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Background: Basal metabolic rate is associated with cancer, but these observations
are open to confounding. Limited evidence from Mendelian randomization studies
exists, with inconclusive results. Moreover, whether basal metabolic rate has a similar
role in cancer for men and women independent of insulin-like growth factor 1 increasing
cancer risk has not been investigated.

Methods: We conducted a two-sample Mendelian randomization study using summary
data from the UK Biobank to estimate the causal effect of basal metabolic rate
on cancer. Overall and sex-specific analysis and multiple sensitivity analyses were
performed including multivariable Mendelian randomization to control for insulin-like
growth factor 1.

Results: We obtained 782 genetic variants strongly (p-value < 5 × 10−8) and
independently (r2 < 0.01) predicting basal metabolic rate. Genetically predicted higher
basal metabolic rate was associated with an increase in cancer risk overall (odds ratio,
1.06; 95% confidence interval, 1.02–1.10) with similar estimates by sex (odds ratio for
men, 1.07; 95% confidence interval, 1.002–1.14; odds ratio for women, 1.06; 95%
confidence interval, 0.995–1.12). Sensitivity analyses including adjustment for insulin-like
growth factor 1 showed directionally consistent results.

Conclusion: Higher basal metabolic rate might increase cancer risk. Basal metabolic
rate as a potential modifiable target of cancer prevention warrants further study.

Keywords: cancer, Mendelian randomization, basal metabolic rate, metabolism, evolutionary biology

INTRODUCTION

Cancer mortality ranks second among causes of death worldwide (World Health Organization,
2018) despite significant advances in cancer treatment, provision of screening programs, and
reduction of specific environmental hazards, such as smoking, asbestos, and cancer-provoking
infections. Owing to its complex, varied, and multifactorial nature, prevention involves focusing

Abbreviations: BCAC, Breast Cancer Association Consortium; BMR, basal metabolic rate; GV, genetic variant; GWAS,
genome-wide association study; IGF1, insulin-like growth factor 1; MR, Mendelian randomization; MR-PRESSO, Mendelian
randomization-pleiotropy residual sum and outlier; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer
Associated Alterations in the Genome.
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on factors driving specific cancers as well as consideration
of more broad factors, such as viral infections, diet, and
lifestyle (Lampe, 2020), that generally increase vulnerability
to cancer. To inform this wider perspective, concepts from
evolutionary biology are increasingly being applied to develop
novel prevention and treatment strategies (Aktipis and Nesse,
2013; Boddy et al., 2015; Schooling, 2017).

Evolutionary biology suggests reproductive success may take
precedence over health and longevity (Wells et al., 2017).
Faster growth and earlier maturation favor reproductive success
(Aktipis and Nesse, 2013; Wells et al., 2017), possibly with
different trade-offs by sex. Increasing evidence suggests that
growth hormone and associated factors, such as insulin-like
growth factor 1 (IGF1), which regulates cell growth, play a role
in cancer (Swanson and Dantzer, 2014; Murphy et al., 2020a,b).
Correspondingly, most Mendelian randomization (MR) studies
have shown a positive association of IGF1 with different types
of cancer (Cornish et al., 2020; Larsson et al., 2020; Murphy
et al., 2020a,b; Watts et al., 2021). Interventions to reduce
IGF1 are under investigation (Werner and Laron, 2020). Basal
metabolic rate (BMR) is a related potential target of intervention.
Observationally, BMR is associated with cancer (Kliemann et al.,
2020). Observational studies are open to confounding, which may
compromise internal validity. No randomized controlled trial
has been performed to examine the effect of BMR on cancer.
MR is a widely used alternative approach taking the advantage
of Mendel’s second law, where genetic variants (GVs) randomly
assort at conception are used to obtain unconfounded estimates
(Smith and Ebrahim, 2003). MR studies on this topic are limited.
One MR study reported that BMR was suggestively associated
with colorectal cancer (Cornish et al., 2020). Another reported
a null association with glioma (Saunders et al., 2020).

In the current study, we conducted an MR analysis to
investigate the effect of BMR on cancer and neoplasms
overall and by sex using summary data from the UK
Biobank. We also conducted exploratory analysis for specific
cancers, where possible. Given the interrelation between IGF1
and BMR (Swanson and Dantzer, 2014), we also examined
whether any effects of BMR were independent of IGF1 using
multivariable MR.

MATERIALS AND METHODS

We performed a univariable and multivariable MR study of
the association of BMR with cancer as the primary outcome
and neoplasm as secondary outcome using a two-sample
summary data approach, where we applied genetic predictors
of the exposure, BMR, to genome-wide association studies
(GWASs) of the outcomes. For exploratory purpose, we also
considered several site-specific cancers based on the International
Classification of Diseases-10 codes. As an instrumental variable
analysis, MR assumes strong genetic predictors of the exposure,
no confounding of the instruments or exposure on outcome,
and that the instruments only affect the outcome via effects
on the exposure.

Genetic Predictors of Basal Metabolic
Rate
Genetic predictors of BMR were obtained from the summary
statistics of the UK Biobank GWAS provided by the Neale
Lab (2018). The UK Biobank is a population-based, prospective
cohort study for different health outcomes that aimed to
recruit >500,000 individuals aged 40 to 69 years during 2006
to 2010 (Sudlow et al., 2015). BMR (KJ) was inverse-ranked
normalized (phenotype code, 23105_irnt), i.e., effect sizes, for all
analyses. Neale Lab (2018) analyzed the genetic associations using
multivariable linear regression in 361,194 people (54% women) of
white British ancestry with adjustment for age, age× age, inferred
sex, age × inferred sex, age × age × inferred sex, and the first 20
principal components in overall analysis and age, age × age, and
the first 20 principal components in sex-specific analysis.

We excluded GVs that are non-biallelic, rare (minor
allele frequency <0.01), not in Hardy-Weinberg equilibrium
(p-value for Chi-squared test <0.05), and from sex chromosomes
in overall-sex analysis. We did not exclude GVs from sex
chromosomes in sex-specific analysis. Only GVs strongly
(p-value < 5 × 10−8) and independently (r2 < 0.01) predicting
BMR were retained. We used the “clump_data” function in
the “TwoSampleMR” R package to identify independent GVs
(Hemani et al., 2018).

Genetic Associations With Cancer and
Neoplasm
Genetic associations with cancer and neoplasm obtained using
multivariable linear regression were extracted from the same
data source as for BMR (Neale Lab, 2018). The analyzed
sample consisted of 28,509 cases of cancer diagnosed by doctor
(phenotype code, 2453) and 70,178 cases of neoplasm (phenotype
code, II_NEOPLASM).

Genetic Associations With Site-Specific
Cancers
Genetic associations with several site-specific cancers, namely (i)
cancer of lip, oral cavity, and pharynx, (ii) cancer of digestive
organs, (iii) cancer of respiratory system and intrathoracic
organs, (iv) skin cancer, (v) cancer of mesothelium and soft
tissue, (vi) cancer of urinary organs, (vii) cancer of eye, brain,
and central nervous system, (viii) cancer of endocrine gland,
(ix) cancer of primary lymphoid and hematopoietic tissue, (x)
cancer of genital organs in men, (xi) prostate cancer, (xii) breast
cancer in women, and (xiii) cancer of genital cancers in women
were obtained from the same data source as for BMR (Neale
Lab, 2018). The Prostate Cancer Association Group to Investigate
Cancer Associated Alterations in the Genome (PRACTICAL)
Consortium (Schumacher et al., 2018) and the Breast Cancer
Association Consortium (BCAC) (Zhang et al., 2020) were used
for replication. The study details for each site-specific cancer are
given in Supplementary Table 1.

Sex-Specific Analysis
We carried out sex-specific analysis for primary and secondary
outcomes as well as cancer of genital organs in men and
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women, prostate cancer, and breast cancer in women using sex-
specific genetic predictors of BMR and IGF1. We assessed sex
differences for primary and secondary outcomes using a z-test
(Paternoster et al., 1998).

Assessment of Confounding
To assess potential confounding, we checked whether the
GVs predicting BMR were also related to five potential
confounders of the BMR-cancer association, namely Townsend
index (phenotype code, 189), age at completion of full-time
education (phenotype code, 845), number of days per week
walked for 10 + min (phenotype code, 864), current smoking
(phenotype code, 1239), and alcohol intake frequency (phenotype
code, 1558) using summary statistics from the same data
source (Neale Lab, 2018), at Bonferroni-corrected p-value, i.e.,
0.05/(number of GVs× number of traits).

Statistical Analysis
We aligned the effect of a GV across the exposure and outcome
datasets based on the effect allele and reference allele and checked
against the allele frequency. For palindromic GVs, i.e., GVs
with allele pair of A/T or C/G, we discarded those with minor
allele frequency ≥0.45 (close to 0.50) if the strand information
was not given and the exposure and outcome originated from
different data sources. Alternatively, we discarded all palindromic
GVs, if both minor allele frequency and strand information were
not available. The GV-specific Wald estimate was calculated as
the ratio of the estimate of GV-outcome association to that
of GV-exposure association (Wald, 1940; Palmer et al., 2011).
The standard error of the Wald estimate was approximated
from Fieller’s theorem (Fieller, 1954; Burgess et al., 2015), which
effectively assumes “NO Measurement Error (NOME)” for the
exposure (Bowden et al., 2016b).

We assessed the strength of instruments from the F-statistic
using an approximation, i.e., dividing squared beta by squared
standard error of the association of GV with exposure (Bowden
et al., 2016b), with a value <10 indicating a weak instrument
(Bowden et al., 2016b).

In the primary MR analysis, the GV-specific Wald estimates
per 1 unit of effect size change in genetically predicted
BMR were meta-analyzed using inverse-variance weighted
with multiplicative random effects, which assumes balanced
pleiotropy (Bowden et al., 2016b; Hemani et al., 2018). Other
MR methods used as sensitivity analysis included weighted
median and MR-Egger, using the “MendelianRandomization” R
package (Yavorska and Burgess, 2017), as well as MR-pleiotropy
residual sum and outlier (MR-PRESSO) (with 10,000 simulations
performed), using the “MR-PRESSO” R package (Verbanck et al.,
2018). The weighted median gives a consistent estimate when at
least 50% of the weight is from valid GVs (Bowden et al., 2016a).
MR-Egger gives a consistent estimate under the “Instrument
Strength Independent of Direct Effect” assumption (Bowden
et al., 2016b; Burgess and Thompson, 2017), for example,
assuming the instrument does not affect an exposure-outcome
confounder or affect survival when confounders of survival and
outcome exist (Schooling et al., 2021). The I2

GX statistic in
MR-Egger reflects the instrument strength and the extent of
violation of the “NOME” assumption (Bowden et al., 2016b).

A low value indicates possible bias of the estimate towards
null. A non-zero MR-Egger intercept indicates the presence of
directional pleiotropy, which invalidates the inverse-variance-
weighted estimate (Burgess and Thompson, 2017). MR-PRESSO
identifies outliers as a statistical means to detect directional
pleiotropy and correct the estimate by removing the outliers
(Verbanck et al., 2018). In overall analysis on cancer and
neoplasm, we also applied the contamination mixture method
using the “MendelianRandomization” R package (Yavorska and
Burgess, 2017) because simulation suggests it provides the most
reliable MR estimate (Slob and Burgess, 2020).

To address the possibility of BMR affecting cancer via IGF1
rather than BMR, i.e., horizontal pleiotropy, given its correlation
with BMR (Swanson and Dantzer, 2014), we also adjusted for
IGF1 (nmol/L) that was inverse-rank normalized (phenotype
code, 30770_irnt) by multivariable MR, using summary statistics
from the same data source as for BMR (Neale Lab, 2018). We
combined genetic predictors for BMR and IGF1 and dropped
any correlated GVs. We assessed the instrument strength
from the conditional F-statistic using the “MVMR” R package
(Sanderson et al., 2019). We obtained the multivariable inverse-
variance-weighted estimates with multiplicative random effects
in primary analysis and multivariable MR-Egger estimates as
a sensitivity analysis using the “MendelianRandomization” R
package (Yavorska and Burgess, 2017). The MR-Egger intercept
test is sensitive to the orientation of GVs (Burgess and
Thompson, 2017) and the orientation may affect the estimates
in multivariable MR-Egger (Rees et al., 2017). As BMR was
the exposure of interest, we performed analysis by orientating
the GVs with respect to the risk-increasing allele for BMR.
The multivariable MR estimates represent the direct effect of
the exposure on the outcome (Sanderson et al., 2019). We
also assessed the heterogeneity of multivariable estimates by
the modified Cochran’s Q statistic, which reflects the extent of
residual horizontal pleiotropy, using the “MVMR” R package
(Sanderson et al., 2019). Given, we used summary statistics for
the exposures from the same study without accounting for their
covariance, the conditional F-statistic likely represents a lower
bound and the modified Cochran’s Q statistic likely represents an
upper bound.

We repeated all MR analyses by excluding GVs associated with
potential confounders at Bonferroni-corrected p-value.

MR estimates for cancer, neoplasm, and site-specific cancers
in the UK Biobank were presented as odds ratio (OR) after
converting the probability to log odds by an approximation as
calculated by [(k + b)/(1 – k – b)] × [(1 – k)/k], where k is the
proportion of cases in the sample and b is the MR estimate in
probability (Lloyd-Jones et al., 2018).

Power calculations were performed for overall analysis using
the approximation that the sample size of the outcome for an MR
study is the sample size for exposure on outcome divided by the
proportion of variance for instruments on exposure (Freeman
et al., 2013), using an online calculator (Anonymous, 2021).
The proportion of variance in BMR explained by the each GV
was calculated by an approximation as beta2

× 2 × minor
allele frequency × (1 – minor allele frequency), where beta is
the effect size of the genetic association of GV with BMR and
minor allele frequency is represented by effect allele frequency
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(Del Greco et al., 2017). An overall proportion of variance was
obtained by summing GV-specific ones.

All statistical analyses were conducted using R (version
3.6.3, The R Foundation for Statistical Computing Platform,
Vienna, Austria).

Ethics Approval
The current MR study used only publicly available summary
data, with no original data collected. Ethical approval for
the UK Biobank and the GWASs, including written informed
consent from individual participants, can be found in the
original publications.

RESULTS

Genetic Predictors of Basal Metabolic
Rate and Insulin-Like Growth Factor 1
We obtained 782 GVs strongly and independently predicting
BMR (Supplementary Table 2), of which all were available for
cancer and neoplasm since they originate from the same GWAS.
Their mean F-statistic was 60 (range, 30 to 679) (Supplementary
Table 3). Supplementary Table 4 shows the GVs predicting
BMR associated with potential confounders. The GVs explained
approximately 5.6% of the variance in BMR. The study has a
power of >80% to detect an OR of 1.08 for cancer and an
OR of 1.06 for neoplasm per 1 unit of effect size change in
genetically predicted BMR.

We obtained 604 GVs strongly and independently predicting
IGF1 (Supplementary Table 5), which also all were available for
cancer and neoplasm. Their mean F-statistic was 77 (range, 30 to
1997) (Supplementary Table 4). Supplementary Table 6 shows
the GVs predicting IGF1 associated with potential confounders.

Supplementary Tables 2, 5 show the associations of BMR and
IGF1, respectively, with site-specific cancers.

The conditional F-statistic for the multivariable analysis of the
association of BMR and IGF1 with cancer and neoplasm was 39
for BMR and 40 for IGF1 (Supplementary Table 7).

Genetic Associations of Basal Metabolic
Rate With Cancer
BMR was positively associated with cancer (Table 1). Other
MR methods and inclusion/exclusion of GVs associated with
potential confounders showed directionally similar results.
No MR-Egger intercept tests showed evidence of directional
pleiotropy. BMR was positively associated with cancer using the
contamination mixture method (odds ratio, 1.13; 95% confidence
interval, 1.09 to 1.20). Exclusion of GVs associated with potential
confounders showed directionally similar results.

In sex-specific analysis, estimates were similar to the overall
estimates and by sex (Table 1). Other MR methods with
inclusion/exclusion of GVs associated with potential confounders
generally showed a positive association. Only the MR-Egger
intercept test for the analysis without exclusion of GVs associated
with potential confounders in women showed evidence of
directional pleiotropy.

In multivariable MR, BMR was positively associated with
cancer after adjusting for IGF1 overall and in women but
not in men (Table 2). MR-Egger and inclusion/exclusion of
GVs associated with potential confounders showed directionally
similar results. No MR-Egger intercept showed evidence of
directional pleiotropy.

Genetic Associations of Basal Metabolic
Rate With Neoplasm
BMR was positively associated with neoplasm overall, in
men, and in women, with similar estimates (Table 3). Other
MR methods and inclusion/exclusion of GVs associated with
potential confounders showed directionally similar results. No
MR-Egger intercept showed evidence of directional pleiotropy.
BMR was positively associated with overall neoplasm using the
contamination mixture method (odds ratio, 1.12; 95% confidence
interval, 1.06 to 1.18). Exclusion of GVs associated with potential
confounders showed directionally similar results.

In multivariable MR, BMR was consistently positively
associated with neoplasm after adjusting for IGF1 overall, in men,
and in women (Table 4). MR-Egger and inclusion/exclusion of
GVs associated with potential confounders showed directionally
similar results. No MR-Egger intercept showed evidence of
directional pleiotropy.

Genetic Associations of Basal Metabolic
Rate With Site-Specific Cancers
Among the 13 cancer sites in the UK Biobank, BMR was
positively associated with cancer of urinary organs, cancer of
respiratory system and intrathoracic organs, cancer of primary
lymphoid and hematopoietic tissue, and cancer of genital organs
in women (Supplementary Table 8). For all these four cancer
types, multivariable MR adjusted for IGF1 showed consistent
results (Supplementary Table 9).

BMR was not associated with breast cancer in BCAC or with
prostate cancer in PRACTICAL Consortium (Supplementary
Table 8). For all these two cancer types, multivariable
MR analysis adjusted for IGF1 showed consistent results
(Supplementary Table 9).

DISCUSSION

BMR was positively associated with cancer, consistent with
theoretical expectations and previous observational and MR
studies, which also suggested BMR as a risk factor or a causal
risk factor of some cancers (Cornish et al., 2020; Kliemann et al.,
2020). We also showed that BMR was related to benign tumors,
and these associations were independent of IGF1.

Mendelian Randomization Assumptions
A valid MR relies on three key assumptions. First, GVs must
be strongly associated with the exposure. We chose GVs
associated with BMR at genome-wide association significance.
The F-statistic of all GVs was >10, which provides assurance
that a weak instrument is unlikely (Bowden et al., 2016b).
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TABLE 1 | Univariable Mendelian randomization association of basal metabolic rate with cancer.

Sex Selection of GVs No. of GVs MR method Odds
ratio

95% CI
LL

95% CI
UL

p-Value Cochran’s Q MR-Egger Outlier detected
by MR-PRESSO

p-Value for sex
difference

Statistic p-Value Intercept Intercept
p-Value

I2GX

Overall p-Value < 5 × 10−8 782 IVW (random) 1.06 1.02 1.10 0.006 923.082 0.0003 – – – –

782 WM 1.05 0.99 1.12 0.102 – – – – – –

782 MR-Egger 1.01 0.91 1.13 0.798 922.191 0.0003 6.57E-05 0.385 0.834 –

781 MR-PRESSO
(corrected)

1.07 1.03 1.11 0.001 – – – – – rs56094641

p-Value < 5 × 10−8 and
exclusion of GVs

associated with potential
confounders

750 IVW (random) 1.07 1.02 1.11 0.003 859.463 0.003 – – – –

750 WM 1.07 1.01 1.14 0.033 – – – – – –

750 MR-Egger 1.05 0.93 1.17 0.400 859.368 0.0028 2.27E-05 0.774 0.795 –

750 MR-PRESSOa 1.07 1.02 1.11 0.003 – – – – – –

Men p-Value < 5 × 10−8 301 IVW (random) 1.07 1.002 1.14 0.044 346.633 0.033 – – – – 0.840

301 WM 0.99 0.89 1.09 0.827 – – – – – – 0.471

301 MR-Egger 1.07 0.88 1.26 0.462 346.633 0.030 -2.00E-06 0.991 0.763 – 0.162

300 MR-PRESSO
(corrected)

1.06 0.997 1.13 0.061 – – – – – rs1879442 0.380

p-Value < 5 × 10−8 and
exclusion of GVs

associated with potential
confounders

281 IVW (random) 1.08 1.01 1.16 0.027 328.480 0.024 – – – – 0.851

281 WM 0.999 0.89 1.10 0.979 – – – – – – 0.541

281 MR-Egger 1.13 0.93 1.35 0.204 328.158 0.023 -9.54E-05 0.601 0.693 – 0.178

281 MR-PRESSOa 1.08 1.01 1.16 0.028 – – – – – – 0.851

Women p-Value < 5 × 10-8 304 IVW (random) 1.06 0.995 1.12 0.069 405.209 7.65E-05 – – – –

304 WM 1.03 0.95 1.12 0.453 – – – – – –

304 MR-Egger 0.89 0.73 1.07 0.231 400.115 0.0001 0.0004 0.0499 0.762 –

303 MR-PRESSO
(corrected)

1.08 1.02 1.14 0.010 – – – – – rs56094641

p-Value < 5 × 10−8 and
exclusion of GVs

associated with potential
confounders

280 IVW (random) 1.07 1.003 1.13 0.041 336.074 0.011 – – – –

280 WM 1.04 0.95 1.13 0.440 – – – – – –

280 MR-Egger 0.93 0.75 1.12 0.474 333.389 0.013 0.0003 0.135 0.686 –

280 MR-PRESSOa 1.07 1.002 1.13 0.042 – – – – – –

BMR, basal metabolic rate; CI, confidence interval; GV, genetic variant; IVW, inverse-variance weighted; LL, lower limit; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization-pleiotropy residual sum
and outlier; SE, standard error; UL, upper limit; WM, weighted median.
aNo outlier was detected.
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TABLE 2 | Multivariable Mendelian randomization association of basal metabolic rate with cancer adjusted for insulin-like growth factor 1.

Sex Selection of GVs No. of
GVs

MR method Odds
ratio

95% CI
LL

95% CI
UL

p-Value Cochran’s Q MR-Egger p-Value for sex
difference

Statistic p-Value Intercept Intercept
p-value

Overall p-Value < 5× 10−8 1,152 IVW (random) 1.07 1.02 1.11 0.003 1,350.644 3.50E-05 – –

1,152 MR-Egger 1.03 0.96 1.11 0.423 1,349.144 3.62E-05 4.83E-05 0.258

p-Value < 5× 10−8

and exclusion of
GVs associated
with potential
confounders

1,109 IVW (random) 1.07 1.03 1.12 0.002 1,264.971 0.001 – –

1,109 MR-Egger 1.05 0.97 1.13 0.187 1,264.660 0.001 2.28E-05 0.602

Men p-Value < 5 × 10-8 491 IVW (random) 1.06 0.99 1.13 0.079 515.432 0.197 – – 0.463

491 MR-Egger 1.11 0.998 1.22 0.055 514.180 0.199 -8.91E-05 0.276 0.381

p-Value < 5× 10−8

and exclusion of
GVs associated
with potential
confounders

455 IVW (random) 1.07 0.998 1.14 0.058 484.072 0.151 – – 0.415

455 MR-Egger 1.14 1.02 1.26 0.026 482.058 0.159 -0.0001 0.169 0.435

Women p-Value < 5× 10−8 499 IVW (random) 1.07 1.01 1.13 0.022 620.752 0.0001 – –

499 MR-Egger 1.02 0.91 1.12 0.731 619.030 0.0001 0.0001 0.240

p-Value < 5× 10−8

and exclusion of
GVs associated
with potential
confounders

466 IVW (random) 1.08 1.02 1.14 0.010 536.839 0.011 – –

466 MR-Egger 1.04 0.93 1.15 0.448 535.993 0.011 8.38E-05 0.393

BMR, basal metabolic rate; CI, confidence interval; GV, genetic variant; IGF1, insulin-like growth factor 1; IVW, inverse-variance weighted; LL, lower limit; MR, Mendelian
randomization; SE, standard error; UL, upper limit; WM, weighted median.

Using genetic instruments selecting using a lower p-value cutoff
(1× 10−5) gave similar results (data not shown). Second, the GVs
must not be associated with the confounders of the exposure-
outcome association. Though this assumption cannot be tested
completely, we examined the association between the GVs and
some of the important potential confounders including lifestyle
and socioeconomic status. Sensitivity analysis through excluding
GVs associated with these potential confounders gave mostly
consistent results. Third, GVs must only exert its effect on
the outcome through affecting the exposure but not via other
pathways, i.e., no horizontal pleiotropy and no selection bias.
We used MR-PRESSO to detect and exclude GVs that exhibited
directional pleiotropy. Since IGF1 and BMR are highly correlated
exposures, where IGF1 can affect BMR (Swanson and Dantzer,
2014), we conducted multivariable MR to take into account the
effect of GVs on cancer via IGF1 by adjusting for IGF1 (Burgess
and Thompson, 2015; Sanderson et al., 2019), and the results
were consistent. We cannot exclude the possibility that for some
cancers, inevitable selection of survivors of BMR, the cancer in
question, and other common causes of the survival and the cancer
in question may bias the estimates (Schooling et al., 2021).

Limitations of Study
Some limitations in the current MR study are worth mentioning.
First, we conducted the two-sample MR analysis using the

same sample from the UK Biobank for exposures and
outcomes. In the presence of weak instruments, overlapping
samples in two-sample MR could result in bias toward the
observational association (Burgess et al., 2016). However, the bias
is proportional to the inverse of the F-statistics (Burgess et al.,
2016), which were all > 10. Second, population stratification
might have introduced confounding due to heterogeneity in
allele frequencies between populations. However, the underlying
population of the current MR study was restricted to individuals
of white British ancestry, and the underlying studies address
population stratification by principal component analysis. Third,
cancer can be lethal so the study is open to selection bias from the
inevitable selection only of survivors. Selecting only survivors of
BMR and a specific cancer might attenuate or reverse estimates
for cancers that are lethal at young ages, such as breast cancer,
where a substantial proportion of breast cancer and breast cancer
deaths occur at the age of 25 to 49 years in women in the
UK (Cancer Research UK, 2021a), which could explain the null
association of BMR with breast cancer in the UK Biobank, with
an average age at recruitment of approximately 57 years (UK
Biobank, 2020), and the null association in BCAC, where the
women may be even older at recruitment (Zhang et al., 2020)
as reflected by smaller estimates. A recent MR study has shown
that hyperthyroidism, which raises BMR (Mullur et al., 2014),
increased the risk of breast cancer, with magnitude also greater
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TABLE 3 | Univariable Mendelian randomization association of basal metabolic rate with neoplasm.

Sex Selection of GVs No. of
GVs

MR method Odd
ratio

95% CI
LL

95% CI
UL

p-Value Cochran’s Q MR-Egger Outlier detected
by MR-PRESSO

p-Value for sex
difference

Statistic p-Value Intercept Intercept
p-value

I2GX

Overall p-Value < 5 × 10−8 782 IVW (random) 1.11 1.06 1.15 2.12E-06 1,244.057 8.52E-24 – – – –

782 WM 1.10 1.04 1.16 0.001 – – – – – –

782 MR-Egger 1.13 1.01 1.25 0.036 1,243.909 6.92E-24 -3.91E-05 0.761 0.834 –

779 MR-PRESSO (corrected) 1.10 1.05 1.14 6.18E-06 – – – – – rs28722029,
rs78378222,
rs8007058

p-Value < 5 × 10−8 and
exclusion of GVs associated
with potential confounders

750 IVW (random) 1.10 1.06 1.15 1.29E-05 1,193.855 5.77E-23 – – – –

750 WM 1.10 1.03 1.16 0.002 – – – – – –

750 MR-Egger 1.11 0.99 1.24 0.082 1,193.825 4.58E-23 -1.86E-05 0.891 0.795 –

748 MR-PRESSO (corrected) 1.09 1.05 1.14 2.91E-05 – – – – – rs28722029,
rs78378222

Men p-Value < 5 × 10-8 301 IVW (random) 1.07 1.03 1.12 0.002 392.156 2.69E-04 – – – – 0.888

301 WM 1.06 0.99 1.12 0.078 – – – – – – 0.786

301 MR-Egger 1.19 1.06 1.32 0.005 387.885 3.99E-04 -0.001 0.070 0.763 – 0.659

300 MR-PRESSO (corrected) 1.06 1.02 1.10 0.005 – – – – – rs78378222 0.652

p-Value < 5 × 10−8 and
exclusion of GVs associated
with potential confounders

281 IVW (random) 1.07 1.02 1.12 0.008 367.939 3.21E-04 – – – – 0.703

281 WM 1.04 0.98 1.11 0.193 – – – – – – 0.765

281 MR-Egger 1.17 1.03 1.32 0.017 364.788 4.16E-04 -0.0005 0.121 0.693 – 0.940

280 MR-PRESSO (corrected) 1.05 1.01 1.10 0.023 – – – – – rs78378222 0.460

Women p-Value < 5 × 10−8 304 IVW (random) 1.07 1.02 1.12 0.006 488.606 7.02E-11 – – – –

304 WM 1.04 0.98 1.10 0.234 – – – – – –

304 MR-Egger 1.12 0.98 1.27 0.091 487.642 6.63E-11 -0.0002 0.440 0.762 –

301 MR-PRESSO (corrected) 1.07 1.02 1.11 0.003 – – – – – rs28722029,
rs41277471,
rs78378222

p-Value < 5 × 10−8 and
exclusion of GVs associated
with potential confounders

280 IVW (random) 1.07 1.02 1.13 0.008 454.157 1.59E-10 – – – –

280 WM 1.02 0.96 1.09 0.453 – – – – – –

280 MR-Egger 1.14 0.99 1.31 0.076 452.754 1.64E-10 -0.0003 0.353 0.686 –

277 MR-PRESSO (corrected) 1.07 1.02 1.12 0.004 – – – – – rs28722029,
rs41277471,
rs78378222

BMR, basal metabolic rate; CI, confidence interval; GV, genetic variant; IVW, inverse-variance weighted; LL, lower limit; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization-pleiotropy residual sum
and outlier; SE, standard error; UL, upper limit; WM, weighted median.
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TABLE 4 | Multivariable Mendelian randomization association of basal metabolic rate with neoplasm adjusted for insulin-like growth factor 1.

Sex Selection of GVs No. of
GVs

MR method Odds
ratio

95% CI
LL

95% CI
UL

p-Value Cochran’s Q MR-Egger p-Value for sex
difference

Statistic p-Value Intercept Intercept
p-Value

Overall p-Value < 5 × 10−8 1,152 IVW (random) 1.12 1.07 1.16 4.46E-07 1,776.822 1.03E-29 ’ ’

1,152 MR-Egger 1.10 1.02 1.18 0.014 1,776.399 8.90E-30 3.74E-05 0.601

p-Value < 5 × 10−8

and exclusion of GVs
associated with
potential confounders

1,109 IVW (random) 1.11 1.06 1.16 2.39E-06 1,676.315 4.30E-26 – –

1,109 MR-Egger 1.10 1.02 1.18 0.018 1,676.121 3.61E-26 2.63E-05 0.720

Men p-Value < 5 × 10−8 491 IVW (random) 1.07 1.02 1.12 0.004 642.489 3.52E-06 – – 0.285

491 MR-Egger 1.11 1.03 1.20 0.006 640.241 4.04E-06 -0.0002 0.191 0.577

p-Value < 5 × 10−8

and exclusion of GVs
associated with
potential confounders

455 IVW (random) 1.06 1.01 1.11 0.014 591.526 1.20E-05 – – 0.173

455 MR-Egger 1.10 1.01 1.19 0.021 589.997 1.26E-05 -0.0002 0.279 0.944

Women p-Value < 5 × 10−8 499 IVW (random) 1.10 1.05 1.15 0.0001 773.460 2.23E-14 – –

499 MR-Egger 1.07 0.98 1.15 0.117 772.476 2.13E-14 0.0001 0.427

p-Value < 5 × 10−8

and exclusion of GVs
associated with
potential confounders

466 IVW (random) 1.10 1.05 1.15 0.0001 693.065 2.51E-11 – –

466 MR-Egger 1.09 1.004 1.19 0.041 692.992 2.07E-11 3.46E-05 0.825

BMR, basal metabolic rate; CI, confidence interval; GV, genetic variant; IGF1, insulin-like growth factor 1; IVW, inverse-variance weighted; LL, lower limit; MR, Mendelian
randomization; SE, standard error; UL, upper limit; WM, weighted median.

in the UK Biobank than BCAC (Yuan et al., 2020). Selecting only
survivors of BMR and a competing risk of a specific cancer which
might attenuate or reverse estimates for cancers that entailing
survival to older ages, such as prostate cancer (Cancer Research
UK, 2021b), where we observed a null association of BMR with
prostate cancer in the UK Biobank and an insignificant inverse
association in the PRACTICAL Consortium. The inclusion of
a secondary outcome, neoplasm, which includes the less-lethal
benign tumor, could serve as a validation to the results. As
expected, the estimates were larger for the association of BMR
with neoplasm than that for cancer using different MR methods.
The larger number of cases of neoplasm (> 70,000) also allowed
more consistent associations of BMR with neoplasm. Fourth,
canalization, which refers to the adaptive change in genetics due
to the disease, might have occurred. However, it generally biases
estimates toward null (Zheng et al., 2017) and evaluation of such
impact is currently not possible. Fifth, reverse causation, i.e.,
cancer increases BMR, may be the case. However, the mass of a
cancer is unlikely to be large enough to influence BMR (Nguyen
et al., 2016). Sixth, we assumed a linear association between BMR
and cancer. Using summary data only, we were unable to assess
any non-linear association.

Possible Biological Mechanisms
Faster metabolism has been suggested to play an important role
in cancer development. During cell metabolism, reactive oxygen
species are generated as a toxic by-product (Ruggiero et al., 2008;
Maciak and Michalak, 2015), which activates mutational process
when in excess. More active metabolism per se increases the

rate of genetic mutations (Maciak and Michalak, 2015) and the
chance of tumor formation (Boddy et al., 2015). Cancer risk may
increase when these overwhelming mutational events cannot be
hedged by somatic maintenance such as DNA repair (Aktipis and
Nesse, 2013; Boddy et al., 2015; Maciak and Michalak, 2015) and
tissue repair (Aktipis and Nesse, 2013). Higher BMR may also
compromise immunity (Maciak and Michalak, 2015), which has
also been suggested to link with higher cancer risk (Aktipis and
Nesse, 2013; Boddy et al., 2015; Maciak and Michalak, 2015).

Clinical Relevance
A number of factors determine BMR, including age (Ruggiero
et al., 2008; Sanchez Lopez de Nava and Raja, 2020), sex (Ruggiero
et al., 2008; Jagim et al., 2019; Sanchez Lopez de Nava and
Raja, 2020), ethnicity (Sanchez Lopez de Nava and Raja, 2020),
lifestyle attributes like physical exercise and diet (Sanchez Lopez
de Nava and Raja, 2020), and diseases like cancer (Sanchez
Lopez de Nava and Raja, 2020). BMR may also be affected
by body composition (Jagim et al., 2019). BMR is higher at
younger ages (Ruggiero et al., 2008), in men (Ruggiero et al.,
2008; Jagim et al., 2019), and in individuals with more lean body
mass (Ruggiero et al., 2008; Jagim et al., 2019), similar to IGF1
(Murphy et al., 2020a). Physical activity is considered beneficial
in protecting against cancer (Lugo et al., 2019). An MR study
has also shown that accelerometer-measured physical activity
was inversely associated with breast cancer and colorectal cancer
(Papadimitriou et al., 2020). However, not all forms of physical
activity affect BMR. A systematic review and meta-analysis has
reported that resistant training but not aerobic exercise increases
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BMR (MacKenzie-Shalders et al., 2020). In rats, resistance
training increases AMP-activated protein kinase level in rats (An
et al., 2016), where activation of AMP-activated protein kinase
inhibits mechanistic/mammalian target of rapamycin signaling
which in turns suppresses cancer cell growth (Li et al., 2015).
The effect of a particular type of physical activity on cancer risk
through regulation of BMR requires further investigation.

Restricting caloric intake has been proposed to reduce BMR
(Mole, 1990) and the effect may be independent of reduction
in IGF1 (Kazemi et al., 2020). On the other hand, high
protein intake increases IGF1 (Kazemi et al., 2020). Caloric
restriction is beneficial in preventing cancer occurrence (Meynet
and Ricci, 2014). Higher BMR was associated with higher
mortality risk in a cohort study in the United States (Ruggiero
et al., 2008). These findings are in line with evolutionary
biology perspective that dietary restriction of specific pattern
extends longevity (Soultoukis and Partridge, 2016), possibly
through prevention of cancer, a major determinant of lifespan
(Boddy et al., 2015). Hyperinsulinemia has been suggested as
a risk factor of cancer (Vigneri et al., 2020), partly due to
mitogenic effects (Vigneri et al., 2020). Notably, insulin raises
free IGF1 (Vigneri et al., 2020), which in turn increases BMR
(Swanson and Dantzer, 2014).

Conclusion
Overall, our results suggest that higher BMR might cause a
higher cancer risk. Intervening on modifiable targets like diet
and physical exercise may help reduce the burden of this life-
threatening disease by reducing BMR.
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