TMB/PD-L1 expression was not experimentally verified in
this study.

In conclusion, a novel prognostic model based on a panel of
GI-lncRNAs was established in this study. Notably, the new
prognostic model exhibits high prognostic accuracy and
overall better performance compared with the reported
lncRNA-based prognostic models. In addition, the GI-
lncRNA model may help predict which LUAC patient may
have a better response to immunotherapy. Therefore, this
newly constructed prognostic model may assist oncologists/
surgeons in navigating optimal treatment plans, thereby
enhancing survival and eventually improving the care of
LUAC patients.
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