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Selection bias is increasingly acknowledged as a limitation of Mendelian randomization
(MR). However, few methods exist to assess this issue. We focus on two plausible causal
structures relevant to MR studies and illustrate the data-generating process underlying
selection bias via simulation studies. We conceptualize the use of control exposures to
validate MR estimates derived from selected samples by detecting potential selection bias
and reproducing the exposure–outcome association of primary interest based on subject
matter knowledge. We discuss the criteria for choosing the control exposures. We apply
the proposal in an MR study investigating the potential effect of higher transferrin with
stroke (including ischemic and cardioembolic stroke) using transferrin saturation and iron
status as control exposures. Theoretically, selection bias affects associations of genetic
instruments with the outcome in selected samples, violating the exclusion-restriction
assumption and distorting MR estimates. Our applied example showing inconsistent
effects of genetically predicted higher transferrin and higher transferrin saturation on stroke
suggests the potential selection bias. Furthermore, the expected associations of
genetically predicted higher iron status on stroke and longevity indicate no systematic
selection bias. The routine use of control exposures in MR studies provides a valuable tool
to validate estimated causal effects. Like the applied example, an antagonist, decoy, or
exposure with similar biological activity as the exposure of primary interest, which has the
same potential selection bias sources as the exposure–outcome association, is suggested
as the control exposure. An additional or a validated control exposure with a well-
established association with the outcome is also recommended to explore possible
systematic selection bias.
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HIGHLIGHTS

What is Already Known on this Subject?
• Mendelian randomization (MR) provides unconfounded estimates, but is particularly
vulnerable to selection bias because of the small magnitude of genetic estimates.
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• Negative controls provide helpful tools to detect residual
confounding, selection, and measurement bias in
conventional epidemiological studies but often lack
specificity in the type of bias they detect.

What this Adds to What is Known?
• Given genetics are a lifelong exposure, a key source of
selection bias in MR studies is missing people from the
same underlying birth cohorts as the original population
who die before recruitment, which may violate the
exclusion-restriction assumption and distort the MR
estimates.

• The use of control exposures that have the same potential
selection bias sources as the exposure–outcome association
of interest can detect potential selection bias and validate
MR estimates.

• The estimated exposure–outcome association is more
credible if this result is robust to potential selection bias
and reproducible by using the relevant control exposures
based on subject matter knowledge.

What is the Implication, What Should
Change Now?

• Systematic selection bias may occur particularly when the
genetic variants affect survival and the outcome of interest
or a competing risk of that outcome affects survival;
interpretation of MR estimates should be cautious.

• The routine use of control exposures could add more
credibility to MR estimates.

INTRODUCTION

Mendelian randomization (MR) uses genetic variants as a natural
experiment in observational studies to investigate potential causal
effects of modifiable risk factors on health outcomes (Davey
Smith and Ebrahim, 2003). MR is often conducted in two
homogeneous study populations, i.e., two-sample MR (Burgess
et al., 2015). MR is thought to be robust to the confounding that
often occurs in conventional observational studies due to the
random allocation of genetic endowment at conception being
used as a proxy for the exposure (Burgess et al., 2012; Davies et al.,
2018). Currently, MR is a popular approach for assessing
causality (Sekula et al., 2016). However, MR estimate rests on
stringent assumptions, as illustrated using directed acyclic graphs
(DAGs) in Figures 1A,B (Davey Smith and Ebrahim, 2003;
Lawlor et al., 2008).

• IV1 (the relevance assumption): the genetic variant is
robustly associated with the exposure of interest;

• IV2 (the independence assumption): the genetic variant is
not associated with confounders that bias the
exposure–outcome association;

• IV3 (the exclusion-restriction assumption): the genetic
variant affects the health outcome only via its effect on
the exposure.

Notably, aside from IV1 that can be empirically verified using
the F-statistic (Staiger and Stock, 1997; Bowden et al., 2016a),
IV2 and IV3 are typically harder to justify. Hence, violations of
these assumptions can occur, leading to misleading conclusions.
Of these, selection bias is increasingly acknowledged as
distorting MR estimates in the selected populations
investigated (Nitsch et al., 2006; VanderWeele et al., 2014;
Canan et al., 2017; Vansteelandt et al., 2018a; Vansteelandt
et al., 2018b; Munafò et al., 2018; Munafò and Smith, 2018;
Gkatzionis and Burgess, 2019; Smit et al., 2019; Schooling et al.,
2020) and has largely focused on bias arising from selection on
exposure (Vansteelandt et al., 2018a; Vansteelandt et al., 2018b;
Munafò et al., 2018; Gkatzionis and Burgess, 2019; Smit et al.,
2019).

Genetic studies are usually carefully designed to avoid
selecting sample on genetic make-up and phenotypes.
Generally, selection bias occurs in an MR study when the
sample in the original genome-wide association study
(GWAS) are selected conditional on survival until study
recruitment on genotype of interest in the presence of prior
death from the outcome or competing risks of the outcome
(Figure 1C), especially in the original outcome GWAS
(Schooling et al., 2020). The problem is the time lag
between genetic randomization at conception and
recruitment of participants into the GWAS. Participants
diagnosed with or dead from the outcome or a competing
risk of the outcome are not recruited into the outcome GWAS,
which attenuates or reverses MR estimates for harmful
exposures, because people who have already died of their
harmful genetic endowment and people who have died of
the outcome or a competing risk of the outcome are missing.
As such, selection bias may create a spurious genetic
variant–outcome association by opening the backdoor path
from genetic instruments to the outcome of interest, violating
the IV3 assumption.

For example, previous observational studies showed that
higher transferrin binds to circulating iron and influences iron
status, which may further cause iron-deficiency anemia and
increase the risk of stroke (Chang et al., 2013; Marniemi et al.,
2005; Gillum et al., 1996). However, a recent MR study reported
that lower iron status also appeared to protect against stroke (van
der et al., 2005; Gill et al., 2018), especially cardioembolic stroke
(Gill et al., 2018). An increasingly acknowledged explanation is
selection bias, possibly due to the presence of competing
risks [e.g., coronary artery disease (Gill et al., 2017),
hypercholesterolemia (Gill et al., 2019), chronic kidney disease
(Fishbane et al., 2009), skin infections (Gill et al., 2019), liver
disorders (e.g., hepatitis C) (Shan et al., 2005), and rheumatoid
arthritis (Yuan and Larsson, 2020)] caused by the shared
confounders (e.g., socioeconomic position, lifestyle, and health
status), affecting survival of the underlying population
(Camaschella, 2015; McLean et al., 2009), as shown in
Figure 2. For instance, people with competing risks, such as
coronary artery disease, tend to die earlier than those with stroke
inWestern settings (Kesteloot and Decramer, 2008; Menotti et al.,
2019; Diseases and Injuries, 2020). As such, people vulnerable to
these competing risks with higher iron status may die before
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study recruitment, leaving more “healthier” participants in the
study and inducing biased estimates.

Several statistical methods have been proposed to detect and
eliminate selection bias in MR studies, most of which focus on
bias arising from selection on exposure (Bareinboim and Pearl,
2012; Arnold and Ercumen, 2016; Hemani et al., 2017; Tchetgen
Tchetgen and Wirth, 2017; Vansteelandt et al., 2018a; Brumpton
et al., 2020; Zhao et al., 2020; Sanderson et al., 2021; Wang and
Han, 2021), which is generally thought to have limited effects.
However, selection on genetic endowment and outcome or
competing risk of the outcome is more pervasive (Schooling
et al., 2020) and can have larger effects. One approach that has not
been considered is the use of a “negative control,” which has been
widely used in laboratory science for decades to help detect
problems with the experimental method (Arnold and
Ercumen, 2016). In epidemiological studies, a formal approach
has been described in detail and suggested as a means of detecting
residual confounding, selection bias, and measurement bias
(Lipsitch et al., 2010; Arnold et al., 2016). Recently, negative
control outcomes, defined as sharing identical confounders with
the exposure–outcome association but not associated with the
exposure, have been proposed to detect potential population
stratification in MR studies (Sanderson et al., 2021). Other
approaches include summary data-based MR [SMR, e.g., MR
robust adjusted profile score (MR-RAPS)] (Zhao et al., 2020;

Wang and Han, 2021), two-sample MR Steiger method (Hemani
et al., 2017), and three-sample MR (Zhao et al., 2019), in which
the selection procedure of genetic instrument (e.g., winner’s
curse) is considered a form of selection bias (Wang and Han,
2021). However, such a situation is different from the scenario
where the original outcome GWAS is missing people from the

FIGURE 2 | Directed acyclic graph (DAG) illustrating the possible data-
generating process underlying selection bias in the transferrin–stroke
association due to missing people in the presence of competing risks (CRs,
e.g., coronary artery disease) caused by the shared confounder [e.g.,
socioeconomic position (SEP)] of stroke and CRs in two-sample Mendelian
randomization settings. C: the unmeasured confounder of the
transferrin–stroke association.

FIGURE 1 | Directed acyclic graph (DAG) illustrating Mendelian randomization (MR). (A) DAG illustrating an ideal scenario of an MR study. (B) DAG illustrating the
three instrumental assumptions (Davey Smith and Ebrahim, 2003)—IV1: Relevance (Burgess et al., 2015); IV2: Independence (Burgess et al., 2012); IV3: Exclusion
restriction. (C)DAG illustrating potential biased pathway with selection bias in the presence of competing risks that share substantial etiological factors with the outcome.
(D)DAG illustrating potential biased pathway with selection bias in the unrepresentative selected samples. (E)DAG illustrating anMR study using control exposures
to detect potential selection bias in the presence of competing risks. (F) DAG illustrating an MR study using control exposures to detect potential selection bias in the
unrepresentative selected samples. E1: the primary exposure of interest; E2 and E3: the control exposures; C: the confounder that associates with both the exposure and
outcome; D: the outcome; CR: the competing risks; U: the unmeasured and shared confounders of the competing risks and the outcome; GE1, GE2, and GE3: genetic
variants that are strongly associated with the exposure of primary interest and the control exposures.
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same underlying population (birth cohorts) as those included,
some of whom have already died from the instrument and some
of whom have already died from the outcome or a competing risk
of the outcome, as shown in Figures 1C,D.

In this study, as an extension of negative control outcomes, we
advance the use of control exposures to validate MR estimates
that might be susceptible to such selection bias. We focus on
plausible causal structures relevant to MR studies and illustrate
how to validate MR estimates using control exposures through a
real example investigating the potential association of transferrin
with stroke (including ischemic and cardioembolic stroke). This
association is thought to be particularly vulnerable to selection
bias, especially among older populations, because transferrin
affects survival and stroke is open to competing risk from
IHD (Schooling et al., 2020; Yang et al., 2021). We further
discuss the criteria for choosing the control exposures and the
limitations of this approach.

METHODS

Figures 1C,D show DAGs for MR with selection bias caused by
sample selection. In the presence of competing risks (Figure 1C),
the selected samples may have a lower risk of developing the
phenotype [e.g., the outcome (D)] because the GWAS is missing
people with genetic vulnerability to earlier death and people who
have died from a disease that shares causes (e.g., U) with the
phenotype. As such, the backdoor pathway directly linking GE1 to
D will be reopened in the selected samples if the instruments
affect survival, i.e., have allele frequencies that differ from the
underlying population (e.g., birth cohort). This situation violates
the IV3 assumption and distorts MR estimates, which can
attenuate or reverse the true association or create a spurious
association. The small effect sizes of genetic associations (Park
et al., 2011; Global Burden of Disease, 2020) make them
particularly vulnerable to perturbation by such bias (Schooling
et al., 2020). In the absence of competing risks (Figure 1D), the
phenotype (e.g., D) risk and instruments’ frequencies may vary
because of selecting on genetic instruments and outcome, which
generates unrecoverable selection bias.

To clearly illustrate the data-generating process underlying
selection bias due to missing people from the original birth
cohorts who formed the underlying population through death
before study recruitment, we conducted extensive simulation
studies. Details are presented in the Supplementary Material.
Briefly, we induced selection bias by selecting study participants
as survivors to study recruitment.We assumed that the survival of
the underlying population was influenced by the genetic
instruments GE1, exposure E1, outcome D, confounder C of
the exposure–outcome association, or the unmeasured
confounder U mediated by competing risks CR. We used the
relative hazard (i.e., hazard ratio) per-unit change in either GE1,
E1, C, D, or U to quantify their effects on the survival, as shown in
Supplementary Figure S1. As such, the impact of selection bias
induced by the survival status of the underlying population until
study recruitment was governed by hazard ratio of per-unit
change in either GE1, E1, C, D, or U. Then, we induced

selection bias in two-sample MR by having instruments
determining survival to recruitment and outcome of interest
affecting survival to recruitment. Details of the simulation
study are in the Supplementary Material, along with the
corresponding R scripts.

Figure 3 and Supplementary Figure S1 show the impact of
selection bias arising from selecting samples conditioning on
genetic instruments G and outcome D, with no effects of either
exposure E1 or the shared confounder U mediated by competing
risks on survival of the underlying population (i.e., birth cohort)
based on simulation studies. More details have been presented in
Supplementary Material S1. As expected, selecting samples
conditioning on genetic instruments G and outcome D of
interest induces selection bias, with its impacts varying
depending on the relative hazard of G and D on survival of
the underlying population. Given summary statistics obtained
from the original exposure and outcome GWASs, it seems not
easy to recover the true causal estimate from the observed MR
estimates in two-sampleMR settings due to the essence of missing
people before the recruitment of the original GWASs.

Validating MR Estimates by Detecting
Selection Bias and Reproducing
Associations of Interest Using Control
Exposures
To explore selection bias, we reproduce a condition that does not
involve the hypothesized causal mechanism but involves the same
potential selection bias sources in the original MR study. We
introduce an antagonist or decoy of E1 as the control exposure E2,
mimicking a natural experiment, because E2 acts as an
endogenous intervention of E1. Moreover, E2 effects on
survival would be nearly identical to E1, as depicted in Figures
1E,F, but has an opposite impact on D from E1. If such an E2
exists, then any consistent effects of E1 and E2 on D would be
mainly due to selection bias rather than study design. That is, the
consistent effects of E1 and E2 on D could indicate potential
selection bias. Otherwise, the estimated causal effects derived
from the selected samples are robust to selection bias. Moreover,
an intuitive interpretation herein is that the E1–D association is
credible and reproducible by using a relevant control exposure E2
because of the known relationship between E1 and E2.

We can extend the selection of E2 by using exposure with
similar biological activity as E1 because they are also likely to
share the same potential selection bias sources and have similar or
even the same effects on D. This idea is widely applied in
developing pharmaceutical products [Food and Drug A
(2014). Bioa, 2014; Committee for Medicinal P, 2010]. If such
an E2 exists, then any inconsistent effects of E1 and E2 on Dwould
be mainly caused by potential selection bias. Conversely,
consistent results of E1 and E2 on D would validate the
estimated effects. In other words, these estimated effects
derived from the selected samples are less likely to be affected
by selection bias. Even if selection bias exists, its impact would be
limited. It would not extend to reverse the causal direction or
distort the estimated effect far away from the truth. Notably, the
use of such kinds of control exposures does not require a null or
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well-established association between the control exposure E2
and D.

Issue of Systematic Selection Bias
However, this method might still fail to detect selection bias if
systematic selection bias exists, especially when E1 and E2 are
selected from the same GWAS. In such a case, it might distort
both the E1–D and E2–D associations similarly, such as reversing
the estimated E1–D and E2–D associations simultaneously. To
handle this situation, we introduced an additional negative (or
positive) control E3 with the same potential selection bias sources
concerning the E1–D association or identified a validated control
exposure (E2) that had a clear association with D to triangulate
the estimated effects. As such, any associations of E3/E2 with D
would indicate potentially systematic selection bias. Otherwise,
the estimated effects derived from the selected samples are likely
to be robust to selection bias and reproducible.

Choosing Control Exposures
Control exposures could be used to detect potential selection bias
and validate MR estimates. To this end, it might be necessary to

specify the criteria for choosing the control exposures E2 and/or
E3 as follows.

1) The control exposure E2 should have the same potential
selection bias sources (e.g., affecting survival in the
underlying population) as E1 on D. For example, using
antagonist, decoy, or an exposure with similar biological
activity as E2, such a criterion is approximately satisfied;

2) To explore potentially systematic selection bias, an additional
control exposure (E3) with the same potential selection bias
sources as E1 on D or a validated control exposure E2 should
have a well-established association with D.

We recommend choosing E1, E2, and/or E3 from different
GWASs to minimize potentially systematic selection bias. If such
E2 and E3 exist, then the estimated effects of E1, E2, and E3 on D
can be used to detect potential selection bias and triangulate the
causal estimates. The estimated E1–D association would be more
credible because it is robust to potential selection bias and can be
reproducible using a relevant control exposure E2 based on
subject matter knowledge.

FIGURE 3 | The impacts of selection bias (i.e., β̂E1D − βE1D) on two-sample Mendelian randomization (MR) estimates of the exposure E1–outcome D association
using the inverse-variance weighted method in terms of various relative hazards (HRs) of per-unit change in genetic instruments G (i.e., HRGS) with a fixed effect of D
(i.e., HRDS) on survival of underlying population based on simulation studies, with more details presented in SupplementaryMaterial S1. The upper panels (A, B) show
scenarios that may happen in practice. The lower panel (C) shows the impacts of selection bias on MR estimates under each scenario. R codes for reproducing
these results can be found in Supplementary Material S2.
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An Applied Example
To illustrate, we investigated the association of higher transferrin
(i.e., E1) with stroke (including ischemic and cardioembolic
stroke), with transferrin saturation as a control exposure E2
and iron status as a positive control exposure E3. We selected
transferrin saturation as the control exposure E2 because it
measures circulating iron and reflects the proportion of
transferrin occupied by iron (Wish, 2006). Biologically,
transferrin saturation is inversely associated with transferrin
but positively associated with iron status. Furthermore, iron
deficiency, reflected by lower transferrin saturation and higher
transferrin, causes anemia and reduces lifespan directly or via
competing risks [e.g., stroke (23), Figure 2] (McLean et al., 2009;
Camaschella, 2015). Consequently, the associations of transferrin
saturation and iron status with stroke are open to similar
potential selection bias as the transferrin-stroke association.
Hence, transferrin saturation and iron status are control
exposures here. As such, any consistent transferrin–stroke and
transferrin saturation–stroke associations (especially in the same
causal direction) indicate potential selection bias. In addition, any
null iron status–stroke association suggests the presence of
systematic selection bias due to its clear associations with
stroke and longevity (Gill et al., 2018; Daghlas and Gill, 2021);
particularly, the iron status-longevity association is less likely to
subject to selection bias (Andersen et al., 2012).

We selected independent (r2 < 0.01) genetic instruments
mimicking effects of transferrin (MR-base id: ieu-a-1052),
transferrin saturation (MR-base id: ieu-a-1051), and iron
status (MR-base id: ieu-a-1049) from the MR-base at a
genome-wide significance p< 5 × 10−8 (Benyamin et al., 2014).
We approximated the F statistics (i.e., the square of instrument’s
association on exposure divided by the square of its SE) to assess
the instrument strength, where higher F statistics indicate a low
risk of weak instrument bias (Bowden et al., 2016a). We excluded
the instruments with F statistics less than 10 to alleviate potential
weak instrument bias (Bowden et al., 2016a). We checked the

shared instruments for transferrin, transferrin saturation, and
iron status to explore the possibility of pleiotropic effects, but still
used them in this example as they have been used similarly in a
previous MR study (Daghlas and Gill, 2021). We further assessed
associations of higher transferrin saturation and iron status with
longevity, proxied by the heritable trait of parental lifespan from
United Kingdom Biobank and LifeGen consortium (Timmers
et al., 2019). Genetically predicted higher transferrin saturation
and higher iron status were inversely associated with longevity, as
shown in Figure 4, suggesting the similar or even the same
selection bias sources as the transferrin–outcome association
because it also appeared to affect longevity.

We applied the identified instruments to publicly available
GWAS of European descent of stroke (40,585 cases and 406,111
controls), ischemic stroke (34,217 cases and 406,111 controls),
and cardioembolic stroke (7,193 cases and 406,111 controls)
(Timmers et al., 2019). Supplementary Table S1 presents a
detailed summary of the included studies. We extracted
summary statistics for stroke (MR-base id: ebi-a-
GCST005838), ischemic stroke (MR-base id: ebi-a-
GCST005834), and cardioembolic stroke (MR-base id: ebi-a-
GCST006910) from MR-base (Hemani et al., 2018).
Supplementary Table S2 lists genetic associations of the
included instruments associated with stroke.

We assessed the associations of genetically predicted
transferrin, transferrin saturation, and iron status with stroke
using the Wald ratio (i.e., the ratio of the genetic outcome effect
estimate and the corresponding genetic exposure effect estimate)
or the inverse-variance weighted average of the Wald ratio
estimates with random effects (Burgess et al., 2013). We
assumed that all these associations were linear and
homogeneous (Lawlor et al., 2008). We reported Cochran’s
Q-statistic to detect potential heterogeneity. We conducted
sensitivity analyses using the weighted median (Bowden et al.,
2016b), MR-Egger (Bowden et al., 2015), and MR-RAPS(40) to
address the potential unknown pleiotropy statistically. We also

FIGURE 4 | Scatter plots of the estimated effects of genetically predicted higher transferrin versus higher transferrin saturation (A), higher transferrin versus higher
iron status (B), and higher transferrin saturation versus higher iron status (C) on stroke (including ischemic and cardioembolic stroke) and longevity. Points located in the
gray area indicate the presence of selection bias.
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reported the MR-Egger intercept and its SE with p-value as an
indicator of potential pleiotropy. Two-sided p-values at the
Bonferroni-corrected threshold of 0.05/3 (for three exposures)
� 0.017 were considered statistically significant. P-values between
0.017 and 0.05 were reported as nominal. Data involving these
exemplars were publicly available, so it does not require ethical
approval.

RESULTS

Up to 11 genetic instruments were used for transferrin (mean
concentration 2.1 g/L and SD 0.43 g/L), 7 instruments for
transferrin saturation (mean percentage 29.9% and SD 11.0%),
and 5 instruments for iron status (mean concentration 18.4 μmol/
L and SD 5.6 μmol/L). The F-statistics of instruments for
transferrin ranged from 32.4 to 1,296.1, for transferrin
saturation ranged from 35.6 to 808.5, and for iron status was
37.8 to 346.7, suggesting weak instrument bias to be less likely.

Figure 4 shows the scatter plot of the estimated effects of
genetically predicted higher transferrin versus higher
transferrin saturation (A), higher transferrin versus higher
iron status (B), and higher transferrin saturation versus
higher iron status (C) on stroke (including ischemic and
cardioembolic stroke) and longevity, with full details
presented in Supplementary Table S3. Genetically
predicted higher transferrin was associated with a lower risk
of stroke (Figures 4A,B), although these protective effects did
not reach nominal significance (p < 0.05). Conversely,
genetically predicted higher transferrin saturation was
nominally associated with higher risk of stroke (Figures
4A,C). Such results suggest that the observed
transferrin–stroke association is open to selection bias,
possibly due to the missing people from the original GWAS
of stroke because they died before recruitment from the genetic
predictors of iron, an iron-related condition, stroke, or a
competing risk of stroke, which attenuated the true
association (Figure 2).

In addition, as expected (Gill et al., 2018; Daghlas and Gill,
2021), genetically predicted higher iron status was associated with
increased stroke and reduced longevity, as shown in Figures 4B,C
and Supplementary Table S3. Finally, the consistent effects of
higher transferrin saturation and higher iron status on stroke and
longevity further triangulated our conclusions. Even if selection
bias exists, its impact on the transferrin saturation–stroke and
iron status–stroke associations would be limited or at least could
not reverse the observed associations or biased them to the null.
These results support the advantages of using control exposures.

DISCUSSION

This paper advances the use of control exposures based on
subject matter knowledge in MR studies to triangulate the
estimated causal effects vulnerable to selection bias. The
potential mechanisms underlying selection bias in MR lies
in the re-opened backdoor pathway from genetic instruments

to the outcome of interest in the selected samples. It violates
the IV3 assumption and distorts the MR estimates. The
applied example demonstrates that MR is vulnerable to
selection bias because of missing data from sample
selection (Figures 1, 3), which is unlikely to be missing at
random, so requires modeling of the missing data process to
recover the estimates (Mohan and Pearl, 2021). Our proposal
provides a valuable approach to assessing credible MR
estimates in the presence of selection bias from selection of
survivors.

Furthermore, the control exposures introduced in the
proposal inherit properties similar to those of negative or
positive control exposures used in the conventional
observational studies but provide a more intuitive and
clinically meaningful interpretation of the estimated effects
(Lipsitch et al., 2010; Shi et al., 2020; Sanderson et al., 2021).
Choosing antagonists, decoys, or exposures with similar
biological activity as the control exposures based on subject
matter knowledge may facilitate its application in MR
studies. Systematic selection bias distorting both the
exposure–outcome and control exposure–outcome
associations, in a similar or even the same way, may exist,
resulting in inconclusive or misleading conclusions.
However, an additional or a validated control exposure with
a clear association with the outcome provides another tool to
triangulate the estimated effects. Notably, it is possible to use a
single control exposure in the proposal solely to validate the
MR estimates, especially when E1, E2, and E3 are selected from
different GWASs.

Despite the strengths of the proposal in validating MR
estimates, limitations exist. First, the proposal only detects
potential selection bias but fails to address it. The impact of
selection bias on summary statistics obtained from the original
GWAS might vary due to the small fraction of heritability
explained by genetic variants and the small effect size of the
genetic associations (Greenland, 2003; Freedman et al., 2004;
Park et al., 2011; Schooling, 2019). Thus, the proposal might
fail to detect its small effect on MR estimates. Nonetheless,
routinely applying control exposures still adds more credibility
to MR estimates. Second, the proposal inherits properties of
the conventional MR; limitations such as the stringent
instrumental assumptions remain (Davey Smith and
Ebrahim, 2003; Smith and Ebrahim, 2004; Lawlor et al.,
2008). However, recent advances in MR provide more tools
to alleviate or even eliminate these limitations (Ye et al., 2019;
Zhao et al., 2020; Liu et al., 2021). Third, choosing control
exposures that have the same potential selection bias sources as
the exposure–outcome association of interest or a clear
association with the outcome might be difficult in practice,
further limiting its application.

CONCLUSION

Routinely using control exposures in MR studies provides a
helpful tool to validate estimated causal effects that are
vulnerable to potential selection bias in the selected samples.
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