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Essential gene prediction models built so far are heavily reliant on sequence-based

features, and the scope of network-based features has been narrow. Previous work from

our group demonstrated the importance of using network-based features for predicting

essential genes with high accuracy. Here, we apply our approach for the prediction

of essential genes to organisms from the STRING database and host the results in

a standalone website. Our database, NetGenes, contains essential gene predictions

for 2,700+ bacteria predicted using features derived from STRING protein–protein

functional association networks. Housing a total of over 2.1 million genes, NetGenes

offers various features like essentiality scores, annotations, and feature vectors for each

gene. NetGenes database is available from https://rbc-dsai-iitm.github.io/NetGenes/.
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1. INTRODUCTION

Essential genes are indispensable to organisms for their growth and reproduction. The deletion
of these genes will either compromise an organism’s viability or result in a profound loss of
fitness (Rancati et al., 2018). Classification of genes as essential and non-essential is challenging
since the essentiality of a gene depends on a variety of factors (Zhang et al., 2016). Various
computational approaches have been devised to predict essential genes, and most of them use
sequence-based features for training the model (Song et al., 2014; Liu et al., 2017; Nigatu et al.,
2017). A few studies have included network-based features in their machine learning (ML) model,
but only alongside sequence-based features (Hwang et al., 2009).

Our previous work (Azhagesan et al., 2018), hereafter referred to as “original paper”, utilized
a purely network-based feature set to predict gene essentiality. Essential genes for 27 bacterial
organisms were predicted using features extracted from protein–protein interaction networks. The
27 interactomes used in the original paper were phylogenetically diverse; this ensures that the
cohort is representative of a large class of bacterial interactomes. The model showed considerable
predictive power even when it was tested on genes from an unseen organism.

Here, we extend our previous research by using the same 27 phylogenetically diverse
interactomes to predict gene essentiality for a much larger array of bacterial networks. Retrieving
2,711 bacterial interactomes from STRING 11 (Szklarczyk et al., 2019), a graph mining method
called Recursive Feature Extraction (ReFeX) (Henderson et al., 2011) was employed in engineering
the features from the interactomes. Using the dataset from the original paper as the training set,
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we predicted the essential genes for each of the bacterial
interactomes. Our results are available via NetGenes, a
standalone web database.

2. METHODS

2.1. Interactome Data Collection and
Feature Engineering
STRING (https://string-db.org/) hosts one of the largest
collections of protein–protein interactomes (interaction
networks). An interactome draws edges between pairs of
functionally associated proteins and it includes almost all
proteins in an organism to form a single huge network. These
interactomes provide information about known and predicted
interactions and functional associations among proteins in
a given organism. A total of 5,090 interactomes available in
STRING version 11.0 were first retrieved. The Environment
for Tree Exploration (ETE) Toolkit is a Python framework
built for the analysis and visualization of phylogenetic trees
(Huerta-Cepas et al., 2016). NCBI taxonomy analysis offered by
the ETE library was used to classify the STRING interactomes
by phyla. Interactomes belonging to different phyla in Kingdom
Bacteria were separated from the cohort and used for our
essential gene predictions. From the 5,090 interactomes, a final
dataset comprising 2,711 bacterial interactomes was used for
building the model.

The main intent of original paper was to ascertain if network-
based features, such as centrality measures, can outperform
sequence-based features, such as length of sequence, amino acid
composition and GC content, in predicting gene essentiality.
For comparison, the model from the original paper was
compared with a previous study that used sequence-based
features to identify essential genes (Liu et al., 2017). The
results from the original paper (Azhagesan et al., 2018)
proved that the models using purely network-based features
can perform better than sequence-based features. Moreover, it
was also shown that combining sequence-based and network-
based features can further marginally improve the quality
of predictions.

The original paper experimented with various combinations
of network-based and sequence-based models. We here focus
on the widely applicable purely network-oriented features, and
therefore we used the “283 network” variant of the feature set
stated in the original paper. This set includes a number of
features including “ReFeX” features. ReFeX is a feature extraction
algorithm that recursively combines local and neighborhood
features of a given network and outputs “regional” features that
capture network behavior (Henderson et al., 2011). This feature
extraction algorithmwas applied on all the interactomes. In order
to replicate the performance of the original paper, the 267 ReFeX
features employed in the article were retrieved from the extracted
features. Along with these 267 features, 12 centrality measures,
clique number, clustering coefficient, biconnected components,
and weighted degree were added to the feature matrix, resulting
in the total of 283 features. A list of these features can be
found in the Supporting Information section of the original

FIGURE 1 | Workflow for creating NetGenes database. The initial 27

interactomes were used as the training dataset to build the machine learning

(ML) model. The 2711 interactomes were run through the ML model to obtain

the essential gene predictions. These predictions are curated and published in

the “NetGenes” database.

paper. Figure 1 illustrates the basic workflow for the building
of NetGenes.

2.2. Building the ML Model
For the training dataset, interactomes of the 27 species (see
Table 1) used in the original paper were taken, and their
features were computed to form the feature matrix. All 27
interactomes contained at least 50,000 edges and hence the
features extracted from them will be sufficient for a generalizable
model. Supplementary Table 1 outlines the statistics of these 27
interactomes. The labels for essential and non-essential genes
were taken from the Database of Essential Genes (DEG) (Luo
et al., 2014). All the genes present in DEG are considered as
essential genes in our dataset, and all other genes are taken
as non-essential genes. After mapping the DEG labels to the
protein IDs in the 27 interactomes, the final training data
consisted of 8,754 essential genes and 74,492 non-essential genes.
Random Forest Classifier implementation from the sci-kit learn
package (Pedregosa et al., 2018) was used as the ML algorithm.
In order to find the optimal adaptation parameters for Random
Forest, we performed 10-fold hyper-parameter optimization
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using Grid Search method available in sci-kit learn package. The
optimal parameter set was found to be {number of trees: 150,
criterion: “entropy”, max. features: “sqrt”}.

The validation method adopted was “leave-one-species-out”
(LOSO), where we trained the model on all species but one,
and tested its performance on the remaining (one left out)
species. There existed a huge imbalance between the positive
labels (essential genes) and negative labels (non-essential genes);
therefore, the dataset sampler from “pandas” library was used
to under-sample the negative dataset (McKinney, 2010; The
Pandas Development Team, 2020). A 10-fold cross-validation
was employed to increase the robustness of the model and ensure
that all the negative labels were featured at least once in the
training dataset. AUROC score is used as the scoring metric
for the model and it is calculated using sci-kit learn package.
Statistical tests were performed using scipy package (Virtanen
et al., 2020).

3. RESULTS

3.1. Predictions on DEG15 Dataset
Illustrate Model Generalizability
Recently, DEG released an update, DEG 15 (Luo et al., 2021),
with an increase in essential gene labels and also including seven
newer organisms. To assess the generalizability of our model, we
performed two experiments. In the first experiment, we used the
DEG10 labels to build a classifier, while in the second, we used
the updated DEG15 labels to build a classifier. In both cases, we
made predictions on all 34 organisms, as indicated in Table 1.
The changes in DEG15 increased our model’s AUROC by 4% on
average per organism; yet, a t-test between the AUROC scores
for DEG10 and DEG15 datasets showed that the difference was
not statistically significant (p = 0.356). In practice, increasing
the dataset size boosts the variance and, in turn, reduces the
classification capability of the model (L’Heureux et al., 2017). But
the fact that the change in model performance is not statistically
significant, even when the dataset size increased by≈29,200 data
points (≈90,400 genes in DEG10 vs. ≈119,600 genes in DEG15,
as illustrated in Supplementary Table 1) shows that our model
has excellent generalization capacity. Overall, the average LOSO
AUROC for the 27 organisms in DEG10 dataset was 0.77. We
retained this model for predictions in the NetGenes database,
since the increase in AUROC was not substantial for DEG15.

3.2. The NetGenes Database
The results obtained from the model are cleaned, compiled
organism-wise, and converted to a comma-separated values
(CSV) format. These files are hosted as a web-database called
“NetGenes”. The HTML files are created in-house and hosted as
GitHub Pages (https://pages.github.com/).

The complete database contains predictions for 2,163,702
essential genes spread across 2,711 bacterial organisms. The
homepage is equipped with pagination and hosts a dynamic
search bar and download links for each organism. An “Individual
species” page contains a table of all predicted essential
genes for the particular bacterial organism along with the

TABLE 1 | Table showing LOSO AUROC scores for DEG10 and DEG15 datasets.

Organisms AUROC-DEG10 AUROC-DEG15

Acinetobacter sp. ADP1 0.83 0.87

Burkholderia pseudomallei K96243 0.65 0.72

Bacillus subtilis 0.87 0.90

Burkholderia thailandensis E264 0.90 0.95

Bacteroides thetaiotaomicron VPI-5482 0.72 0.70

Escherichia coli K-12 substr MG1655 0.85 0.90

Caulobacter crescentus NA1000 0.91 0.91

Campylobacter jejuni 0.66 0.67

Francisella tularensis novicida U112 0.75 0.81

Haemophilus influenzae 0.53 0.65

Helicobacter pylori 26695 0.59 0.67

Mycoplasma genitalium 0.62 0.82

Mycoplasma pulmonis 0.81 0.75

Pseudomonas aeruginosa UCBPP-PA14 0.77 0.76

Pseudomonas aeruginosa 0.67 0.81

Porphyromonas gingivalis ATCC 33277 0.77 0.88

Mycobacterium tuberculosis H37Rv 0.74 0.90

Staphylococcus aureus NCTC 8325 0.82 0.92

Staphylococcus aureus N315 0.85 0.70

Shewanella oneidensis 0.88 0.80

Streptococcus pneumoniae R6 0.72 0.92

Streptococcus pyogenes NZ131 0.85 0.74

Streptococcus sanguinis SK36 0.92 0.86

Salmonella typhimurium LT2 0.70 0.95

Sphingomonas wittichii RW1 0.82 0.72

Salmonella enterica serovar Typhi Ty2 0.89 0.72

Vibrio cholerae 0.63 0.85

*Acinetobacter baumannii ATCC 17978 0.69 0.79

*Burkholderia cenocepacia J2315 0.72 0.79

*Campylobacter jejuni 81176 0.78 0.82

*Mycobacterium tuberculosis H37Rv II 0.72 0.80

*Mycoplasma pneumoniae M129 0.81 0.72

*Ralstonia solanacearum GMI1000 0.79 0.78

*Rhodopseudomonas palustris CGA009 0.75 0.69

Organisms prefixed with “*” are exclusive to the DEG15 dataset.

gene’s preferred name, functional annotation of the gene, and
confidence scores. The STRING database offers an Application
Programming Interface (API) through which one can retrieve
annotations and information about a gene. This API was used
to retrieve the preferred names and functions of the gene.
The confidence scores stated are the predicted probabilities
of the genes to be essential, obtained from the ML model.
For a gene to be classified as essential in our model, it
should score a predicted essentiality probability of at least 70%.
Therefore, the essentiality score runs from 70.0 to 100.0 in
the database.

The website also has a “Downloads page” (Figure 2) where the
user can download a ZIP file containing all the prediction data
along with the annotations and score. Links to download training
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FIGURE 2 | Screenshot of Downloads page in the NetGenes database.

dataset and featurematrices used in the predictionmodel can also
be found in Downloads page.

4. DISCUSSION

Here, we presented a standalone web database called NetGenes,
which contains computationally predicted essential genes of
2,711 bacterial organisms. Extending anMLmodel we previously
developed (Azhagesan et al., 2018), we extract network features
from as many as 2,711 bacterial interactomes from the STRING
database and predict essential genes.

The highlight of this study is that features extracted from
protein–protein interaction networks were able to provide good
classification capacity between essential and non-essential genes.
One important fact to note here is that there is a third class
of genes based on essentiality called “fitness genes”, whose
essentiality varies depending on the survival conditions. Such
genes are not taken into account in our model since there is not
enough representation of this third class in order to include it
as a separate prediction class. However, as and when sufficient
data are available to label genes appropriately, it will be possible

to also predict fitness genes by building on the ML models
presented here.

Given the extreme paucity of experimentally validated gene
essentiality data, the high-confidence predictions generated via
this database are likely to be highly useful to experimentalists,
for prioritizing genes and generating new hypotheses for
experimental validation. The database is easy to access and also
provides annotations and ready connections to the STRING
database to enable further analyses.
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