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Global warming has increased the occurrence of high temperature stress in plants,
including maize, resulting in decreased the grain number and yield. Previous studies
indicate that heat stress mainly damages the pollen grains and thus lowered maize grain
number. Other field studies have shown that heat stress after pollination results in kernel
abortion. However, the mechanism by which high temperature affect grain abortion
following pollination remains unclear. Hence, this study investigated the field grown
heat-resistant maize variety “Zhengdan 958” (ZD958) and heat-sensitive variety “Xianyu
335” (XY335) under a seven-day heat stress treatment (HT) after pollination. Under HT, the
grain numbers of XY335 and ZD958 were reduced by 10.9% (p � 0.006) and 5.3% (p �
0.129), respectively. The RNA sequencing analysis showed a higher number of
differentially expressed genes (DEGs) between HT and the control in XY335 compared
to ZD958. Ribulose diphosphate carboxylase (RuBPCase) genes were downregulated by
heat stress, and RuBPCase activity was significantly lowered by 14.1% (p � 0.020) in
XY335 and 5.3% (p � 0.436) in ZD958 in comparison to CK. The soluble sugar and starch
contents in the grains of XY335 were obviously reduced by 26.1 and 58.5%, respectively,
with no distinct change observed in ZD958. Heat stress also inhibited the synthesis of grain
starch, as shown by the low activities of metabolism-related enzymes. Under HT, the
expression of trehalose metabolism genes in XY335 were upregulated, and these genes
may be involved in kernel abortion at high temperature. In conclusion, this study revealed
that post-pollination heat stress in maize mainly resulted in reduced carbohydrate
availability for grain development, though the heat-resistant ZD958 was nevertheless
able to maintain growth.
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INTRODUCTION

The rising levels of carbon dioxide in the atmosphere causes a greenhouse effect that results in
increased temperatures and climatic changes (Xuan et al., 2020). Rising temperature is a global issue
because of its impact on crop growth and yield (Wang et al., 2020a). Maize is more sensitive to heat
stress (one of the most important abiotic stresses) than wheat and rice (Zhao et al., 2017; Zhang et al.,
2019). Simulation result indicated that a 10% reduction in maize yield was shown for each 1°C
increase in global temperature (Zhang and Zhao, 2017; Dong et al., 2021). Furthermore, previous
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studies have underscored the effects of high temperature on maize
growth and development (Obaid et al., 2016; Zhang and Zhao, 2017;
Wang et al., 2020b). For example, maize plants exhibited various
effects of high temperature at distinct phenological periods (Lizaso
et al., 2018). Maize tassels (male flowers) growing at the top of the
plant were found to be vulnerable to low-level heat stress and this
affected pollen viability (Dong et al., 2021; Wang et al., 2021). At the
flowering stage, high temperatures inhibited anther dehiscence,
pollen viability, and pollen germination, which caused kernel
abortion and maize yield reduction (Carberry et al., 1989;
Bakhtavar et al., 2015; Hatfield and Prueger, 2015; Li and Howell,
2021; Wang et al., 2021). Additionally, high temperatures caused a
delay in the anthesis-silking interval (ASI) of maize, resulting in
reduced kernel number, although plenty of pollen was still present
(Wang et al., 2019). Moreover, in widely planted smaller tassel maize
varieties, extended ASI distinctly decreased yield (Wang et al., 2019).
Pollen sterility under heat stress has been intensely studied recently,
but the manner in which high temperatures after pollination causes
grain abortion remains unclear.

Leaf photosynthesis is fairly sensitive to high temperatures (Berry
and Bjorkman, 1980), resulting in decrease in the net photosynthetic
rate (Ben-Asher et al., 2008). Impaired photosynthesis affects
biological carbon fixation (Gustin et al., 2018), thus restraining
the synthesis of glucose and starch in the kernels and influencing
the activities of related enzymes (Yang et al., 2016; Fahad et al., 2017;
Basu et al., 2019). RNA sequencing (RNA-seq) analysis has shown
that high temperatures downregulate starch synthesis genes involved
in carbon metabolism (Bita and Gerats, 2013). Additionally, other
stresses also have been shown to reduce assimilate availability,
leading to kernel abortion (Puteh et al., 2014; Pan et al., 2015;
Shen et al., 2020) and the inhibition of grain filling (Edreira and
Otegui, 2012). Inversely, under abiotic stress, trehalose can increase
sugar transport into the grains and improve crop grain number or
grain size (Griffiths et al., 2016). Specifically, a gene in the maize ear
expressing trehalose phosphate phosphatase causes a significantly
reduced kernel abortion rate under drought (Nuccio et al., 2015).
However, the effects of changes in sugar and trehalose-6-phosphate
signaling synthesis genes on kernel abortion under short-term heat
stress in field maize remains unclear.

Previous studies have shown that damage to the pollen grains due
to high-temperature stress is the main limiting factor to kernel setting
(Liu, 2014; Wang et al., 2019). Short-term heat stress after pollination
was found to have less influence on maize kernel abortion (Wang
et al., 2021). However, we hypothesized that post-pollination heat
stress might result in kernel abortion in a heat-sensitive maize variety.
Hence, the objectives of this study were to 1) assess the effects of heat
stress on the change in kernel number after pollination using heat-
sensitive and heat-resistant maize varieties and 2) determine sugar
metabolism in the maize kernels under heat stress.

MATERIALS AND METHODS

Experimental Site
The field experiment was conducted in 2019 at the Shenzhou
Dryland Farming Experimental Station of the Hebei Academy of
Agriculture and Forestry Sciences (Hebei Province, China,

37.91N, 115.71E). Supplementary Figure S1A shows the
climatic conditions during the growing season of maize. The
soil in the experiment was classified as loam fluvo-aquic with
12.53 g kg−1 organic matter, 65.8 mg kg−1 total nitrogen, 121.9 mg
kg−1 available potassium, and 15.3 mg kg−1 available phosphorus.

Experimental Design and Field
Management
This study used the heat-sensitive “Xianyu 335” (XY335)and
heat-insensitive maize varietiy: “Zhengdan 958” (ZD958) (Wang
et al., 2020a). Both are common maize varieties in China. The
maize seeds were manually sown at a density of 75,000 plants per
hectare on June 16, 2019. The row spacing was 60 cm and the
plant spacing was 22 cm and there were six rows in each
greenhouse. After sowing, irrigation water was supplied using
the surface flood method. The fertilizer application was done
before sowing at a rate of 750 kg per hectare compound fertilizer
with a 25:8:12 ratio of N: P2O5: K2O, while top-dressing was done
at V12 using 138 kg N ha−1 (urea) of fertilizer. Weeds, pests,
drought, and diseases were well controlled.

Randomized complete blocks were used in this study, with three
replicates per treatment. The silking period was recorded when the
silks of 50% of maize plants had reached 2 cm (Abendroth et al.,
2011). Five days after silking, artificial unified pollination was
conducted following Shen et al. (2020). Six simple greenhouses
were then constructed to enclose the maize plants that would
undergo heat treatment (HT), with each variety planted in a
separate greenhouse. The control maize plants were grown
under natural conditions. Each greenhouse measured 5 m in
length, 3.5 m in width, and 3.5 m in height. Polyethylene film
(0.8 mm thickness) was used as a barrier with 1.2 m openings on
the sides for adequate gas exchange (Supplementary Figure S2).
The HT treatment was conducted from 8:00 to 18:00 for 7 days.

Temperature and humidity recorders (L95-2 Saiouhuachuang
Technological Corporation, Beijing, China) were installed in the
center of each greenhouse to record data every 10 min and were
placed 1.5 m above the ground. The average temperature and
maximum temperature in the shed during daily treatment are
shown in Supplementary Figure S1B. The simple greenhouses
were removed after the HT treatment.

Sampling and Measurements
Four days after HT, the net photosynthetic rate (Pn) of the ear
leaves (representative source organ) was measured with a
portable photosynthetic apparatus system (LI-3400 Li-Cor,
USA) under a natural field environment. Each measurement
was taken at the center of the ear-leaf.

Light intensity was measured at noon above the canopy three
times in each plot by using a LI-250A Light Meter (Li-Cor, USA).
The polyethylene film used for the HT allowed a penetration of
95.4% of the incoming solar radiation. There was no significant
difference in light intensity between HT and the control (CK)
(Supplementary Figure S1C).

At 5 days after the HT treatment (10 days after silking),
sampling of the leaves and kernels was performed. Each leaf
sample (>1 g) was taken from the bottom of the ear leaf at about
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20 cm. The fresh kernel samples (>20 grains) were taken as shown
in Supplementary Figure S3. Samples of the kernels and leaves
were immediately frozen in liquid nitrogen. The samples were
then refrigerated at −80°C for enzyme activities determination
and transcriptome sequencing. At 10 days after silking, three ears
per plot were gathered, and two rows of grains were sampled for
dry weight measurements. The dry weight was determined by
drying the kernels at 80°C until a constant weight. The ear growth
rate of the maize was then calculated based on the dry weight of
the ear (cob + kernel). At physiological maturity, the maize ears
were hand-harvested in each treatment to record the row number
and kernel number per row.

Assay of Soluble Sugar and Starch Levels
The soluble sugar content of the kernels was measured using the
anthrone colorimetric method. Briefly, 0.5 g of dried powdered of
kernels was mixed with 6 ml of water and then heated at 100°C for
30 min. The samples were cooled to room temperature and
centrifuged at 3,500 rpm for 15 min to obtain the supernatant
as a soluble sugar solution. The supernatant was transferred into
another test tube and the last procedure was repeated. The
insoluble sediment was diluted with 10 ml of 3 mol L−1 HCl
and then heated for 45 min at 100°C. Following which it was
centrifuged at 35,000 rpm min−1 for starch determination. The
product was collected and neutralized with 10 ml of 3 mol L−1

NaOH. The measurement of soluble sugar and starch levels
referred to Hanft and Jones (1986).

Measurement of Photosynthetic Enzyme
and Starch Synthase Activities
The fresh kernel samples (0.5 g) were ground into a fine powder
and extracted with 450 μL Phosphate Buffer Solution (PBS) at pH
7.2–7.4. Afterwards, the prepared samples were centrifuged at
4,000 rpm min−1 for 15 min to separate the supernatants, which
were then assayed using an enzyme-linked immunosorbent assay
(ELISA) kit (Sci-tech innovation, Qingdao, China). Activities of
starch synthase (SSS), adenosine diphosphate-glucose pyro
phosphorylase (AGPase), and cell wall invertase (CWIN), which
are three key enzymes involved in the starch synthesis pathway in
maize kernels, were determined. In addition, the ribulose
diphosphate carboxylase (RuBPCase) activities were measured
in the leaves were measured following Zhang et al. (2020a).

Transcriptome Analysis
Transcriptome analysis was conducted on both the leaves and the
kernels of the twomaize varieties grown under unstressed (CK) and
stressed (HT) conditions in a field environment. The total RNAwas
extracted using TRizol reagent (Invitrogen, Carlsbad, CA) following
the manufacturer’s directions with three biological repeats tested.
The RNA concentration, purity, and integrity were measured using
a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE) and
the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100
system (Agilent Technologies, CA, USA), respectively. The input
material for RNA sample preparations was 1 μg per sample. The
database sequencing libraries were established following the
manufacturer’s recommendations for the NEBNext®

UltraTMRNA Library Prep Kit for Illumina® (NEB, USA).
Index codes were added to attribute sequences to each sample.
As instructed by the manufacturer, the clustering of the index-
coded samples was performed on the cBot Cluster generation
system through a TruSeq PE Cluster Kit v4-cBot-HS (Illumina).
After cluster generation, the library preparations were sequenced on
an Illumina platform and paired-end reads were generated. The
sequence analysis was performed using the BMKCloud platform
(www.biocloud.net). The data were subjected to strict quality
control by deleting low-quality sequence reads. The data
considered were reads with a proportion of N higher than 10%,
and reads with a quality value of Q ≤ 10 accounted for more than
50% of the total reads. The clean data were mapped to the maize
reference genome (B73_RefGen_v2) using HISAT2 (Kim et al.,
2015). The gene expression outputs statistical data is given as
follows Supplementary Table S1. After quality control of
sequencing data, 189.04Gb Clean Data were obtained and the
minimum of Q30 was 94.73%).

The mapped read numbers and transcript length were
normalized. Fragments Per Kilobase of transcript per Million
fragments mapped (FPKM; Florea et al., 2013) was used as an
index for the gene expression levels in different samples.

The differentially expressed genes (DEGs) were selected based
on log2 (fold change) >1 or log2 (fold change) <−1 and with
statistical significance of p < 0.05. The transformed and
normalized expression values of the DEGs FPKM by Z-score
were used for hierarchical clustering. Supplementary Table S2
shows the annotations of the enzyme related genes described in
this study. Supplementary Table S3 shows the related
annotations of heat shock genes in this study. The annotations
of genes involved in photosynthesis were sourced from the
database of the National Biotechnology Information Center
(NCBI, https://www.ncbi.nlm.nih.gov/).

Quantitative Real Time-PCR
The RNA-seq data were further validated by quantifying the gene
expression of a selected number of genes in the XY335 kernels
using quantitative real-time PCR analysis (qRT-PCR). The cDNA
synthesis from the total RNA was performed using the
TRUEscript 1st Strand cDNA SYNTHESIS Kit (Aidlab,
Beijing, China), and qRT-PCR are done with 5 × RT Reaction
Mix (MedChemExpress, China). The specific primers used in the
qRT-PCR are listed in Supplementary Table S4. The primers
were designed based on gene sequences in the NCBI GenBank
database and were synthesized by Biomarker Technologies
(Beijing, China). The fluorescence was measured at the end of
each cycle for quantification. Using GRMZM2G171060
(Zm00001d000379) as the reference gene, the 2−ΔΔCt method
was used to calculate relative gene expression with three technical
replicates tested. The qRT-PCR results showed that the
transcriptome results were reliable (Supplementary Figure S4).

Statistical Analysis and Drawing of
Illustrations
A two-tailed Student’s t-test was used to determine significance
levels between the CK and HT in kernel number, ear growth rate,
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enzymatic activity, sugar content, and photosynthesis rate.
Statistical analyses were performed using IBM SPSS Statistics
Version 25 and Microsoft Excel 2019.

Figures were drawn using SigmaPlot 12.5 and Adobe
Illustrator CC 2020. A heatmap of the DEGs was drawn
using the R package Pheatmap. Statistics of pathway
enrichment were drawn by the platform BMKCloud (http://
www.biocloud.net).

RESULTS

Kernel Number and Ear Growth Under Heat
Stress
As shown in Figure 1, the kernel number per ear under HT in
XY335 was reduced by 10.9% compared to CK, while no
significant difference was observed between CK and HT in
ZD958. The ear growth rate significantly decreased under high
temperatures. The ear growth rate of XY335 and ZD958 under
HT was significantly reduced by 50.6 and 18.4% compared to CK,

respectively (Figure 2A). Moreover, the correlation analysis
results showed that high ear growth rate around pollination
increased the kernel number (p � 0.001, Figure 2B).

Analysis of Gene Expression and
Differentially Expressed Genes
Figure 3A shows the results of the transcriptome analyses of
DEGs in the HT treatment compared to the CK. The leaf and
kernel samples of XY335 had 871 and 12,891 DEGs, respectively.
The numbers of DEGs identified in the leaf and kernel samples in
ZD958 were 3,208 and 1,720, respectively. Under the same heat
stress, the number of DEGs detected in ZD958 was considerably
lower than in XY335, with 392 and 511 DGEs overlapping
between the leaf and kernel, respectively (Figure 3B). The
heatmap of heat shock genes showed 20 upregulated genes
and five downregulated genes in XY335, while normal
expression levels were detected for these genes in ZD958.
Remarkably, HSP4 was downregulated in ZD958 but normal
in expression XY335 (Figure 3C). Therefore, this study showed

FIGURE 1 | Effects of heat stress on the kernel number of maize varieties (ZD958 and XY335) grown under control (CK) and heat treatment (HT) conditions.

FIGURE 2 | (A) Effects of heat stress on ear growth rate after 5 days of heat treatment. CK and HT indicate the control and heat treatment, respectively. (B)
Relationship between the ear growth rate after 5 days of heat treatment and the kernel number per plant.
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that XY335 was greatly affected by high temperature, whereas
ZD958 was not.

Effect of Heat Stress on Photosynthesis
The leaf net photosynthetic rate (Pn) of XY335 was significantly
inhibited by heat stress, whereas the Pn of ZD958 was not
obviously reduced (Figure 4A). Similarly, RuBPCase activity
under HT was significantly decreased by 14.1% compared with
CK in XY335. HT lowered the RuBPCase activity by 5.3% less
than CK in ZD958 (Figure 4B).

A total of 183 genes related to photosynthesis were analyzed,
and the two varieties showed different results under the CK and
HT treatments (Supplementary Figure S5). Among these genes,
131 and 133 genes were downregulated in XY335 and ZD958,
respectively. Additionally, 62 genes differed between the two
varieties. Unexpectedly, two genes encoding RuBPCase,
Zm00001d004894 and Zm00001d052595 were significantly
downregulated in both XY335 and ZD958 under HT (Figure 4C).

Sugar Metabolism in the Maize Kernels
The soluble sugar in the XY335 kernels under HT decreased by
26.1% compared with CK, while there was no remarkable
reduction in soluble sugar content in ZD958 under HT. The
kernel starch content in XY335 and ZD958 under HT decreased
by 58.5 and 27.2% compared with those of CK, respectively.
Figure 5A shows that the decrease in kernel starch contents
reached a significant level (p� 0.025) in XY335 but not in
ZD958 (p� 0.333). Correlation analysis indicated that sufficient
soluble sugar (p� 0.056) and starch (p� 0.021) could increase
kernel number (Figure 5B). Additionally, soluble sugar

content (p � 0.003) and starch content (p < 0.001) were
positively correlated with ear growth rate (Figure 5C).

Under HT condition, the activities of CWIN and SSS in the
kernel did not change significantly, while AGPase activity was
found to be sensitive to HT treatment (Figure 6). The results
showed that the SSS activity under HT was reduced by 8.1% (p�
0.162) and 1.8% (p� 0.300) in XY335 and ZD958, respectively.
The AGPase activity in the maize kernels decreased significantly
by 10.6% in XY335, while a 5.8% increase was observed in ZD958,
though this was not statistically significant (p� 0.093). The RNA-
seq results indicated that five SSS genes and three AGPase genes
were downregulated under the HT relative to CK. Interestingly,
CWIN-related genes exhibited upregulated expression compared
to those in the CK group (Figure 7).

Additionally, 20 genes related to trehalose synthesis were
upregulated, whereas four genes were downregulated. In the
metabolic pathways of starch and sucrose, trehalose-
synthesized genes were found to be upregulated in XY335
under HT; however, ZD958 showed relatively minor changes
(Figure 8). From the results, it is clear that starch synthesis was
inhibited, while trehalose synthesis was promoted under high
temperature stress, which may have resulted in kernel abortion.

DISCUSSION

Previous studies have shown that maize pollens are susceptible to
high temperature, usually resulting in kernel abortion (Wang
et al., 2019; Wang et al., 2021). Our results indicated that heat
stress after pollination still plays a critical role in kernel abortion,

FIGURE 3 | Comparing the differentially expressed genes (DEGs) of maize varieties XY335 and ZD958 grown under both control (CK) and heat (HT) treatments on
the 5th day of HT. (A) Total numbers of upregulated and downregulated genes (B) Venn diagram of the DGEs and (C) heatmap of the genes related to heat shock under
heat stress.
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and it reduces carbohydrate availability and damages carbon
metabolism. Additionally, kernel abortion after pollination at a
high temperature was found to be variety-specific.

Limited Low Ear Growth Rate in the Early
Stage of Maize Grain Filling Reduced the
Kernel Number
During the critical growth stage bracketing of silking, stress
typically reduces the maize plant/ear growth rate (Rossini
et al., 2011, Pagano and Maddonni, 2007; Borras and
Vitantonio-Mazzini, 2018). Kernel number per ear is
significantly related to plant growth rate around silking and
biomass partitioning to the ear during this period (Pagano and

Maddonni, 2007). In this experiment, heat stress also decreased
maize ear growth rate, especially for XY335. HT after pollination
reduced ear leaf photosynthesis and decreased assimilate
availability, which reduced ear growth. Moreover, previous
research has shown that the ear growth rate at the early stage
of kernels growth determined the final grain number (Rossini
et al., 2011). In line with previous studies, there was a significant
correlation between the kernel number and the ear growth rate
during this period in our experiment (Figure 2B). As discussed,
the kernel number was affected by the restriction of ear growth
rate under HT.

FIGURE 4 | Changes in photosynthesis after 5 days of heat treatment
(HT) compared to the control (CK): (A) photosynthesis rate in CK and HT; (B)
ribulose diphosphatecarboxylase (RuBPCase) activity in CK and HT; and (C)
heatmap of the genes related to RuBPCase under heat stress. Red and
blue lines represent upregulated and downregulated genes, respectively.

FIGURE 5 | Effects of heat stress on soluble sugar, and starch content in
the kernel and relationships between soluble sugar/starch with kernel number
and ear growth rate. (A) Soluble sugar and starch contents in the maize
kernels as affected by heat treatment (HT) after the 5th day of treatment.
(B) The relationship between the soluble sugar (left)/starch (right) contents
with final kernel number. (C) The relationships between the soluble sugar (left)/
starch (right) contents with the ear growth rate.
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Insufficient Sugar Supply Leads to
Restricted Ear Growth Rate After Pollination
Maize is very sensitive to high temperatures during tasseling,
flowering, pollination, and kernel filling (Zhang et al., 2020b).
The reasons may be that 1) a high temperature causes kernel
abortion by destroying pollination processes (Deryng et al.,
2014) and 2) a high temperature causes sugar deficiency or
insufficient sugar metabolism, leading to kernel abortion

(Edreira and Otegui, 2012). A previous study showed that
22.1% of the kernels were aborted during the 15-days high

FIGURE 6 | Changes in the activities of starch synthase (SSS),
adenosine diphosphate-glucose pyrophosphorylase (AGPase), and cell wall
invertase (CWIN) at 5 days after heat treatment.

FIGURE 7 | Expression profiles of genes that encode starch synthase
(SSS), adenosine diphosphate-glucose pyrophosphorylase (ADGPase), and
cell wall invertase (CWIN). (A) Gene expression (FPKM fold change) of the
candidate genes in maize leaves under CK and HT conditions.
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temperature stress treatment after tasseling (Wang et al.,
2021). The results of this study showed that 10.9% of
kernels in the XY335 maize variety were aborted after post-
pollination heat stress. This also suggested that the abortion of
a large percentage of maize kernels can still occur post-
pollination under high temperature conditions.

Significant decreases in the leaf photosynthetic rate as well
as in soluble sugar and starch contents in the kernels were
observed under high-temperature stress (Figures 4A, 5). The
poor supply of sugars induces ovary abortion, ultimately
affecting kernel formation and yield in maize (Gao et al.,
2020; Usmani et al., 2020). Sucrose feeding can reverse the
kernel loss induced by drought or shade stress (Hiyane et al.,
2010; Zinselmeier et al., 1995) and can partially restore the
activity of carbon metabolism-related enzymes, thus
restoring some kernel growth (McLaughlin and Boyer,
2004). These findings imply that kernel abortion is
associated with an insufficient assimilate supply (Puteh
et al., 2014; Edreira and Otegui, 2012). Carbon-related
enzymes also play a vital role in kernel abortion (Shen
et al., 2020), as demonstrated in this study where kernel
abortion was caused by the decreased activity of enzymes
related to starch synthesis and reduced levels of starch
(Figure 5B). Transcriptome analysis also showed that heat
stress caused the low expression of starch synthesis-related
genes. Overall, the results of this study are consistent with
previous studies (Yue et al., 2016; Lambarey et al., 2020; Shen
et al., 2020).

Interestingly, no significant change in the activity of CWIN
was observed, but its related genes were upregulated. CWINs
contribute to sink strength and have been previously reported
to exhibit a key role in sucrose import and kernel filling
(Millera and Chourey, 1992; Weber et al., 1995; Wang
et al., 2008; Morey et al., 2018). We speculated that a low
sugar supply promoted the upregulation of CWIN, but we
found that heat stress inhibited CWIN activity and reduced
sucrose import.

FIGURE 8 | Variation in expression profiles of the genes involved in
trehalose biosynthesis.

FIGURE 9 | A schematic diagram model for the mechanism of kernel abortion, including transcripts, starch and sucrose metabolism and photosynthesis.
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The Trehalose Pathway Affected Kernel
Setting Under High Temperature
Trehalose biosynthesis has been confirmed to increase
tolerance to multiple abiotic stresses in tobacco, potato,
and rice (Schluepmann and Paul, 2009). In plants,
trehalose-6-phosphate synthase (TPS) catalyzes UDP-
glucose and glucose-6-phosphate to synthesize trehalose-
6-phosphate (T6P) (Kumar et al., 2013). T6P is further
metabolized to trehalose by trehalose-6-phosphate
phosphatase (TPP) (O’Hara et al., 2013). T6P is a critical
signaling molecule that integrates sugar status with growth
and development in plants (Paul et al., 2017; Gustin et al.,
2018; Paul et al., 2020). The results of this study showed that
under high temperatures, both the TPS and TPP genes were
obviously upregulated in XY335, a heat-sensitive maize
variety, while no obvious change was observed in ZD958,
a heat-resistant variety. The results suggested that trehalose
metabolism played an important role in kernel abortion. The
similar changes may occur under shade stress (Liang et al.,
2020). Additionally, a reduction in T6P level via the
expression of TPP can prevent maize kernel abortion and
increase yield under drought stress (Nuccio et al., 2015). The
elevated gene expressions of TPS and lower gene expression
of TPP in the apical kernels inhibited seed setting (Shen
et al., 2020). In this study, both the TPS and TPP genes were
upregulated in XY335 under heat stress, but relatively
unobvious changes were observed in ZD958. This
suggested that the response of trehalose metabolism to
heat stress was distinct in the heat-sensitive variety,
ultimately leading to kernel abortion under heat stress.

ZD958 has Higher Heat Resistance Than
XY335
XY335 is sensitive type to environmental stress, including heat
stress whereas ZD958 is resistant to environmental stress (Liu,
2014;Wang et al., 2020a). The yield of the former is typically higher
than that of the latter. However, yield performance differs
markedly under stress (Berry and Bjorkman, 1980). In a
stressful environment, low assimilate availability aggravates
kernel abortion (Gao et al., 2020; Shen et al., 2018). However,
sugar stored in the stems can serve as a buffer to ensure kernel
growth (Milne et al., 2013; Bledsoe et al., 2017). This study showed
that the heat-sensitive (XY335) had a higher kernel number than
the heat-tolerant variety (ZD958) under control conditions. Under
HT conditions, ZD958 produced more kernels compared to
XY335. Although the sugar content in the stem was not
measured in this study, all the data gathered, including the net
photosynthetic rate, DEGs, and final kernel number, demonstrated
that ZD958 is a heat-resistant variety.

Overall, the results of this study indicated that kernel abortion
was caused by carbohydrate metabolic disorders. Heat stress
decreased the RuBPCase activity by downregulating
Zm0001d052595 and Zm0001d004894 which restricted
photosynthesis and decreased assimilate availability for the
kernels. The downregulation of genes related to AGPase and

the upregulation of genes related TPP resulted in T6P disrupting
the balance between trehalose and starch. Consequently, this
study demonstrates that reduced carbohydrate availability leads
to kernel abortion under post-pollination heat stress conditions
(Figure 9).

CONCLUSION

Heat stress after pollination can result in kernel abortion,
especially in heat sensitive varieties. Heat stress mainly
reduces leaf photosynthesis and RuBPCase activity thus
lowering assimilate availability. Ear growth rate was
significantly reduced and showed significant relationship with
kernel number. Concurrently, the soluble sugar and starch
content and key enzyme activity in the kernels were
decreased and the related genes also showed obvious
downregulation. Additionally, the altered synthetic pathway
of trehalose may play a critical role in kernel setting under
heat stress. In conclusion, heat stress in maize after pollination
results in kernel abortion due to insufficient assimilate
availability.
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