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Background: RAC1 is involved in the progression of HCC as a regulator, but its
prognostic performance and the imbalance of immune cell infiltration mediated by it
are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC.

Methods: We separately downloaded the data related to HCC from the Cancer Genome
Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene
co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying
IRGs and the construction of prognostic signatures.

Results: The study discovered that RAC1 expression was linked to the severity of HCC
lesions, and that its high expression was linked to a poor prognosis. Cox analysis
confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2
macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to
macrophage infiltration, and established a novel 11-gene signature with excellent
prognostic performance. RAC1-based risk score and M0 macrophage has a good
ability to predict overall survival.

Conclusion: The immune state of irregular macrophage infiltration may be one of the
precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk
score to show a good performance to predict the survival of HCC patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a serious malignant disease with a high recurrence rate.
Although many patients have been diagnosed and treated early in the disease (Shiani et al.,
2017). The prognosis is even less optimistic for patients who have entered the middle and
advanced stages. If cancer spreads to the surrounding lymph nodes, the 5-year survival rate for
the patient is only 11%. When cancer spreads to other organs, the 5-year survival rate is only 3%
(Anwanwan et al., 2020). At present, drugs that inhibit angiogenesis dominate. However,
immunotherapy is expected to become one of the most effective therapy for liver cancer within
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5 years (Xie et al., 2018). However, immunotherapy has the
drawbacks of metastasis, recurrence, and the use of a small
number of patients (Jiang et al., 2019). Therefore, new
therapies closely related to treatment must be developed.

Ras-related C3 botulism substrate 1 (RAC1) belongs to the
RAC subfamily and is among the main members of the Rho
family (Parri and Chiarugi, 2010). It is an important signal
transduction molecule that changes the cytoskeleton assembly,
regulates cell migration, regulates gene transcription and other
biological activities (de Conti et al., 2020). It is also involved in
regulating malignant phenotype, proliferation, apoptosis, tumor
angiogenesis, invasion and metastasis of tumor cells (Maldonado
and Dharmawardhane, 2018). Studies have shown that the
expression of RAC1 is significantly increased in some
malignant tumors, including gastric cancer (Wu et al., 2014),
non-small cell lung cancer (Zhou et al., 2016), breast cancer (Tian
et al., 2018), etc. At the same time, its high expression is related to
the degree of tumor cell differentiation, invasion and metastasis.
However, the prognostic performance and clinical landscape of

RAC1 in liver cancer are rarely reported. Therefore, exploring the
expression and prognostic characteristics of RAC1 is critical for
new treatments of liver cancer.

Liver cancer is mainly immunogenic cancer caused by
chronic inflammation. The tumor microenvironment’s
imbalance is a typical feature of liver cancer (Yang et al.,
2019). Immunoregulation of tumor occured in the progress
of tumor development, including gene alteration, cell
proliferation, anti-apoptosis, and the degradation of tumor
cell genome stability (Gonzalez et al., 2018). Currently, the
function of immune infiltration in liver cancer remains
unexplored. Similarly, the function of different immune
cells in the local liver cancer microenvironment is
constantly being investigated. HCC cells are killed by CD+
tumor-infiltrating lymphocytes (Ikeguchi et al., 2004).
Activated macrophages facilitate HCC progression. The
presence of mature dendritic cells decreases the recurrence
and metastasis risk after liver surgery (Lin et al., 2006). In
addition, immunotherapy for programmed death 1 (PD-1) and

FIGURE 1 | Analysis of the clinical performance of RAC1 in the TCGA-LIHC cohort. (A) Violin chart showing the relative expression of RAC1 in normal and tumor
samples; (B) K-M curve of the high- and low- RAC1 expression group of the TCGA cohort; (C) ROC curve of the TCGA cohort, for 1, 3, and 5 years; (D–F) shows a box
plot of the relative expression of RAC1 in different strata of disease stage and tumor grade. The central marker is the median, and the t-test is used to estimate the
importance of differences in gene expression between the two groups.
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programmed death ligand 1 (PD-L1) has been used to treat
liver cancer successfully (Shi et al., 2011). As a result,
elucidating the features of the immune pattern triggered by
RAC1 is critical for liver cancer immunotherapy and prognosis
prediction.

In the study, we screened out the RACI gene through
preliminary literature search and experiments to explore its
prognostic performance in liver cancer. First, we used TCGA
data and GSE76427 to evaluate the prognostic value of RAC1 in
liver cancer. Subsequently, a co-expression network of genes was
constructed through WGCNA with differentially infiltrated
immune cells as a clinical trait. Correspondingly, an immune-
related gene signature was constructed through LASSO
algorithm.

MATERIALS AND METHODS

Data Collection
We downloaded HCC mRNA-seq and clinical information from
the TCGA database, including 371 tumor and 50 normal samples.
The expression of genes is all logarithmic. At the same time, the
expression data of GSE76427 and the corresponding clinical data
from the GEO database (https://www.ncbi.nlm.nih.gov/geo)

served as validation data set. GSE76427 contains 115 tumor
tissues and 52 adjacent tissues. The non-zero survival time
was retained for clinical analysis in the TCGA and GSE76427
data sets.

Clinical evaluation of RAC1 integrates the expression data of
RAC1 and the survival data of the patients to evaluate the
prognostic value. We applied t test to infer the expression
changes of RAC1 in various stages of HCC. Then, we analyzed
the correlation between RAC1 and the overall survival (OS)
through the Kaplan-Meier (K-M) curve. The log-rank test was
used to compare the prognostic differences between the groups.
The diagnostic capability of RAC1 is measured by the area under
the time-dependent receiver operating characteristics (tROC)
curve (AUC).

Cox Regression Model
The Cox regression model establishes the relationship between
the survival rate of patients and several variables and evaluates the
effects of these factors on survival time.When p < 0.05, the impact
on survival time is statistically significant, identifying the
expression profiles of 338 immune-related genes. The survival
analysis aims to study the relationship between the variable X and
the survival function (cumulative survival rate) S (t, X). X =
(X_1,. . ., X_m) is a vector, and S (t, X) is affected by many factors.

FIGURE 2 | The prognostic significance of RAC1. (A) In the TCGA cohort, T, Stage and RAC1 were significantly related to the overall survival rate of patients. The
multivariate Cox of the TCGA cohort. The regression found that RAC1 is an independent prognostic marker of HCC; (B) In the GSE76427 cohort, we found that RAC1
significantly affected the survival of patients; Multivariate Cox regression of the GSE76427 cohort indicated that stage III and RAC1 are risk factors of HCC.
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The traditional method considers the regression equation, that is,
the influence of variables X_i on S (t, X). However, the data in the
survival analysis contains censored data, and the time t usually
does not meet the requirements of normal distribution and
homogeneity of variance. These reasons make it difficult to
study the above-mentioned relationship with the general
regression method. Therefore, we use the Cox regression
model as a specific tool (Goerdten et al., 2020). The
Cox regression is implemented through the “survival”
package in R.

Support Vector Machine
Support vector machine (SVM) is a class of generalized linear
classifiers that classify data binary in a supervised learning
manner. Its decision boundary is the maximum margin
hyperplane that is solved for learning samples (Huang et al.,
2018). CIBERSORT performed deconvolution based on ν’s
support vector machine (ν-SVR) method, a support vector
machine (SVM) optimization method for binary classification
problems. Based on deconvolution and linear support vector
regression principles, CIBERSORT evaluates 22 immune cell
molecular subtypes and uses v-SVR to estimate
immune scores based on the expression matrix of IRGs.
Therefore, the SVM algorithm is used in this paper through
CIBERSORT.

Immune Cell Infiltration Analysis
CIBERSORT is a deconvolution tool that links immune cell
infiltration to gene expression. It includes the LM22 gene
signature file, which contains 547 genes used to identify 22
immune cell subtypes. We uploaded the mRNA expression
data to the CIBERSORT portal (https://CIBERSORT.stanford.
edu/). The gene expression data can then be standardized by
running 1,000 permutations through the default feature
matrix. Finally, we applied WilCoxon test to determine the
differentially infiltrated immune cells in tumors. The
deconvolution algorithm CIBERSORT (Newman et al.,
2015) is used to determine the immune-related features
from 365 labeled immune genes, and to quantify the relative
score of each immune cell type. The method is used to evaluate
the relative proportions of 22 tumor-infiltrating immune cell
profiles based on expression files, including B cells, T cells,
natural killer cells, macrophages, dendritic cells, and bone
marrow subpopulations. And we used gene expression data
to estimate the abundance of member cell types in the mixed
cell population. Monte Carlo sampling is used to obtain the
p-value for each deconvolution sample through CIBERSORT
algorithm. The number of permutations is set to 1,000, and p <
0.05 is considered significant. The immune cell matrix of each
sample was obtained in the transcriptome data through the
CIBERSORT algorithm.

FIGURE 3 | Immune cell analysis driven by RAC1. (A,B) Differences in the infiltration of 22 immune cells in the high- and low-expression of RAC1; (C) Venn diagram
identify three types of immune cells; (D) Correlation analysis between RAC1 and immune cells and immune checkpoint inhibitors (PD-1 and PD-L1).

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 12 | Article 7309204

You et al. RAC1-Based Prognostic Model of HCC

https://CIBERSORT.stanford.edu/
https://CIBERSORT.stanford.edu/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


WGCNA Analysis
The R platform’s “limma” software package is used to find genes
that are differentially expressed in the high expression
community vs. the low expression progenitor of RAC1 (p
0.05 and (log 2 FC) > 1). Then we built a co-expression
network of differentially expressed genes using the R package
“WGCNA.” WCGNA clusters IRGs with similar expression
patterns to construct a scale-free gene co-expression network
and analyzes the correlation between modules and specific
phenotypes. The important IRG modules are identified
according to the module-IRG, module-module correlation.
WGCNA is a robust algorithm highlighted by the modular
clustering of genes and the association analysis between the
modules and clinical traits.

First, we used a hierarchical cluster analysis on the expression
profile.

S � [SXY] � [|cor(X,Y)|]

To create the adjacency matrix A, calculate the correlation
index an XY of any gene pair using the square of the correlation
coefficient S XY.

A � [aXY] � [power(SXY, β)] � [|SXY|β]
Then, a topological overlap matrix (TOM) is constructed,

TOM � [ωXY] � [ lXY + aXY

min {kX, kY} + 1 − aXY
]

The Construction of Risk Prediction
Signature
The R software package “survival v3.1-8” was used to perform
univariate Cox regression on the immune module genes in the
TCGA cohort. p < 0.05 is used to screen for genes significantly
related to the overall survival rate of patients. We used the R

FIGURE 4 |WGCNA analysis. (A) Volcano plot analysis of differentially expressed genes, 80 were upregulated and 1,337 were downregulated; (B) Unscaled fitting
index of soft threshold power. The soft threshold power of WGCNA is determined based on the scale-free fitting index R2. The left panel shows the relationship between
the soft threshold and R2. The panel on the right shows the relationship between soft threshold and average connectivity. (C) Dendrogram of clusters of differentially
expressed genes based on different metrics. Each branch in the figure represents a gene, and each color below represents a co-expression module. (D) A heat
map showing the correlation between gene modules and clinical features. The turquoise module contains 836 immune-related genes. The correlation coefficient of each
cell represents the correlation between gene modules and clinical features, and the size decreases from red to green. The redmodule has the highest positive correlation
with survival and the green module has the highest negative correlation with survival.
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software package “glmnet v3.0-2” to perform LASSO analysis to
optimize the results further. LASSO appeared as a constraint on
the objective function.

min
ω

∑m
j�1
⎛⎝yj −∑n

i�1
xjiωi

⎞⎠2

, s.t.∑n
i�1
|ωi|≤ λ

The risk score (RS) referred to

RS � ∑n

i�1βi × Expi

where n denoted the prognostic signature genes. The LASSO
coefficient of a gene is represented by i. The expression of a gene is
represented by Expi.

LASSO COX performs collinearity processing on the filtered
genes. Thus, the algorithm has advantages in processing high-
dimensional data. The screening performed 10-fold cross-
validation, and the survival status and time were used as
dependent variables to analyze the influence of multiple IRGs
on the dependent variables. Finally, the LASSO coefficient is
determined when the lambda is the minimum, forming the IRG
signatures.

Analytical Statistics
The “R v3.6.1″ framework is used for all statistical analysis R
packages. Statistical significance was described as a p-value of less
than 0.05.

RESULTS

Clinical Manifestations of RAC1
The TCGA cohort collected the pathological characteristics of
365 patients to evaluate the clinical manifestations. We studied
the gene expression profile and clinical information of 115
patients with a non-zero survival time of GSE76427. RAC1
expression was substantially higher in tumor tissues than in
normal ones (p = 1.9e-12; Figure 1A). Kaplan-Meier results
showed that the increase in RAC1 expression was closely
linked to the poor patient survival rate (p < 0.001, Figure 1B).
In addition, RAC1 has excellent capabilities in HCC (1-, 3-, 5-
year AUC = 0.690, 0.635, 0.661; Figure 1C). The GSE76427
cohort also confirmed that RAC1 has a good prognostic ability
(Figure 1). Interestingly, RAC1 expression was significantly
correlated with the grade, T, and stage (Figures 1D–F).

Independent Prognostic Landscape of
RAC1
In the TCGA cohort, T (HR = 1.0960, 95% CI = 0.8442–2.2774, p <
0.001), Stage (HR= 1.0045, 95%CI = 0.8703\−2.3584, p< 0.001) and
RAC1 (HR = 1.7852, 95% CI = 1.3775–2.3136, p < 0.001) was
significantly correlated with the overall survival of the patient.
Multivariate Cox regression found RAC1 (HR = 1.590, 95% CI =
1.209–2.09, p< 0.001) was an independent progosticmarker of HCC
(Figure 2A). In the GSE76427 cohort, we found that RAC1 (HR =
3.1108, 95% CI = 1.1863–8.1572, p = 0.0210) significantly affected
the survival of patients. In addition, multivariate Cox regression
found that Stage III (HR = 3.32, 95% CI = 1.083–10.21, p = 0.0358)

FIGURE 5 | LASSO analysis. (A,B) Determine the number of genetic screenings. (C) Analysis of prognostic risk model.
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and RAC1 (HR = 3.590, 95% CI = 1.347–9.54, p = 0.0106) are risk
factors for HCC (Figure 2B).

Tumor Immune Microenvironment
Fluctuation
The CIBERSORT deconvolution algorithm obtained the
infiltration level of 22 immune cells. Grouping 365 tumor

samples with high and low expression of RAC1, we found
differences in the infiltration of nine immune cells in the
TCGA cohort (Figure 3A). In the GSE76427 cohort, we found
seven differences in immune cell fluctuations (Figure 3B).
Macrophages M0, M1, and M2 were identified by Wayne
analysis (Figure 3C). We speculate that RAC1 mediates
macrophages to play a critical role in the development of
HCC. The expression of immune checkpoint inhibitors (PD-1

FIGURE 6 | Construction of an IRG signature. (A) K-M curves of the high- and low-risk groups of the TCGA cohort. Compared with high-risk group, low-risk
significantly improve the prognosis of patients; ROC curves, 1, 3, and 5 years are 0.706, 0.638 and 0.642 respectively; (B) The K-M curves of the high and low risk
groups of the GEO cohort; and the 1-year, 3-year, and 5-year survival rates.
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and PD-L1) was significantly correlated with macrophage M1
(Figure 3D).

WGCNA Recognizes Immune Module
Genes
We obtained 1,417 differentially expressed genes (DEGs), of which
80 were upregulated and 1,337 were downregulated (Figure 4A).
WGCNA analysis was performed based on the mRNA expression
data of 1,417 DEGs. The soft threshold is selected as 5 to conform to
the scale-free network rule through hierarchical clustering
(Figure 4B). A total of four gene modules were identified using
the clustering criteria of minModuleSize = 30 and mergeCutH8 =

0.25 (Figure 4C). TOM is used to describe the pair-wise relationship
between genes. In the topological overlap matrix (TOM), each row
and each column corresponds to a gene. Light colors indicate low
topological overlap, and gradually darker ones indicate higher
topological overlap. The dark squares along the diagonal
correspond to the modules. The gene tree diagram and module
allocation are shown on the left and top. The four gene modules are
gray, turquoise, yellow, blue, and brown modules. The correlation
analysis between themodule and the clinical phenotype showed that
the turquoise module is related to PD-1 (cor = 0.52, p = 6e-24), PD-
L1 (cor = 0.3, p = 2e-08), and macrophages M0 (cor = 0.19, p = 6e-
04) is significantly correlated (Figure 4D). Therefore, the turquoise
module (n = 838) was identified as immune-related genes (IRGs) for
subsequent analysis.

FIGURE 7 | Identification of candidate features. (A)Multivariate Cox regression to determine the relationship between candidate features and the overall survival of
HCC; (B) Multivariate Cox regression to determine the relationship between candidate features and RAC1.
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Construction of Immune-Related Genes
Signature
We obtained 388 IRGs that significantly correlated with the
survival through univariate Cox analysis. Subsequently, LASSO
Cox analysis was used to optimize the results further. We finally
obtained 11 genes (CCDC136, CTSE, CXCL5, CXCL6,
FAM188B, GALNT6, HOMER3, KCNF1, KCNQ3, NRCAM,
PTP4A3), which are significantly related to the survival rate of
patients (Figures 5A–C). Figure 5 shows the identification of
immune-related genes. LASSO COX determines the number of
factors by introducing shrinkage penalties and limiting the
coefficients. With the continuous selection and simulation of
the number of features, the best model and the simplest model are
finally obtained. Subsequently, we further calculate the final score
of the model. The final risk score is obtained by multiplying the
expression of each gene with its corresponding coefficient and
adding them together. And, with the median risk score of all
patients as the critical value, the patients were divided into high-
risk and low-risk two groups.

The risk scoring formula is as follows:

RS � CCDC136*0.0228 + CTSE*0.0176 + CXCL5*0.0244

+CXCL6*0.006 + FAM188B*0.0016 + GALNT6*0.0326

+HOMER3*0.001 + KCNF1*0.0056 + KCNQ3*0.0916

+NRCAM*0.0298 + PTP4A3*0.0247

Patients were divided into low- and high-risk groups (152 vs.
153) according to the risk score in the TCGA cohort. Compared
with high risk, low risk can significantly improve the prognosis of
patients (p = 0.00012). The 1-, 3-, and 5-year AUC (0.706, 0.638,
and 0.642) confirmed the signature’s good prognostic
performance (Figure 6A). In addition, the K-M analysis (p =
0.029) and ROC analysis also confirmed the above results in the
validation cohort. The 1-, 3-, and 5-year survival rates of the risk
prognostic feature prediction validation cohort were 0.700, 0.701,
and 0.750, respectively (Figure 6B).

Selection of Prognostic Factors
We perform multivariate Cox analysis on the immune and risk
characteristics obtained by the algorithm above. M0 macrophage
(HR = 6.050, 95% CI = 1.3113–27.91, p = 0.021) and risk score
(HR = 3.591, 95% CI = 2.038–6.33, p < 0.001) were significantly
correlated with the survival (Figure 7A). In addition, M0
macrophage (HR = 0.19, 95% CI = 0.061–0.61, p = 0.005),
macrophage M2 (HR = 0.11, 95% CI = 0.040–0.31, p < 0.001)
and risk score (HR = 0.32, 95% CI = 0.229–0.45, p < 0.001) was
significantly correlated with RAC1 (Figure 7B). Therefore, the
M0 macrophage and risk score were determined as prognostic
factors.

DISCUSSION

The RAC1 is located on human chromosome 7p22. The RAC1
gene promoter is rich in GC bases and has the characteristics of a

housekeeping gene (Payapilly and Malliri, 2018). Its encoded
product is an essential member of the small G protein Rho family.
RAC1 was widely expressed in various tissues of the body (del
Pozo et al., 2004), and the GDP-bound form and GTP-bound
form are converted to each other by binding or hydrolyzing GTP
nucleotides (Heasman and Ridley, 2008).

Many studies have found that the expression of RAC1 is
significantly increased in liver cancer (Lou et al., 2018). For
instance, Sharda et al. have shown that stretching liver cancer
cells significantly increases RAC1 expression in HCC and
cholangiocarcinoma cell lines (Yadav et al., 2020).
Furthermore, we found that RAC1 expression has a significant
impact on the prognosis of HCC and the relevant immune genes
from the risk score for double verification. The results explain the
accuracy of RAC1 expression for clinical prediction. In tumor
tissues, the active form of RAC1 is involved in regulating the
movement of tumor cells and affecting tumor growth by
regulating the filopodia and membrane shrinkage (del Pozo
et al., 2004). In addition, RAC1 also inhibits tumor cell
apoptosis by increasing intracellular superoxide anions
(Pervaiz et al., 2001), and plays a critical role in tumor
development.

In the study, TCGA and GSE76427 data were used to find that
the RAC1 expression in cancer tissues was significantly higher
than that of adjacent liver tissues, consistent with the study of Li
et al. (2016). It suggests that RAC1 may be involved in the
occurrence and development of HCC. MiR-142-3p targeted
RAC1 to inhibit the migration and invasion of liver cancer
cells (Wu et al., 2011). Survival and time-dependent ROC
results confirmed that RAC1 has a good prognostic
performance. And the expression of RAC1 is significantly
related to T stage, grade and stage. However, univariate and
multivariate Cox results confirm that RAC1 is an independent
factor of HCC that is not affected by clinical factors. Bayo et al.
(2020) also confirmed that RAC1 is an independent target for the
new treatment of HCC. 1D-142 targeted inhibition of RAC1 can
produce a powerful anti-tumor effect in highly proliferative HCC.
Subsequently, we used WGCNA and LASSO algorithms to
identify 11 IRGs signatures based on differentially expressed
genes. The signature demonstrated a good prognostic
performance. Therefore, the new RAC1 marker can be used as
a potential prognostic biomarker for liver cancer.

We applied the CIBERSORT algorithm to assess the immune
cell infiltration to adjust to the heterogeneity of the HCC
microenvironment. The entire macrophage population has a
high abundance and apparent abnormal infiltration (M0 M1,
M2 macrophage). Also, PD-I and PD-L1 have a strong
relationship with macrophages, which is in line with Liu et al.
(2018), who discovered that macrophage PD-L1 expression was
positively associated with the patient’s overall survival. M0
macrophages in tumors prevent T cells from attacking tumor
cells and secrete growth factors that encourage tumor
angiogenesis (Vinnakota et al., 2017). The antigen presentation
mechanism triggers a Th1 immune response, an essential part of
macrophages M1’s anti-tumor effect. And elevated macrophages
M1 secrete various pro-inflammatory factors to attract and
activate T cells in the early stages of cancer (Aras and Zaidi, 2017).
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M0macrophages play an important role in the occurrence and
development of various tumors (Jiang et al., 2020). Analysis based
on the expression profile of hypoxia-related genes and clinical
information showed that the macrophage M0 cells of HCC
patients in the high-risk group were significantly higher than
those in the low-risk group. The abundance of M0 macrophages
in patients with endometrial cancer in the high-risk group
increased significantly (Liu et al., 2020). An immune
prognostic signature was constructed based on the TP53
status, and the M0 penetration of macrophages in high-risk
gastric cancer patients increased (Nie et al., 2020). Tumors
with an increased number of M0 macrophages are related to
the poor prognosis of LUAD in the early clinical stage (Liu et al.,
2017). Our previous research also found that the abundance of
macrophages M0, M1 and M2 all changed drastically during the
process of canceration.

On the other hand, M2 macrophages triggered by IL-4 and
IL-13 are often used to facilitate cancer progression. It regulates
the immune response by secreting IL-10 or TGF-β (Ma et al.,
2016). It also secretes MMP to aid tumor cells to achieve
metastasis (Vinnakota et al., 2017). Consequently,
macrophage infiltration change may be a critical event in the
pathogenesis of liver cancer.

We created a prognostic signature that improved the
prognostic prediction of HCC patients. The risk score
distinguishes between low- and high-risk patients, and the
latter shown a poor prognosis (p < 0.001). At the same time,
the verification study supports the robustness of the prognostic
model (p = 0.029). Several prognostic models have been published
so far. Chen et al. (2019) and Wang et al. (2018) developed a 4-
and a 6-gene prognostic model, respectively, similar to ours.
However, none of these studies includes a quantitative evaluation
of the prognostic model’s predictive survival capacity.

We have previously determined prognostic targets for liver
cancer through bioinformatics methods (Yang et al., 2021; Xu
et al., 2022). The study further implemented a detailed analysis of
transcriptome data to investigate the role of RAC1-induced
immune imbalance of HCC. Our research has some
drawbacks, including that RAC1 markers have an independent
prognosis in liver cancer. On the one side, the study only
investigated RAC1-relevant DEGs, and the prognostic markers

it used do not represent the HCC genome-wide transcription
profile. On the other hand, our findings may need to be confirmed
in a large number of clinical trials.

CONCLUSION

In summary, we revealed RAC1 correlated with M0 macrophage
and the risk score to predict the survival of HCC patients through
a comprehensive application of WGCNA, LASSO and SVM. We
applied the SVM-based deconvolution algorithm CIBERSORT
and WGCNA to assess the fluctuation of the immune
microenvironment and found 838 IRGs relevant to
macrophage infiltration. Finally, we used LASSO to establish a
novel 11-gene signature with a good prognostic performance. The
macrophages’ abnormal infiltration driven by RAC1 may serve as
an essential immune event in carcinogenesis. Therefore,
RAC1 may be a possible important marker for HCC
immunotherapy.
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