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Homologous recombination (HR) is an essential pathway for DNA double-strand break 
(DSB) repair, which can proceed through various subpathways that have distinct elements 
and genetic outcomes. In this mini-review, we highlight the main features known about 
HR subpathways operating at DSBs in human cells and the factors regulating subpathway 
choice. We examine new developments that provide alternative models of subpathway 
usage in different cell types revise the nature of HR intermediates involved and reassess 
the frequency of repair outcomes. We discuss the impact of expanding our understanding 
of HR subpathways and how it can be clinically exploited.
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REPAIR OF DSBS BY HR

Cells have evolved multiple mechanisms to preserve genome integrity and restore structural 
and functional properties of the genome following DNA damage. DNA double-strand breaks 
(DSBs) are critical lesions whose timely and accurate repair is important for cellular viability 
and genomic stability. Cells are equipped with multiple pathways to repair DSBs, the most 
prominent of which are non-homologous end-joining (NHEJ) and homologous recombination 
(HR). HR provides a high-fidelity mechanism for repair in cycling cells but is restricted to 
the S and G2 phases of the cell cycle. In contrast to NHEJ, which involves ligating the break 
ends together, HR involves copying sequences from an intact donor to restore any lost information. 
HR is also important for the faithful duplication of the genome by providing means of tolerating 
replication stress and overcoming lesions resulting from replication fork obstruction such as 
single-stranded DNA (ssDNA) gaps and one-ended DSBs.

Homologous recombination at DSBs can proceed in multiple subpathways, but the initial 
steps are functionally similar and involve common factors. Briefly, HR commences with the 
5ꞌ–3ꞌ extensive resection of break ends by nucleases to generate 3ꞌ ssDNA overhangs, which 
are then coated by replication protein A (RPA). The breast and ovarian cancer susceptibility 
protein 2 (BRCA2) then loads the recombinase RAD51 to ssDNA, replacing RPA and forming 
a nucleoprotein filament to initiate the homology search for complementary sequences. Once 
homology is found, a displacement loop (D-loop) is formed, where a primer-template junction 
allows DNA repair synthesis to proceed. After repair synthesis completion, HR can proceed 
by the displacement of the extended break end from the D-loop and annealing to the 
complementary sequence at the non-invading end, a subpathway referred to as synthesis-
dependent strand annealing (SDSA). An alternative mechanism involves the formation of a 
joint structure containing a four-way junction between the recombining strands, known as a 
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Holliday junction (HJ). This can occur through the annealing 
of the non-invading end to the displaced strand of the D-loop 
in a second-end capture step, or possibly by simultaneous 
invasion of the two resected ends into the donor and subsequent 
extension. To allow proper chromosome segregation, the two 
intertwining strands must be separated, which can occur through 
two mechanisms with distinct genetic outcomes. Double HJs 
(dHJs) are prominent HR intermediates and are predominantly 
processed by helicase- and topoisomerase-dependent dissolution 
that separates the recombining molecules without genetic 
exchanges. Alternatively, these joint molecules (JMs, used in 
this manuscript to refer to post DNA synthesis structures) can 
be  resolved by the structure-selective nucleases to give rise to 
crossover (CO) or non-CO products at an expected equal 
frequency. HR can also proceed through a third, non-canonical 
subpathway termed break-induced replication (BIR), which is 
characterized by long-range conservative DNA synthesis from 
the invading DSB end without engagement of the second end 
and displaying a high propensity to form genomic rearrangements 
and point mutations. Over the past decade, our understanding 
of DSB repair pathway choice between NHEJ and HR was 
greatly enhanced (a topic also reviewed in this issue), which 
proved useful in many applications, including delineating 
mechanisms of cellular responses to cancer therapy and finding 
new drug targets. However, less attention has been paid to 
HR subpathway choice, our understanding of which falls short 
especially in human cells. This review aims to focus on the 
differences between the known HR subpathways, what is known 
about subpathway choice and the mechanistic and clinical 
implications of these distinct mechanisms.

HR SUBPATHWAY OUTCOMES

One feature that is often used to distinguish between the 
different HR subpathways is their propensity to cause genetic 
exchanges. Although canonical HR is known to be  of high 
fidelity compared to NHEJ, COs are considered harmful as 
they can lead to loss of heterozygosity (LOH) if exchanges 
occur between homologous chromosomes (Moynahan and Jasin, 
1997). Translocations, deletions, or inversions can result if COs 
occur between repeated DNA by non-allelic homologous 
recombination (Moynahan and Jasin, 1997; Wright et al., 2018). 
However, it is worth noting that these occur rarely as spontaneous 
events and while promoted by DSB induction, they are largely 
suppressed in somatic cells (Stark and Jasin, 2003). An important 
mechanism to attenuate possible detrimental outcomes is the 
predominant use of the sister chromatid as donor instead of 
the homologous chromosome, which renders COs genetically 
silent (Kadyk and Hartwell, 1992; Soutoglou et  al., 2007). 
Additionally, cells can employ pathways that inherently avoid 
these products, such as SDSA, which is believed to be  the 
predominant HR subpathway for DSB repair. However, as COs 
are mostly inconsequential, it is not sufficient to assume cells 
always favor a CO-avoiding pathway and so the propensity 
for causing genetic exchanges does not provide an adequate 
explanation for HR subpathway choice.

While SDSA altogether avoids the formation of HR 
intermediates that can lead to COs, the processing of such 
intermediates can also be  regulated to favor non-CO products. 
Consistent with this, dHJs are predominantly dissolved by the 
BLM-TOPOIIIα-RMI1/2 (BTR) complex to non-COs, with 
CO-prone resolution acting as a last resort to handle these 
intermediates (Sarbajna and West, 2014). Yet whether dHJs 
are the only, or even the main, intermediates leading to COs 
is in question and it remains unclear under which conditions 
cells favor CO-forming vs. CO-avoiding pathways for DSB 
repair. Consequently, a more careful dissection of how HR 
subpathways are regulated and the factors involved are warranted 
for a better understanding of how distinct repair outcomes arise.

REVISITING HR SUBPATHWAY CHOICE

In recent years, work by us and others has aimed to define 
factors involved in promoting and regulating HR subpathway 
usage. Subpathway choice is often connected to helicases, which 
can function to either disrupt HR intermediates (such as RAD51 
filaments and D-loops), or to promote DNA synthesis and 
D-loop extension. Therefore, it is important to understand what 
governs the stability of these intermediates and how they differ 
in the distinct subpathways. Multiple helicases have been 
implicated to regulate HR in human cells, including RTEL 
(Barber et  al., 2008), BLM (van Brabant et  al., 2000), FANCJ 
(Sommers et  al., 2009), FBH1 (Chan et  al., 2018), RECQ1 
(Bugreev et  al., 2008) and RECQ5 (Hu et  al., 2007; reviewed 
in Huselid and Bunting, 2020). Helicases that disrupt the 
pre-synaptic RAD51 filaments by enhancing RAD51 removal 
are referred to as anti-recombinases due to their HR-limiting 
functions. Conversely, disruption of extended D-loops serves 
to limit the extent of DNA synthesis and displace the invading 
strand to channel repair toward SDSA. Often, helicases harbor 
both anti- and pro-recombinogenic biochemical functions, 
making it difficult to pinpoint the precise contribution of these 
helicases to DSB repair. Recently, we  have found that at 
two-ended DSBs, RECQ5 promotes a repair pathway, likely to 
be  SDSA, involving short-range repair synthesis and resulting 
in non-CO repair products. The role of RECQ5  in this context 
is unclear, although it has been implicated to involve RAD51 
removal after strand displacement to prevent re-invasion cycles 
and allow strand annealing to promote SDSA (Paliwal et  al., 
2014). Other functions could relate to those of analogous yeast 
helicases, such as Srs2, that involve disrupting D-loops and 
limiting DNA synthesis (Burkovics et al., 2013; Liu et al., 2017). 
Additionally, some reports support a requirement for only the 
helicase domain of Srs2 for its SDSA function (Bronstein et al., 
2018), and others find that also the RAD51-interacting domain 
has an effect on CO formation (Jenkins et al., 2019), rendering 
the precise role of the helicase uncertain. Furthermore, factors 
regulating strand annealing post displacement are not well-
defined, although, differential processing of the non-invading 
break ends has been implicated. Successful engagement of the 
second end is important to terminate repair of two-ended 
breaks and its failure can activate one-ended DSB repair 
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mechanisms, such as BIR (Chandramouly et  al., 2013). 
Consistently, the length of homology between the non-invading 
end and the displaced strand, influenced by the extent of 
resection, has been suggested to regulate subpathway choice 
between SDSA and BIR in human cells. Similarly, asynchronous 
resection and short homology tracts lead to failure of strand 
annealing and activation of BIR in yeast, a process regulated 
by the Mph1 and Sgs1 helicases, which dismantle D-loops (to 
favor SDSA) or short homology duplexes (to promote BIR), 
respectively (Mehta et  al., 2017; Pham et  al., 2021).

Alternatively, HR can proceed through a RAD54-dependent 
pathway with a propensity for CO formation (Spies et al., 2016). 
We  have shown that the chromatin remodeler ATRX promotes 
this subpathway of HR that involves long stretches of DNA 
synthesis leading to the formation of a high frequency of COs 
visualized as sister-chromatid exchanges (SCEs; Juhász et  al., 
2018). Interestingly, the HR intermediates formed by this pathway, 
which can be  detected as IR-induced ultra-fine bridges (UFBs), 
are completely dependent on the structure-selective nucleases 
MUS81 and GEN1 for resolution and are independent of BLM 
function (Elbakry et al., 2021). Since BLM has a well-documented 
role in suppressing endogenous SCEs, HR at two-ended DSBs 
can lead to distinct structures than those formed at replication-
associated lesions that may not be classic dHJ and are therefore 
processed differently. This is consistent with studies reporting 
high CO levels and synthetic lethality of cells lacking GEN1 
and SLX4 (essential for MUS81 function at HJs) even in the 
presence of BLM, indicating the presence of HJs that exclusively 
require resolution (Garner et  al., 2013; Wyatt et  al., 2013). 
Thus, it appears that one subpathway of HR DSB repair strictly 
forms a type of JM that requires resolution, the mechanism 
of which remains unclear (discussed below).

Strikingly, cells lacking ATRX expression, such as U2OS cells, 
rely completely on RECQ5 for HR-mediated repair of DSBs 
but are able to switch to the ATRX subpathway upon the 
induction of ATRX expression (Elbakry et  al., 2021). The 
regulation of pathway choice seems to be  dependent on 
proliferating cell nuclear antigen (PCNA) interaction, as both 
ATRX and RECQ5 possess PCNA-interaction peptide (PIP) 
domains that are essential for their HR function. Repair studies 
using mutants suggest that ATRX and RECQ5 compete for 
PCNA binding, possibly involving post-translational modifications 
(PTMs) that could regulate the downstream processes (Elbakry 
et al., 2021). The possibility of PTM-mediated regulation would 
be  consistent with a role of RECQ5-dependent PCNA 
ubiquitination as well as PCNA-SUMO2 conjugation during 
transcription-replication conflict resolution, which serve to remove 
PCNA and RNA polymerase II from chromatin, respectively 
(Urban et  al., 2016; Li et  al., 2018). Additionally, it has been 
shown that yeast Srs2 interacts with SUMO-PCNA to promote 
SDSA by regulating the DNA polymerase, or by dissociating 
heteroduplex DNA (hDNA) at the D-loop and allowing 
second-end annealing and repair completion (Burkovics et  al., 
2013; Liu et al., 2017). Whether these PTMs or others influence 
HR outcome remains to be  determined and would provide 
valuable insights about the regulation of subpathway choice 
during HR. This is particularly relevant considering that different 

cell types utilize the subpathways to various extents. For example, 
while ATRX-deficient cancer cells seem to rely on RECQ5 for 
HR, normal untransformed cells do not use RECQ5 and rely 
completely on ATRX for HR (Elbakry et  al., 2021). Conversely, 
ATRX-proficient cancer cells, like HeLa cells, exhibit an uneven 
contribution from the two subpathways (Figure  1). This 
discrepancy in HR subpathway usage warrants a re-examination 
of a general one-size-fits-all model for the repair of breaks via 
HR and demands a more careful attention to the model systems 
and cell lines used. Differential subpathway usage also provides 
a novel way to assess HR proficiency in cancer cells that have 
a particular reliance on one subpathway or the other. Therefore, 
instead of solely focusing on upstream factors like BRCA1/2 
and RAD51, we should also consider the downstream processes 
that define which subpathways are operating in the cell.

HR SUBPATHWAYS: MAKING ENDS 
MEET

Understanding how HR subpathways function and how the 
choice between them is regulated requires the consideration of 
the repair outcomes these pathways produce. The preference 
of a pathway favoring the formation of SCEs to one that avoids 
them challenges the common dogma that cells inherently avoid 
COs at all costs. To explain this discrepancy, it is worth examining 
how these conclusions were established. Many of the studies 
reporting rare CO occurrence were carried out using HR reporters 
in mammalian cells, and while they highly contribute to 
understanding pathway choice, the limitations of these systems 
could mask or skew these frequencies. One such limitation is 
reliance on ectopic or integrated artificial constructs that detect 
unequal recombination events or recombination between 
homologous chromosomes, all of which do not reflect the natural 
HR substrate of the identical sister (Johnson and Jasin, 2000; 
LaRocque et  al., 2011; Zapotoczny and Sekelsky, 2017). Indeed, 
CO frequencies close to 50% can be  observed in yeast, where 
the homologous chromosome represents a more natural 
recombination substrate (Ho et  al., 2010; Yim et  al., 2014). 
Furthermore, genetic analysis of the products in reporter systems 
in mammalian cells often differentiates only between long-tract 
gene conversion (LTGC) events and COs arising from short-
tract gene conversion (STGC) and do not take into consideration 
that CO events arising from longer DNA synthesis tracts would 
be  indistinguishable from non-CO LTGC events (Johnson and 
Jasin, 2000). This likely underestimates the frequency of CO 
in these systems, since COs have been associated with pathways 
involving longer tracts of DNA synthesis (Elliott et  al., 1998; 
Mitchel et  al., 2010; Yim et  al., 2014). Additionally, the genetic 
background of cells used, such as U2OS cells that lack an HR 
factor, should be  considered as this also affects the results from 
these reporters (Juhász et al., 2018; Elbakry et al., 2021). Therefore, 
while the notion that CO-avoiding pathways are preferred may 
or may not be  valid, it is imperative to consider other factors 
influencing pathway choice and repair outcome. Cells deal with 
the various DNA-damaging lesions in distinct mechanisms, and 
those arising during S phase, which give rise to the majority 
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of the spontaneous SCEs, could be  handled differently from 
those at two-ended DSBs. As has been observed in yeast, 
recombination at ssDNA gaps results in dHJs requiring dissolution 
by Sgs1, while DSB-generated structures rely on nuclease-mediated 
resolution (Ho et al., 2010; Giannattasio et al., 2014). Therefore, 
the structure and nature of the lesion could influence the HR 
intermediates formed and how they are processed and 
consequently, whether or not they lead to genetic exchanges. 
Similarly, the genomic location of the lesion can dictate outcome, 
as has been shown for DSB repair pathway choice between 
HR and NHEJ (Beucher et  al., 2009; Goodarzi et  al., 2010; 
Aymard et  al., 2014). Consistent with this, locus-specific SCE 
analysis showed that early and late replicating fragile sites exhibit 
differential SCE frequencies, suggesting that genomic locus and 
chromatin architecture could also influence HR subpathway 
choice (Waisertreiger et  al., 2020). Furthermore, recent studies 
have demonstrated distinct mechanisms of HR-mediated repair 
of DSBs occurring in transcribed regions vs. transcriptionally 

silent loci, implicating the formation of DNA:RNA hybrids as 
novel regulators of HR (Yasuhara et al., 2018; Ouyang et al., 2021).

Notwithstanding the underlying mechanism, the preference 
of CO-forming pathways in certain contexts suggests that this 
is probably a less toxic outcome than products from alternative 
pathways. It is not yet clear how this could be  the case for 
SDSA vs. a pathway involving a more complicated HR 
intermediate joining the two chromatids, as the fidelity of either 
subpathway has not been closely examined in the specific 
context of two-ended breaks. It is possible that factors such 
as D-loop stability, polymerase choice, and the fidelity of 
second-end engagement may play a role in ensuring accurate 
repair, even at the cost of an increased risk of CO formation. 
Not much is known about the regulation of the annealing 
step during SDSA and how the cell ensures the involvement 
of the correct ends. As HR normally deals with endogenous 
breaks that arise at replication forks that have one end, employing 
pathways that require two ends dictates the need to “wait” 

FIGURE 1 | Homologous recombination (HR) subpathway features at two-ended DNA double-strand breaks (DSBs). HR at two-ended breaks can proceed in 
distinct subpathways after RAD51-mediated strand invasion: synthesis-dependent strand annealing (SDSA; orange) and the Holliday junction (HJ; green) 
subpathway. Distinguishing features include the type and stability of displacement loop (D-loop; based on yeast models), extent of DNA repair synthesis, mode of 
second-end involvement, formation of joint molecules (JMs) post DNA synthesis (including single or nicked HJs and nicked D-loops) and repair outcome [crossover 
(CO) or non-CO]. Different types of cells use the subpathways to varying extents, largely influenced by their alternative lengthening of telomeres (ALT) status (see this 
paper). *These frequencies are non-comprehensive and are subject to change as more cell lines are analyzed.
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until a second end is generated by an approaching replication 
fork. In this context, the premature displacement of the invading 
strand could cause its annealing to a non-matching break end, 
leading to translocations, a more detrimental outcome than a 
genetically silent CO (Ensminger and Löbrich, 2020). Therefore, 
a subpathway that has a more stringent second-end annealing 
condition, like second-end capture by the displaced D-loop 
strand, could be preferred. Second-end capture ensures enough 
homology is met, and also involves a structure refractory to 
termination by other pathways, like end-joining and/or single-
strand annealing.

Furthermore, one pathway may involve a more stable 
intermediate structure that is resistant to dissociation and 
thereby could be  favored to ensure repair completion. For 
example, studies utilizing novel D-loop analysis assays in yeast 
have shown the formation of two distinct D-loop species, whose 
lengths and abundance are regulated by Rad54 and its paralog 
Rdh54/Tid1 (Piazza et al., 2019; Shah et al., 2020). The features 
of the different D-loop species make them resistant to specific 
helicases and alterations in these properties influence HR 
outcome and survival. It is tempting to speculate that a similar 
mechanism may occur in human cells and can dictate subpathway 
choice (Figure  1). In this context, ATRX may cooperate with 
human RAD54 to form more stable intermediates (Spies et  al., 
2016; Juhász et  al., 2018), possibly through a mechanism 
involving histone deposition within the D-loop (Elbakry et  al., 
2018). To investigate these possibilities, the required tools (e.g., 
D-loop capture and extension assays) need to be  adapted and 
optimized for human cells. Furthermore, D-loop stability and 
extension can also be  promoted by RNA:DNA hybrids arising 
during HR at transcribed regions (forming DR-loops), a feature 
that could influence subpathway choice (Ouyang et  al., 2021).

While multiple factors can skew HR outcome by influencing 
subpathway usage, frequent COs during DSB repair can arise 
during the processing of HR intermediates that are preferentially 
channeled toward resolution instead of the CO-avoiding 
dissolution (Elbakry et  al., 2021). This is a scenario where the 
structure-selective nucleases represent the main, rather than 
the back-up, pathway to handle JMs. Although, the activation 
of the MUS81-SLX4 and GEN1 complexes during late G2/M 
phase of the cell cycle (Pfander and Matos, 2017) could explain 
the preferential use of the nucleases at this stage, it does not 
exclude a role for the BTR dissolvasome, and raises the question 
if these JMs are intact dHJs, or in fact, dHJs at all (Figure  1). 
The preferential formation of COs from HR junctions has been 
indicated by the analysis of hDNA tracts in yeast and suggested 
a bias toward resolution explained by the presence of nicked 
or single HJs, which are more suitable substrates to the nucleases 
(Mitchel et  al., 2010). Additionally, the formation of anaphase 
bridges arising from non-canonical HJs has been observed in 
yeast and was found to be  specific to resolvase-deficient cells 
(García-Luis and Machín, 2014). Therefore, alternative JMs that 
are distinct from the canonical dHJ have been proposed in 
various contexts of HR by us and others and potentially occur 
more frequently than previously thought (Wright et  al., 2018; 
Machín, 2020; Elbakry et al., 2021). The presence and frequency 
of these structures is yet to be  determined and would both 

reflect the usage of distinct subpathways and dictate the 
requirement of specific downstream processing factors. Therefore, 
we  find the use of the more general term “HJ pathway” more 
accurate when dealing with pathways involving JMs in DSB repair.

CLINICAL IMPLICATIONS OF HR 
SUBPATHWAY CHOICE

Homologous recombination deficiency has been used to target 
cancer cells for therapy ever since the concept of synthetic 
lethality has been elegantly shown in BRCA1/2 deficient cells 
treated with PARP inhibitors (Bryant et al., 2005; Farmer et al., 
2005). This success has fueled further studies to identify other 
synthetically lethal targets in BRCA-defective cells, as well as 
cells deficient in other HR factors. Therefore, with an even 
deeper understanding of HR and the different subpathways 
involved, new strategies can be  employed to effectively kill 
cancer cells. For example, cells that are defective in canonical 
HR subpathways and over-rely on other subpathways, such as 
BIR, can be  selected by targeting BIR-specific factors. 
Alternatively, tumors lacking factors involved in particular 
subpathways can be targeted by identifying new synthetic lethal 
interactions specific to these tumors (Figure  2). Further, as 

FIGURE 2 | Exploiting HR subpathway usage for cancer therapy. Normal 
cells have intact homologous recombination repair (HRR) and use 
predominantly subpathway “H” for DSB repair. Cancer cells lacking 
subpathway “H” rely predominantly on subpathway R for repair. Inhibiting 
subpathway “R” does not affect normal cells, which can repair normally and 
survive treatment. Cancer cells lose their main HRR functionality and either fail 
to repair or depend on more erroneous pathways (subpathway “r”) leading to 
accumulation of breaks and/or toxic lesions and subsequent cell death.
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demonstrated recently, the loss of the BIR factor PIF-1 can 
be  exploited for selective killing of cells made to rely on this 
HR subpathway by the concurrent deletion of FANCM, revealing 
a new synthetic lethality relationship and an approach to target 
PIF-1 mutant cancer cells (Li et  al., 2021). Also, it is known 
that the HR factor ATRX is defective in a variety of tumors 
that are commonly using the alternative lengthening of telomeres 
(ALT) mechanism of telomere maintenance (representing around 
10–15% of all cancers; Dilley and Greenberg, 2015). While it 
is still not completely clear how loss of ATRX contributes to 
the ALT phenotype, exploiting a possible HR pathway imbalance 
(i.e., higher dependence on SDSA in tumors lacking ATRX), 
regardless of ALT status, could prove an effective approach to 
target these cells (Figure  2). This is particularly attractive if, 
as demonstrated, normal cells rely on the ATRX pathway for 
repair. Therefore, as the interplay between the HR subpathways 
becomes clearer and more defined, the therapeutic window of 
exploiting HR subpathways will expand, justifying a need for 
a better understanding of the mechanisms governing 
pathway choice.
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