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With the advance of sequencing technology, an increasing number of populations
have been sequenced to study the histories of worldwide populations, including
their divergence, admixtures, migration, and effective sizes. The variants detected in
sequencing studies are largely rare and mostly population specific. Population-specific
variants are often recent mutations and are informative for revealing substructures
and admixtures in populations; however, computational methods and tools to analyze
them are still lacking. In this work, we propose using reference populations and
single nucleotide polymorphisms (SNPs) specific to the reference populations. Ancestral
information, the best linear unbiased estimator (BLUE) of the ancestral proportion, is
proposed, which can be used to infer ancestral proportions in recently admixed target
populations and measure the extent to which reference populations serve as good
proxies for the admixing sources. Based on the same panel of SNPs, the ancestral
information is comparable across samples from different studies and is not affected by
genetic outliers, related samples, or the sample sizes of the admixed target populations.
In addition, ancestral spectrum is useful for detecting genetic outliers or exploring co-
ancestry between study samples and the reference populations. The methods are
implemented in a program, Ancestral Spectrum Analyzer (ASA), and are applied in
analyzing high-coverage sequencing data from the 1000 Genomes Project and the
Human Genome Diversity Project (HGDP). In the analyses of American populations from
the 1000 Genomes Project, we demonstrate that recent admixtures can be dissected
from ancient admixtures by comparing ancestral spectra with and without indigenous
Americans being included in the reference populations.

Keywords: admixture, population-specific SNP, rare variants, best linear unbiased estimator, ancestry inference

INTRODUCTION

With advances in sequencing technology, an increasing number of populations have been
sequenced to study the histories of worldwide populations, including their divergence, admixtures,
migration and effective sizes (Mallick et al., 2016; Pagani et al., 2016; Bergström et al., 2020). The
variants detected in sequencing studies are largely rare and mostly population specific. In the 1000
Genomes Project (1kGP) dataset released in phase 3, 86% of the 88 million variants are restricted
to a single continental population, and approximately 64 million autosomal variants have minor
allele frequencies (MAFs) of less than 0.5% (Auton et al., 2015). Although population-specific
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variants are often recent mutations and are informative for
revealing substructures and admixtures in populations (Auton
et al., 2015), no methods have been developed for exploiting the
enriched information in them.

Methods using rare variants for ancestry inference or
analysis of population structures are also limited. Prokopenko
et al. (2016) constructed a genetic similarity matrix based
on the Jaccard similarity index. They demonstrated that
eigenanalysis of the similarity matrix works particularly well
for variants with small MAFs and provides a higher resolution
of population substructure than that obtained with classical
principal component analysis (PCA). Turkmen et al. (2019)
considered four types of genetic similarity matrices that were
analyzed by classical PCA, generalized PCA and logistic PCA.
Ancestry memberships were predicted by a support vector
machine using the top principal components (PCs), and logistic
PCA was shown to have the highest classification accuracy for
rare and low-frequency variants.

In this work, we propose using reference populations and
single nucleotide polymorphisms (SNPs) specific to the reference
populations. The eigenvalues and eigenvectors of the genetic
relationship matrix based on population-specific SNPs (GRM-
PS) are shown to be population specific in the reference
populations. When analyzing the study samples, the principal
scores associated with the reference populations are computed
by projecting the genotype matrix onto the asymptotic principal
directions defined by the reference populations. The principal
scores are shown to be unbiased estimates of the ancestral
proportions of maximum variances. Ancestral information,
the best linear unbiased estimator (BLUE) of the ancestral
proportion, is proposed, which can be used to infer ancestral
proportions in recently admixed target populations and measure
the extent to which reference populations serve as good proxies
for the admixing sources. The methods are implemented in a
program, Ancestral Spectrum Analyzer (ASA) available at https:
//github.com/eat1000/ASA, and are applied in analyzing high-
coverage sequencing data from the 1kGP (Byrska-Bishop et al.,
2021) and the Human Genome Diversity Project (HGDP)—
Centre d’Etude du Polymorphisme Humain (CEPH) panel
(Bergström et al., 2020). In the analyses of American populations
from the 1kGP, we demonstrate that recent admixtures can
be dissected from ancient admixtures by ancestral spectra
with and without indigenous Americans being included in the
reference populations.

MATERIALS AND METHODS

PCA-based methods have been developed for ancestry inference
(Wang et al., 2015; Zhang et al., 2020) and the connection
between eigenvectors and ancestral proportions was established
(Ma and Amos, 2010). We will first consider the PCA with
population-specific SNPs and show that the principal scores are
unbiased estimates of the ancestral proportions with maximum
variances. We will then propose a new score, which we term
ancestral information, and demonstrate that it is the BLUE of the
ancestral proportion with minimum variance. We will show that

the computation of principal scores and ancestral information
requires only the MAFs of population-specific SNPs in the
reference populations, which does not involve the eigenanalysis
or singular value decomposition as in the PCA-based methods
(Wang et al., 2015; Zhang et al., 2020) or solving the likelihood
model as in the model-based approaches, such as ADMIXTURE
(Alexander et al., 2009; Alexander and Lange, 2011).

Genetic Relationship Matrix Based on
Population-Specific SNPs
Considering a sample of individuals from K reference
populations, there are Nk individuals from population
k, k = 1, 2, · · · ,K, and the total sample size is N =
N1 + N2 + · · · + NK . We assume that there is a panel of
M biallelic SNPs that are population specific; that is, each
SNP is polymorphic in one and only one of the K reference
populations. Suppose that Gk is the index set of SNPs that are
polymorphic in population k and Mk = |Gk| is the number
of SNPs specific to population k; then, the total SNP number
is M = M1 +M2 + · · · +MK . Let fkm be the MAF of SNP
m in population k; then, we have fkm > 0 if m ∈ Gk, and
otherwise, fkm = 0.

Let X be a genotype matrix of dimension N ×M whose
elements X(n,m) are coded as the number of minor alleles of SNP
m in individual n. Suppose that Sk is the index set of individuals
who belong to population k, k = 1, 2, · · · ,K. For rare SNPs,
X(n,m) approximately follows a binomial distribution that takes
values 0 and 1 with probabilities 1−2fkm and 2fkm, respectively,
provided that n ∈ Sk and m ∈ Gk. It is easy to show that the
genotypic mean and variance are

µkm = E [X (n,m) |n ∈ Sk, m ∈ Gk] = 2fkm,

σ2
km = Var [X (n,m) |n ∈ Sk,m ∈ Gk] = 2fkm

(
1− 2fkm

)
.

For convenience, we assume that the rows of X are ordered by
the populations to which the individuals belong, and the columns
are ordered by the populations to which the SNPs are specific.
That is, the first N1 rows are genotypic values of individuals
from population 1, the next N2 rows are from population 2,
and so on. Similarly, the first M1 columns are SNPs that are
polymorphic in population 1, the next M2 columns are SNPs that
are polymorphic in population 2, and so on. Since all SNPs are
population specific,X(n,m) is zero if n ∈ Sk, m ∈ Gk′ and k 6= k′.
Therefore, X is a block-diagonal matrix

X =


X1 0 · · · 0
0 X2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · XK

 ,

where Xk is of dimensions Nk = Mk, k = 1, 2, · · · ,K.
We define the GRM-PS as

Z =
1
M

XXT. (1)
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Clearly, the GRM-PS Z is a block-diagonal matrix of dimension
N × N,

Z =


Z1 0 · · · 0
0 Z2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · ZK

 , (2)

where

Zk =
1
M

XkXT
k ,

Zk
(
i′, i′

)
=

1
M

M∑
m=1

X2 (i,m)

=
1
M

∑
m∈Gk

X2 (i,m), i ∈ Sk,

Zk
(
i′, j′

)
=

1
M

M∑
m=1

X (i,m)X
(
j,m

)
=

1
M

∑
m∈Gk

X (i,m)X
(
j,m

)
, i, j ∈ Sk, i 6= j.

i and j are the indices of individuals i and j in Z, respectively, and
i′ and j′ are their indices in Zk.

Since the GRM-PS Z is block-diagonal, the eigenvalues of
submatrix Zk are the eigenvalues of Z, and the associated
eigenvectors of Zk padded with

∑k−1
i=1 Ni and

∑K
i=k+1 Ni zeros

before and after, respectively, are the corresponding eigenvectors
of Z. Therefore, the eigenvalues and eigenvectors of the GRM-PS
are population specific in the reference populations.

Expected Genetic Relationship Matrix
Based on Population-Specific SNPs
According to the law of large numbers, as the SNP numbers
M1,M2, · · · ,MK become large, the GRM-PS will converge to its
mathematical expectation, that is, the expected GRM-PS (EGRM-
PS). The EGRM-PS Z is also a block-diagonal matrix

Z =


Z1 0 · · · 0
0 Z2 · · · 0

· · · · · ·
. . . · · ·

0 0 · · · ZK

 , (3)

where submatrices Zk is the expectation of Zk, k = 1, 2, · · · ,K.
Moreover, Zk is compound symmetric

Zk =


zk zkk

zkk zk
· · · zkk

· · · zkk
...

...

zkk zkk

. . .
...

· · · zk

 ,

where

zk = E
[
Zk
(
i′, i′

)]
=

1
M

∑
m∈Gk

E
[
X2 (i,m)

]
=

1
M

∑
m∈Gk

2fkm,

(4)

zkk = E
[
Zk
(
i′, j′

)]
=

1
M

∑
m∈Gk

E
[
X (i,m)X

(
j,m

)]
=

1
M

∑
m∈Gk

4f 2
km. (5)

Eigenanalysis of the Expected GRM-PS
An eigenanalysis of the EGRM-PS Z provides the asymptotic
results of the eigenanalysis of the GRM-PS Z when
M1,M2, · · · ,MK are large. Submatrix Zkk has the largest
eigenvalue λk = zk + (Nk − 1)zkk with the associated
eigenvector 1Nk/

√
Nk (Johnson and Wichern, 2007), where

1Nk is the column vector of dimension Nk in which each element
is 1. The eigenvalue λk can be decomposed as

λk = Nkzkk + zk − zkk

=
Nk

M

∑
m∈Gk

µ2
km +

1
M

∑
m∈Gk

σ 2
km. (6)

The first component of λk depends on the MAFs of SNPs
specific to population k, and the second consists of the
intrapopulation variance of the SNPs. When plotting the PC
associated with λk, that is the k-th eigenvector scaled by

√
Mλk,

the individuals from population k share the same coordinates,
which represent the center of population k in this dimension (Ma
and Amos, 2010). In real data analysis, the coordinates of the
individuals from population k are distributed around the center
and will converge to it as Mk increases.

The other Nk − 1 eigenvalues of Zkk have the same value
(Johnson and Wichern, 2007), which is

zk − zkk =
1
M

∑
m∈Gk

σ 2
km. (7)

Note that the eigenvectors associated with the repeated
eigenvalue zk − zkk are not unique and that the eigenvalue
depends solely on the intrapopulation variance. Hence, their PCs
have nothing to do with the genetic distances among individuals
and contain no information about the population structure. In
summary, among the N eigenvalues and eigenvectors of the
EGRM-PS, K eigenvalues λ1, λ2, · · · , λK and their associated
eigenvectors are population informative and population specific.

Principal Score Vectors
In classical PCA, determining the top PCs involves eigenanalysis
of the genetic relationship matrix (Patterson et al., 2006; Price
et al., 2006) or singular value decomposition of the standardized
genotype matrix (Galinsky et al., 2016). It can be shown that
when Mk and Nk are large in the reference populations, the right
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singular vector of X, or the principal direction, associated with
population k is

vk = [µk1, µk2, · · · ,µkM]T/

√√√√ M∑
m=1

µ2
km. (8)

Assume that fkm, k = 1, 2 · · ·K andm = 1, 2 · · ·M, are known
or can be accurately estimated in the reference populations.
Without eigenanalysis or singular value decomposition, the PC
specific to population k can be computed by projecting the
genotype matrix X onto the principal direction vk:

Xvk = skuk, (9)

and when Mk is large,

sk =

√√√√Nk

M∑
m=1

µ2
km, (10)

uk =
[

0T
N1
, · · · , 0T

Nk−1
, 1T

Nk
, 0T

Nk+1
, · · · , 0T

NK

]T
/
√
Nk. (11)

Here, sk and uk are the singular value and left singular vector
associated with population k. Note that uk is also the eigenvector
of the EGRM-PS Z that is specific to population k and depends
on the population size Nk.

We define the principal score vector ak for population k, k =
1, 2 · · ·K, as

ak = Xbk, (12)

where

bk = [µk1, µk2, · · · ,µkM]T/

M∑
m=1

µ2
km. (13)

It can be shown that ak will converge to[
0T
N1
, · · · , 0T

Nk−1
, 1T

Nk
, 0T

Nk+1
, · · · , 0T

NK

]T
in probability as

Mk becomes large. Therefore, individuals from population k are
expected to have values of one, while individuals from other
populations have values of exactly zero. Proofs are presented in
the Supplementary Text.

For samples that include admixed individuals, the block
structure of the GRM-PS does not hold, and the PCs are no longer
population specific. However, the principal scores can still be
computed. Admixed individuals carry alleles specific to multiple
reference populations and will have more than one non-zero
principal score. Therefore, the K principal score vectors provide
a dissection of the population structure in the study samples.
Since the loading vector bk is based on the asymptotic right
singular vector vk, which aims to maximize the singular value sk
in the reference populations, it weights SNPs with larger MAFs
higher. In the Supplementary Text, we show that the principal
scores are unbiased estimates of the ancestral proportions with
maximum variances.

Note that bk depends on the MAFs of population-specific
SNPs in the preselected reference populations, genotypes of one
individual under analysis do not affect the principal score of

another one. Samples from different studies can be inferred
based on the same panel of SNPs, and the results are directly
comparable. Moreover, since all individuals are compared in
the asymptotic principal directions defined by the reference
populations, genetic outliers, related samples and the sample sizes
of the studies will not affect the results. On the other hand, for
estimating MAFs of the population-specific SNPs, genetic outliers
or related samples in the reference populations still need to be
avoided and large sample sizes are desirable.

Ancestral Information Vectors
Suppose that individual n is an admixed individual whose
ancestral populations are in the K reference populations. Let
p1
n, p2

n, · · · , pKn denote the ancestral proportions of individual
n for the K populations. Assume that individual n inherits two
haplotypes at the locus of SNP m independently from the K
populations. Considering one haplotype, it has probability pkn
originating from population k. Given that the haplotype is from
population k, it has probability fkm carrying the allele specific
to population k. Assuming statistical independence among the
M SNPs in view of their low MAFs that lead to weak linkage
disequilibrium with other rare or common variants (Prokopenko
et al., 2016), the genotype of individual n follows the distribution

p (X (n, 1) , · · · ,X (n,m))

=

K∏
k=1

∏
m∈Gk

(
2pknfkm

)X(n,m)(
1−2pknfkm

)1−X(n,m)
, (14)

where X (n,m) = 0, 1.
Without the constraint

∑K
k=1 p

k
n = 1, the estimate of pkn

obtained by the method of moment is

p̂kn =

∑
m∈Gk

X (n,m)∑
m∈Gk

µkm
, (15)

where k = 1, 2, · · · ,K. The numerator is the number of alleles
specific to population k that are observed in individual n, and
the denominator is the expected number of alleles for individuals
from population k. The maximum likelihood estimate of pkn can
be obtained by solving the equation

pkn
∑
m∈Gk

µkm
1−X (n,m)
1−pknµkm

−

∑
m∈Gk

X (n,m) = 0. (16)

Proofs and an approximate maximum likelihood estimate are
presented in the Supplementary Text.

We define the ancestral information vector for population k as
follows:

ck = Xdk, (17)

where
ck =

[
p̂k1, p̂

k
2, · · · p̂

k
N

]T
, (18)

dk =
[

0T
M1
, · · · , 0T

Mk−1
, 1T

Mk
, 0T

Mk+1
, · · · , 0T

MK

]T
/

M∑
m=1

µkm.

(19)
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In the Supplementary Text, we show that the ancestral
information is the BLUE of the ancestral proportion when
MAFs of the SNPs are small. Compared with the loading vector
bk for computing the principal score vector, dk weights SNPs
equally. Similar to the principal score, ancestral information from
different studies can be inferred based on the same panel of
SNPs, and the results are comparable. Genetic outliers, related
samples and the sample sizes of the target populations will not
affect the results. It is worth emphasizing that interpreting the
ancestral information as the ancestral proportion is valid only
if its associated reference population approximates an ancestral
population of the study sample well. Otherwise, it simply
measures the co-ancestry between the reference population and
the study sample.

The 1000 Genomes Project Dataset
The samples and the high-coverage sequencing data of the
1kGP were described previously (Auton et al., 2015; Byrska-
Bishop et al., 2021). We extracted SNPs from the genotype data
in VCF format and removed SNPs with multicharacter allele
using PLINK 1.9 (Chang et al., 2015). Autosomal SNPs having
a reference SNP number in dbSNP build 151 (Sherry et al.,
2001) were retained, which included 95,250,105 biallelic SNPs.
The 2,504 unrelated individuals of the 1kGP are from African
(AFR), American (AMR), East Asian (EAS), European (EUR),
and South Asian (SAS) populations. We excluded individuals
from recently admixed populations, which are AMRs known
to have European, African and indigenous American ancestries
as well as AAs of primarily African and European ancestries
(Auton et al., 2015). We selected EUR, EAS, SAS, and AFR
populations as the reference populations, each with a sample size
of approximately 500. SNPs that were polymorphic in exactly
one of the four reference populations were identified, and the
numbers of population-specific SNPs in different MAF ranges are
shown in Table 1. We then randomly selected 50,000 SNPs with
MAFs between 0.01 and 0.05 in the respective populations, which
made up a panel of 200,000 SNPs specific to AFR, EAS, EUR, or
SAS. The SNPs and their MAFs in the reference populations are
presented in Supplementary Table 1.

The Human Genome Diversity Project
Dataset
The HGDP-CEPH panel consists of 929 high-coverage human
genome sequences from 54 diverse populations throughout the
world (Bergström et al., 2020). The 929 individuals originate from
seven geographic regions: Africa, America, Central and South
Asia, East Asia, Europe, the Middle East, and Oceania. The SNPs
were extracted by PLINK 1.9, and those with multicharacter

alleles were removed. Autosomal SNPs with reference SNP
numbers were retained, which yielded 55,560,915 biallelic SNPs.
Combining the indigenous AMR populations (N = 61) from the
HGDP-CEPH with AFR, EAS, EUR, SAS populations from the
1kGP, we obtained a set of five reference populations. There were
161,088 SNPs specific to AMR, and the numbers of SNPs specific
to AFR, EAS, EUR, and SAS were slightly smaller than those
in Table 1. A second panel of population-specific SNPs of size
250,000 was constructed with 50,000 SNPs specific to each of
the five reference populations. For SNPs specific to AFR, EAS,
EUR, and SAS, their MAFs were between 0.01 and 0.05 in the
respective populations. SNPs specific to AMR were chosen with
MAFs between 0.025 and 0.15 considering the small sample size
of the AMR populations and the small number of SNPs specific
to AMR. The panel of SNPs and their MAFs in the reference
populations are presented in Supplementary Table 2.

RESULTS

Principal Components and Principal
Scores in the 1kGP
Using the 200,000 populations-specific SNPs, we conducted PCA
on the reference populations, which included 2,000 non-admixed
individuals. Scatter plots of the top four PCs are shown in
Supplementary Figure 1. We can see that PC 1 is specific
to AFR, and all individuals from EAS, EUR, and SAS have
values of zero. Similarly, PCs 2, 3, and 4 are specific to EAS,
SAS, and EUR, respectively. Because each of the four reference
population groups consists of five populations, additional
PCs associated with smaller eigenvalues are informative for
population substructures. PCs 5, 6, 7, and 9 were found to be
specific to EAS, EUR, AFR, and SAS, respectively, as shown in
Supplementary Figure 2. Including admixed individuals in the
PCA, the PCs are no longer population specific. Supplementary
Figure 3 presents the top four PCs of 2,504 individuals, which
includes individuals from the AMR and African American
(AA) populations. Compared with Supplementary Figure 1,
the PCs are rotated due to the correlations introduced by the
admixed individuals.

We conducted a uniform manifold approximation and
projection (UMAP) 0.4.3 analysis (McInnes et al., 2018) on
the top 20 PCs using a minimum distance of 1 and 100
nearest neighbors. The results are shown in Figure 1. Fine-
scale population structures are revealed by the population-
specific SNPs. Although the MAFs of the 200,000 population-
specific SNPs are low and the top 20 PCs explain only 6.3%
of the genotypic variance, the resolution of the population

TABLE 1 | Summary of population-specific SNPs in the 1kGP dataset.

Population N Population specific Singleton MAF > 0.5% MAF > 1% MAF > 5% MAF > 10%

AFR 504 24,676,870 10,948,012 7,480,488 5,322,732 1,329,784 410,704

EAS 504 13,699,338 9,303,301 1,077,695 475,273 17,801 1,162

EUR 503 10,184,006 7,679,086 500,612 155,604 540 0

SAS 489 12,213,864 7,929,391 1,404,054 571,614 18,651 1,004

Total 2000 60,774,078 35,859,790 10,462,849 6,525,223 1,366,776 412,870
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FIGURE 1 | UMAP analysis of the top 20 PCs in the 1kGP using four reference populations. Population labels are explained in the Supplementary Text.

structure is comparable with that obtained by using SNPs from
Affymetrix 6.0 (Diaz-Papkovich et al., 2019). For comparison,
we randomly selected 200,000 common SNPs (MAFs > 0.1) in
the total population and conducted a classical PCA, whose top
20 PCs explained 17.2% of the genotypic variance. A UMAP
analysis with the same parameters is shown in Supplementary
Figure 4. As shown, the populations are better separated with
population-specific SNPs. For example, populations CDX and
KHV form separated clusters except for a few individuals in
Figure 1, while they moderately overlap in Supplementary
Figure 4. Similar observations can be made for the IBS and
TSI populations.

The principal scores of the 2,504 individuals are shown
in Supplementary Figure 5. Individuals from the reference
populations have one non-zero score that is associated with the
population to which they belong. AAs and AMRs have multiple
non-zero scores associated with the reference populations. Since

the loading vectors of the principal scores depend on the
MAFs of the population-specific SNPs only, including admixed
individuals does not change the scores of individuals from the
reference populations.

Ancestral Spectra of the 1kGP Using
Four Reference Populations
The ancestral spectra of the 2,504 individuals are shown in
Figure 2. Since we chose AFR, EAS, EUR, and SAS in the
1kGP as the reference populations, unsurprisingly, individuals
from the four populations showed a single ancestral component.
The scatter plots of the ancestry information are presented
in Supplementary Figure 6, and the individual results are
shown in Supplementary Table 3. The ancestral information
in Supplementary Figure 6 is close to the principal scores in
Supplementary Figure 5, because they are all unbiased estimates
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FIGURE 2 | Ancestral spectra of 2,504 individuals in the 1kGP using four reference populations. Population labels are explained in the Supplementary Text.

of the ancestral proportions. Although individuals from the same
reference population are expected to have ancestral information
of value one for this population, variation can be observed across
populations. For instance, individuals from FIN have an average
EUR information of 1.31, while it is 0.79 in TSI. This is due
to MAF differences in different EUR populations. The average
MAFs of the 50,000 EUR-specific SNPs in FIN and TSI are 0.021
and 0.013, respectively, compared with 0.016 in EUR.

For the admixed populations, summary statistics of their AFR,
EAS, EUR, and SAS information are presented in Supplementary
Figure 7. The two AA populations, ACB and ASW, have
average AFR information of 0.895 and 0.776 and average EUR
information of 0.097 and 0.167, respectively. In addition, a small
number of EAS components are present in ASW, likely because
of the admixture with indigenous AMRs. The estimated AFR and
EUR information in ACB and ASW are close to their admixture
proportions reported in the literature (Bryc et al., 2010), and the
sums of the two components are close to one. Since AAs are
mostly recent admixtures of African and European ancestries,
it appears that contemporary AFR and EUR populations in the
1kGP serve as reasonable proxies of their ancestral populations.

For AMR populations, the average AFR, EAS, and EUR
information varies in different populations. PUR shows the
highest AFR (0.136), the lowest EAS (0.045) and the highest
EUR information (0.577), and PEL shows the lowest AFR
(0.033), highest EAS (0.232) and lowest EUR information (0.194).
Because of the lack of an indigenous AMR population in the
reference populations in this analysis, EAS serves as a proxy.
Indigenous AMRs are considered to have migrated from Siberia
via Beringia approximately 15,000–23,000 years ago (Nielsen
et al., 2017). Because of the migration bottleneck, only 5,454

the 50,000 EAS-specific SNPs are polymorphic in the AMR
populations. Therefore, the EAS information underestimates the
admixture proportion for indigenous AMRs. On the other hand,
the average EAS and EUR information in the indigenous AMR
populations from the HGDP is 0.289 and 0.065, respectively, as
shown in the latter part of the results. The EUR information
of the AMR populations from the 1kGP includes some ancient
admixtures before the Columbian contact.

Some genetic outliers can be observed whose ancestral spectra
deviate from the distribution centers of the populations with
which they are labeled. For example, NA20314 from ASW has
AFR, EAS, and EUR information of 0.007, 0.203, and 0.316,
respectively, and has almost no AFR ancestry. HG01880 from
ACB has AFR, EAS, EUR, and SAS information of 0.570, 0.018,
0.079, and 0.369, respectively, and is the only member of AA
showing substantial SAS ancestry. HG01241 from PUR has
AFR, EAS, and EUR information of 0.693, 0.024, and 0.212,
respectively, and is closer to AAs. It is interesting to note that
the total ancestral information of NA20314 is only 0.531, which
increases to 0.934 when the second SNP panel was used, see latter
part of the results. This is because that she has a lot of AMR
ancestry which was not well-represented by the EAS-specific
SNPs in the first panel. With the second SNP panel, NA20314 has
AFR, AMR, EAS, and EUR information 0.007, 0.588, 0.017, and
0.321, respectively.

Ancestral Spectra of the 1kGP Using Five
Reference Populations
Using the panel of 250,000 population-specific SNPs, ancestral
spectra of the 2,504 individuals are shown in Figure 3, and
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FIGURE 3 | Ancestral spectra of 2,504 individuals in the 1kGP using five reference populations. Population labels are explained in the Supplementary Text.

FIGURE 4 | Ancestral spectra of 929 individuals in the HGDP using four reference populations.

individual results are shown in Supplementary Table 4. The
average AMR information in CLM, MXL, PEL, and PUR is 0.257,
0.467, 0.711, and 0.139, respectively. EAS and EUR information
decreased in the four AMR populations. For example, the
average EAS and EUR information in CLM is 0.083 and 0.544
with the first panel of SNPs, which is reduced to 0.004 and
0.521, respectively, with the second panel. The EAS and EUR

information that involves ancient admixtures in indigenous
AMRs are now included in the AMR information, and the
EUR information with the second SNP panel corresponds to
recent admixtures only. The average EUR information due to
the recent admixture after the Columbian contact is 0.418.
Compared with 0.440 using the first SNP panel, the difference,
about 0.022 EUR information, is attributable to their indigenous

Frontiers in Genetics | www.frontiersin.org 8 September 2021 | Volume 12 | Article 724638

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-724638 September 23, 2021 Time: 15:11 # 9

Shi and Kuang Ancestry Inference With Population-Specific Variants

FIGURE 5 | Ancestral spectra of 929 individuals in the HGDP using five reference populations.

AMR ancestors. The EUR ancestry in the AMR ancestors
might result from recent European admixture in the HGDP
indigenous American groups (Hellenthal et al., 2014) and/or
ancient admixture that happened in the ancestors of indigenous
AMRs before their migration to America. The latter is supported
by the presence of a similar degree of EUR ancestral information
in HGDP populations from Siberia (Figures 4, 5). Summary
statistics of the five ancestral information are presented in
Supplementary Figure 8.

It is also interesting to note that for CLM and PUR, the EAS
information is close to zero when analyzed with the second SNP
panel. In contrast, some individuals from MXL and PEL still have
a substantial amount of EAS ancestry. For example, HG01944
from PEL has AMR, EAS, and EUR information of 0.474, 0.377,
and 0.101, respectively. The 0.101 EUR information should come
from admixtures sometime after the Columbian contact and
the 0.377 EAS information is possibly to be more recent. With
the first SNP panel, the EAS information of HG01944 is 0.528.
Because the 0.377 EAS information is from his contemporary
EAS ancestor, the rest 0.151 is attributable to his indigenous
AMR ancestor.

Ancestral Spectra of the HGDP Using
Four Reference Populations
In the first panel of 200,000 population-specific SNPs, 183,328
SNPs had at least one copy of rare alleles in the HGDP dataset.
The ancestral information of the 929 individuals based on the first
panel of SNPs is presented in Figure 4, and individual results are
shown in Supplementary Table 5. European populations have
the largest EUR information, which decreases in Central and
South Asians and further decreases in East Asians. In contrast,

the EAS information increases from west to east. Heterogeneous
ancestral spectra can be observed in the Central and South Asian
populations. The southernmost Sindhi population has the largest
SAS information, 0.565, and the northernmost Uygur population
has the least SAS information, 0.104. From east to west, the
easternmost Uygur population has the largest EAS information,
0.349, and the westernmost Makrani population has the least EAS
information, 0.006.

Oceanian populations have the least total ancestral
information (0.251) from AFR, EAS, EUR, and SAS combined.
This reflects their ancient separation and isolation from
Eurasian populations (Nielsen et al., 2017). Due to the migration
bottleneck, a small portion of rare alleles from the Eurasian
populations were carried by their ancestors, which decreased
further by genetic drift thereafter. Most of their ancestral
information is from EAS (0.126) and SAS (0.098), and the
least is from EUR (0.007), which is consistent with migration
after the divergence between EUR and EAS (Nielsen et al.,
2017). A small amount of the AFR component (0.020)
can be observed in Oceanians. At the time of migration,
some alleles specific to contemporary AFR populations
might still be present in populations peopling South and
East Asia.

The ancestral information of indigenous AMRs is mainly
from EAS (0.289) and EUR (0.065). If ancestors of indigenous
AMRs were admixed between EAS and EUR populations
sometime before the migration of indigenous American ancestors
across the Bering Strait, obviously, contemporary EAS the EUR
populations are not good proxies of their ancestral populations
and the ancestral information cannot be interpreted as the
ancestral proportion. In fact, the chance of having good proxies
using contemporary populations decreases as the admixture
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is more ancient. It is worth noting again that some of the
EUR ancestry is likely due to recent admixture (Hellenthal
et al., 2014). There is also a small amount of AFR ancestry
in AMR, which mostly exists in the Mayan and Colombian
populations and is almost absent in the Karitiana, Pima, and
Surui populations, as reported previously (Hellenthal et al.,
2014). HGDP00863 from the Mayan and HGDP00703 from
the Colombian populations have AFR information of 0.047 and
0.053, respectively. This may be a result of admixture with
AFR after the transatlantic slave trade (Micheletti et al., 2020).
Summary statistics of the four ancestral information are shown in
Supplementary Figure 9.

Inspecting the ancestral spectra of individuals, some genetic
outliers can be identified. For example, HGDP00544 from the
Papuan Sepik population has AFR, EAS, and SAS information
values of 0.019, 0.217, and 0.089, respectively, which are closer to
the average values of 0.014, 0.208, and 0.087 in the Bougainville
population than the 0.023, 0.082, and 0.111 in the Papuan Sepik
population. HGDP00871 from the Mayan population has EUR
information of 0.245, which is much larger than the average
of 0.065 in AMR. Similar to the AMR populations in the
1kGP, some EUR components of HGDP00871 may be due to
recent admixture.

Ancestral Spectra of the HGDP Using
Five Reference Populations
Ancestral spectra with the second panel of 250,000 population-
specific SNPs are shown in Figure 5, and individual results are
shown in Supplementary Table 6. Since the AMR populations
serve as the reference population for choosing AMR-specific
SNPs, their ancestral components are fully attributed to AMR.
Outside of America, the population showing the largest AMR
information is Yakut (0.024) from eastern Siberia, close to the
region from which the ancestors of indigenous AMR migrated.
Some populations in East Asia that have small amounts of AMR
information, which are Oroqen (0.020), Hezhen (0.014), Daur
(0.013), and Mongolian (0.010) populations, likely due to the
shared ancestors between northeastern Asian populations and
AMR populations before divergence (Li et al., 2008). It may
also due to gene flows between populations in America and
eastern Siberia after the first migration of indigenous AMRs.
The EAS information decreases slightly in these populations
compared with the results using the first panel of SNPs. The
AMR information for other populations is approximately zero. In
Supplementary Figure 11, we also examine AFR, EAS, EUR, and
SAS information with the two panels of population-specific SNPs
in 868 non-American individuals. The four ancestral information
computed by the two panels of SNPs are approximately
the same.

DISCUSSION

Our ancestral information was derived based on the estimate
of ancestral proportions. It can be interpreted as an ancestral
proportion only if its associated reference population is recently
related to an ancestral population, thus approximates the

ancestral population well. For the recently admixed AAs in
the 1kGP, contemporary AFR and EUR populations appear
to serve as good proxies of their ancestral populations, and
the results are close to the estimated ancestral proportions
reported in literature (Bryc et al., 2010). However, for many
other populations in the HGDP, the ancestral information
simply measures the relative amount of rare alleles shared
between the population under analysis and the respective
reference population. Appropriate consideration of the
population history has to be taken when interpreting mixed
ancestries. The AMR component in the Yakut population
can be explained by the shared ancestry between the Yakut
population and the indigenous AMR populations or the gene
flows between populations in America and eastern Siberia
after the migration. For Oceanians, the mixed ancestries
from EAS, SAS, and AFR suggest that the separation of
Oceanians is ancient.

Technical issues may confound the estimation of ancestral
information and prevent the comparison of absolute values
between samples with different genotyping methods, such as
sequencing platforms, sequencing coverage, reference genomes,
quality control criteria, and bioinformatics software. Out of the
first panel of 200,000 SNPs, we extracted 193,902 SNPs from
the genotype data of the 1kGP released in phase 3. Ancestral
spectrum analysis was conducted based on the 193,902 SNPs,
and the results are shown in Supplementary Figure 12. The
general patterns in Supplementary Figure 12 and Figure 2 are
very similar, whereas the average total ancestral information of
individuals with phase 3 data is 0.930, compared with 0.950
with high-coverage data and the same 193,902 SNPs. For the
FIN population, the average EUR information was 1.256 with
phase 3 data and 1.308 with high-coverage sequencing data.
This reflects the greater sensitivity of high-coverage sequencing
technology for calling rare alleles (Byrska-Bishop et al., 2021).
Comparing the genotypes of 48,591 EUR-specific SNPs in the
FIN population, an average of 1,945 and 2,031 EUR-specific
alleles were carried per individual in the phase 3 and high-
coverage data, respectively, and 94.92% of rare alleles in the
high-coverage data were called in the phase 3 data. For the
FIN population, there were also very small amounts of AFR,
EAS, and SAS information with the phase 3 data. Among the
99 individuals, there were 144, 228, and 150 alleles specific to
AFR, EAS, and SAS, respectively. Because the specificity of high-
coverage sequencing is larger, most of these alleles are likely
false discoveries. Detailed comparisons between the data from
phase 3 and high-coverage sequencing can be found elsewhere
(Byrska-Bishop et al., 2021).

Our selection of population-specific SNPs may be subject
to misclassification errors. Alleles classified as specific to
one population may have undetected and much lower
frequencies in another population due to the limited sample
sizes of the reference populations. For example, the average
EAS, EUR, and SAS information in the Biaka population
from the HGDP are 0.005, 0.007, and 0.008, respectively,
which are unexpected. Increasing the sample sizes of the
reference populations will reduce such errors. Since the
ancestral information due to misclassification errors is
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typically very small, the overall ancestral spectrum will not
be greatly affected. In addition, such a small amount of
unexpected ancestral information can also be caused by
sequencing errors.

We used AFR, EAS, EUR, and SAS populations from
the 1kGP and AMR populations from the HGDP as the
reference populations, some of which may be admixed as
well. We conducted an unsupervised ADMIXTURE 1.3.0
(Alexander et al., 2009; Alexander and Lange, 2011) analysis on
the 200,000 common SNPs with K = 4, 5, and the results
are shown in Supplementary Figures 13, 14, respectively. The
clusters were labeled with the continental populations that had
the largest components. We can see that PJL shows not only
SAS ancestry, but also EAS and EUR ancestries. Since PJL is
one of the reference populations for SAS, rare alleles, if carried
by PJL individuals and originating from EUR, were excluded
from the panel of SNPs specific to EUR. As a result, the EUR
ancestry of PJL, if present, was not detected and the number
of SNPs specific to EUR was underestimated. Nevertheless,
this is not a problem for analyzing populations outside of the
reference populations. Due to the abundance of population-
specific SNPs, genomic regions that carry alleles originating from
EUR or EAS are covered by many other SNPs specific to the two
populations. Therefore, our method is robust to the admixture in
reference populations.

We further analyzed the 20 populations from the 1kGP that
serve as reference populations for AFR, EAS, EUR, and SAS,
the results are shown in Supplementary Figures 15, 16. In the
analysis of one population, for instance ESN, we excluded it
from the reference populations and used samples from GWD,
LWK, MSL, and YRI as the reference population for AFR,
while reference populations for the other population groups
remained. Similar methods were used in the analyses of the other
populations. Because ancestral spectra of the 20 populations
were based on different panels of reference populations, absolute
values of the ancestral information are comparable only within
the same population. As we can see that despite mixed ancestries
can be observed in the reference populations, populations
from the same continental group share great majority of
their ancestries.

Model-based approaches, such as STRUCTURE (Pritchard
et al., 2000; Falush et al., 2003; Hubisz et al., 2009), FRAPPE (Tang
et al., 2005), ADMIXTURE (Alexander et al., 2009; Alexander
and Lange, 2011), and fastSTRUCTURE (Raj et al., 2014),
have been widely used for analyzing population structure and
inferring the ancestral proportions of individuals. For a given
number of ancestral populations, allele frequencies in ancestral
populations and the ancestral proportions of individuals are
estimated simultaneously. Our ancestral information, on the
other hand, is based on the allele frequencies of a panel
of population-specific SNPs that are estimated a priori. The
ancestral spectrum analysis in the study samples does not affect
the estimates of allele frequencies in the reference populations;
hence, genetic outliers and related individuals can be included
in the target populations. Ancestral information from different

studies can be inferred and compared based on the same panel
of SNPs, and the results do not depend on the sample sizes of
the studies.

Another difference between our ancestral information and
the model-based approaches is that we do not constrain the
total ancestral information to be one. This allows for comparing
results with different reference populations. As illustrated in
the analyses of AMR populations from the 1kGP, choosing
different reference populations allows recent admixtures to be
dissected from ancient ones. Moreover, our ancestral information
is directly associated with one of the reference populations, and
its interpretation is straightforward. Although we assumed that
population-specific alleles are rare, it can be shown that the
ancestral information estimated by the method of moment holds
for low-frequency or common alleles as well. For the maximum
likelihood estimate, the binomial approximation of the genotypic
distribution is not valid any longer and the inference based
on Eq. 14 will be less accurate. In addition, the estimator by
the method of moment is the linear estimator that minimizes
variance, is statistically consistent in nature and incurs minimal
computational cost.

We conducted supervised ADMIXTURE 1.3.0 (Alexander
et al., 2009; Alexander and Lange, 2011) analyses with the two
sets of reference populations and population-specific SNPs used
in the ancestral spectrum analyses, the results are shown in
Supplementary Figures 17, 18. As can be seen in Supplementary
Figure 17 that AMR groups have little EAS ancestry when
the four reference populations were used. Presumably this is
because the AFR and EUR proxies are much better for the
true European and African source, respectively, than EAS is
for the true indigenous American source. A smaller number
of EAS-specific SNPs are polymorphic in AMRs than those
of AFR or EUR-specific SNPs. All ancestry components add
up to one for each individual because of the constraint on
the total ancestral proportions. However, such constraint biases
the estimates of AFR and EUR proportions upwardly. In
Supplementary Figure 17, average AFR and EUR proportions
are 0.082 and 0.914 in AMRs, respectively. Including indigenous
AMR in the reference populations, the AFR and EUR proportions
in Supplementary Figure 18 decrease to 0.070 and 0.485,
respectively. Because of the constraint, the two sets of results
cannot be compared meaningfully. The constraint may not be
a problem when analyzing samples whose ancestral populations
are known and exist in the reference populations (Lawson
et al., 2018). For exploratory analyses that involve understudied
populations, our unconstrained ancestral information provides
an insight whether some ancestral sources are missing or
poorly represented.

In this work, we use only five reference populations,
which have publicly available deep sequencing data
and reasonable sample sizes. With more populations
sequenced in the future, more reference populations
of larger sizes will be able to be used, and much finer
ancestral spectra in worldwide populations will be able to
be inferred.
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