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Detecting gene fusions involving driver oncogenes is pivotal in clinical diagnosis and
treatment of cancer patients. Recent developments in next-generation sequencing (NGS)
technologies have enabled improved assays for bioinformatics-based gene fusions
detection. In clinical applications, where a small number of fusions are clinically
actionable, targeted polymerase chain reaction (PCR)-based NGS chemistries, such as
the QIAseq RNAscan assay, aim to improve accuracy compared to standard RNA
sequencing. Existing informatics methods for gene fusion detection in NGS-based
RNA sequencing assays traditionally use a transcriptome-based spliced alignment
approach or a de-novo assembly approach. Transcriptome-based spliced alignment
methods face challenges with short read mapping yielding low quality alignments. De-
novo assembly-based methods yield longer contigs from short reads that can be more
sensitive for genomic rearrangements, but face performance and scalability challenges.
Consequently, there exists a need for a method to efficiently and accurately detect fusions
in targeted PCR-based NGS chemistries. We describe SeekFusion, a highly accurate and
computationally efficient pipeline enabling identification of gene fusions from PCR-based
NGS chemistries. Utilizing biological samples processed with the QIAseq RNAscan assay
and in-silico simulated data we demonstrate that SeekFusion gene fusion detection
accuracy outperforms popular existing methods such as STAR-Fusion, TOPHAT-
Fusion and JAFFA-hybrid. We also present results from 4,484 patient samples tested
for neurological tumors and sarcoma, encompassing details on some novel fusions
identified.
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INTRODUCTION

Gene fusions are potentially pathogenic events that result from
genomic structural rearrangements including inversions,
translocations, and interstitial deletions. Gene fusions are
frequently observed in cancer, and while their prevalence
varies by tumor type they have been estimated to account for
20% of all cancer morbidity (Mitelman et al., 2007). Identification
of gene fusions in a tumor can help guide therapeutic decision-
making since fused protein products can represent targets of
small molecule inhibitors or other novel treatments. Examples
include the treatment of recurrent PTPRZ1-MET fusion-positive
glioblastoma using the MET kinase inhibitor crizotinib,
KIAA1549-BRAF fusion driven pediatric pilocytic astrocytoma
treatment using the MEK inhibitor trametinib, and ALK-EML4
fusion-positive lung cancer using tyrosine kinase inhibitor
lorlatinib (Bender et al., 2016; Jain et al., 2017; Shaw et al., 2019).

RNA sequencing (RNA-Seq) assays for gene fusion detection
provide improvements in throughput, sensitivity and specificity
over traditional DNA and protein-based approaches like
fluorescence in situ hybridization (FISH) and
immunohistochemistry (IHC) (Wang et al., 2009; Abel et al.,
2014; Moskalev et al., 2014; Pekar-Zlotin et al., 2015; Haynes
et al., 2019). RNA-based strategies to detect gene fusions use
transcriptome-wide sequencing with ribosomal RNA-depleted,
fractionated messenger RNA or target specific genes of interest
using polymerase chain reaction (PCR) based amplicon RNA-
Seq, or bait hybridization (capture and ligation) using assays such
as QIAGEN’s QIAseq RNAscan panel or Illumina’s SureSelect
RNA capture (Wang et al., 2009; Blomquist et al., 2013; Drilon
et al., 2015). The PCR-based amplicon RNA-Seq methods offer
inexpensive and highly accurate sequencing of fusion transcripts,
simultaneously assessing dozens to thousands of targets
(Blomquist et al., 2013) and enabling detection of lowly
expressed fusions at a high sequencing depth. While PCR-
based approaches have traditionally been limited due to
stochastic errors that propagate to all PCR cycles (Thilly,
1993), the addition of unique molecular indexes (UMI) in
ligation adapters has recently been used to alleviate the impact
of such errors (Kivioja et al., 2012), and can improve the
sensitivity of gene fusion detection assays. QIAseq NGS assay
panels have been demonstrated to provide robust correlation with
RT-PCR and low PCR-bias (Wong et al., 2019), and so was the
chemistry used in this study (see Methods, Library Preparation
and Sequencing section).

Several bioinformatics tools are available for detecting gene
fusions that use wide variety of approaches. Brian et al. and Trung
et al. have each outlined benchmarking of 15 gene fusion
identification tools in their studies and detailed the methods
and performance (Vu et al., 2018; Haas et al., 2019). One common
approach uses transcriptome-based spliced alignment. This
method is reliant on the accurate mapping of short reads to
the transcriptome, which can be challenging due to genome
repetitiveness, sequence homology, incomplete transcriptome
annotations, and novel patient sequences not well-represented
by the reference genome. Matteo et al. elaborate on limitations of
several gene fusion identification tools using short read alignment

technologies and report key factors such as read length, quality
scores and number of reads supporting each fusion call (Carrara
et al., 2013a). De-novo assembly-based approaches yield longer
contigs from short reads and address some of the limitations of
short-read alignment but are computationally intensive and often
not scalable to large scale clinical testing (Carrara et al., 2013b;
Davidson et al., 2015; Haas et al., 2019). Hybrid approaches such
as the method implemented in JAFFA (Davidson et al., 2015)
combine the approaches described above, but so far, no hybrid
method achieves a balance of scalability and accuracy.

Herein we describe SeekFusion (https://hub.docker.com/
repository/docker/jagadhesh89/seekfusion), a time-efficient
pipeline that leverages de-novo assembly and alignment based
approaches to accurately identify gene fusions utilizing PCR-
UMI-based amplicon RNA-Seq. SeekFusion performs rapid
alignment to gene sequences, then groups and filters aligned
reads for de-novo assembly. Assembled contigs are realigned to a
reference genome and fusion genes are identified, annotated and
reported in a VCF format. Using verified clinical cases and
synthetic controls, we demonstrate that SeekFusion
outperforms existing pipelines by balancing high analytical
sensitivity and specificity with computational efficiency. The
algorithm is written using Python and bash and the functions
are wrapped inWDL and processed using Cromwell (Voss, 2017)
for ease of deployment by end-users in their own compute
environments.

METHODS

Methods Overview
The study (Figure 1) involves developing a bioinformatics
method for neurological cancer and sarcoma cancer clinical
NGS assays aimed at targeting gene fusions. Towards
development of the assay, few positive samples, negative
samples and in-silico samples were selected, sequenced and
analyzed across multiple fusion callers. The fusion callers were
benchmarked carefully, results were summarized and compared
to orthogonal assay results to identify the winning method.
SeekFusion, an internally developed pipeline is highly
optimized and accurate compared to the other methods that
included STAR-Fusion, JAFFA and Tophat-Fusion. SeekFusion
was then used towards verification of the developed assay, the
assays were then implemented clinically for gene fusion
identification post New York State (NYS) approval for the
laboratory developed tests.

Panel Design for Gene Fusion Detection in
Neurological Cancers and Sarcomas
A neurological oncology panel was designed to target fusions in
80 genes (Supplementary Table S2) utilizing the Qiagen QIAseq
RNAscan Custom Panel (Blessing et al., 2019). Targeted
rearrangements were selected based on association with a
variety of adult and pediatric central nervous system (CNS)
tumors and potential utility in the differential diagnosis of
these tumors or in the differentiation of molecularly defined
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tumor subtypes (e.g., ependymoma RELA fusion-positive) (Kim
et al., 2017). A sarcoma assay was designed to diagnose specific
soft tissue and bone tumors (sarcoma) based on the observed
gene fusion in 138 genes (Supplementary Table S3). Targeted
rearrangements were selected based on associations with a variety
of sarcoma types such as rhabdomyosarcoma, synovial sarcoma,
and Ewing’s sarcoma. Both neurological oncology and sarcoma
assays’ chemistry is designed to target a list of genes known to be
involved in rearrangements using gene specific primers but uses a
universal primer on the partner gene, making it a partner-
agnostic chemistry capable of novel gene fusion identification.
Specimen requirements and types for the assays have been
detailed in Supplementary Methods section.

Sample Selection for Benchmarking
Twenty-one neurological tumor samples were obtained following
IRB-approved protocols. Of the 21 samples, 12 were fusion
positive and 9 were fusion negative (Table 1). In addition to
these clinical samples of known gene fusion status, we included a
positive control, created from fusion-negative samples to which
13 gene fusion oligonucleotides were spiked in. Finally, a normal
control sample was sequenced, and 27 unique fusions were added
in-silico as positive controls. In total, benchmarking was
performed using 52 known positive gene fusions. All samples
were processed using the 80-gene QIAseq RNAscan neurological
oncology NGS panel.

Orthogonal Validation
Gene fusions detected while benchmarking was confirmed using
OncoScan FFPE Assay Kit (Thermo Fisher Scientific, Waltham,
MA) chromosomal microarray (CMA) and reverse transcription

polymerase chain reaction (RT-PCR) with or without subsequent
direct Sanger sequencing as previously described (Gliem and
Aypar, 2017).

Library Preparation and Sequencing
RNA was extracted from macrodissected, unstained slides using
the QIAampmiRNeasy FFPE kit and nucleic acid was quantitated
with the NanoDrop 2.0 system (Blessing et al., 2019). Library
preparation was performed with the QIAseq RNAscan chemistry
using 200 ng of RNA per manufacturer’s protocol
recommendations. Final libraries were quantitated using a
Qubit fluorometer, with 8 equimolar samples pooled and
sequenced on an Illumina MiSeq instrument. Raw sequencing
data was de-multiplexed into FASTQ files and processed through
the SeekFusion pipeline.

SeekFusion Fusion Detection Workflow
SeekFusion was designed in Cromwell/WDL to enable standalone
or server mode workflow execution. Server mode performs tasks
in parallel for every gene targeted (Figure 2). The pipeline is
configurable for each module, and parameters can be fine-tuned
through the profile settings file for the pipeline. Details of the
individual steps comprising the pipeline are described in the
following sections.

UMI Based PCR Duplicate Removal (UMI
Consensus)
PCR duplication is a byproduct of amplification steps in
sequencing protocols that produces multiple copies of
individual sequence fragments and artificially inflates their

FIGURE 1 |Methods overview. The study involves developing Neuorlogical oncology and Sarcoma clinical NGS assays aimed at targeting gene fusions. Towards
development of the assay, few positive samples, negative samples and in-silico samples were selected, sequenced and analyzed across multiple fusion callers. The
fusion calls were examined to identify the winning method, and the winning method was SeekFusion, which was internally developed and optimized for the assay. The
method was then used towards verification of the assay for NYS approvals and was deployed clinically for gene fusion identification.
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TABLE 1 | List of samples for benchmarking.

Sample
ID

Tumor type Expected fusion Fusion positive/
negative

Confirmed method

pos_S1 Pilocytic astrocytoma (WHO Grade I) KIAA1549-BRAF positive RT-PCR with Sanger sequencing
pos_S2 High grade astrocytoma consistent with glioblastoma small cell type,

IDH-wildtype
EGFR-SEPT14 positive RT-PCR with Sanger sequencing

pos_S3 Granular cell astrocytoma EGFR-EGFR
(EGFRvIII)

positive RT-PCR with Sanger sequencing

pos_S4 Anaplastic astrocytoma, IDH-mutant EWSR1-FLI1 positive RT-PCR
pos_S5 Pilocytic astrocytoma FAM131B-BRAF positive RT-PCR with Sanger sequencing
pos_S6 Glioblastoma, IDH-wildtype FGFR3-TACC3 positive RT-PCR with Sanger sequencing
pos_S7 Glioblastoma, IDH-mutant MN1-MOB3B positive RT-PCR with Sanger sequencing
pos_S8 Pilocytic astrocytoma SRGAP3-RAF1 positive CMA
pos_S9 Anaplastic ependymoma (WHO grade III) C11ORF95-RELA positive RT-PCR with Sanger sequencing
pos_S10 Pilocytic astrocytoma PDE4B-NTRK2 positive RT-PCR with Sanger sequencing
pos_S11 Pleomorphic xanthoastrocytoma QKI-RAF1 positive RT-PCR with Sanger sequencing
pos_S12 Solitary fibrous tumor NAB2-STAT6 positive RT-PCR with Sanger sequencing
pos_S13 Negative sample spiked in with fusion oligos SRGAP3-RAF1 positive Specific synthetic oligonucleotide

designKIAA1549-BRAF
MYB-QKI
FAM131B-BRAF
PVT1-MYC
FGFR1-TACC1
DDX31-GFI1B
SLC44A1-PRKCA
MYB-ESR1
PTPRZ1-MET
TPM3-NTRK1
MYB-PCDHGA1
FGFR1-FGFR1
(E9-E19)

pos_S14 Negative cell line with insilico spiked in fusions FGFR3-FAM184B positive Insilico spike in
MET-ST7
NTRK1-TPR
ZSCAN21-MET
ATG7-RAF1
MET-PTPRZ1
ETV6-NTRK3
PACRG-QKI
KIAA1549-BRAF
TFG-MET
FN1-FGFR1
NTRK2-VCL
FGFR3-TACC3
KIAA1549-BRAF
QKI-RAF1
QKI-NTRK2
NAB2-STAT6
EGFR-EGFR
KIF21B-NTRK1
YAP1-FAM118B
C11orf95-RELA
PDE4B-NTRK1
EWSR1-FLI1
FAM131B-BRAF
FGFR1-TACC1
MYB-QKI
SRGAP3-RAF1

neg_S1 CNS negative None negative CNS negative
neg_S2 CNS negative None negative CNS negative
neg_S3 CNS negative None negative CNS negative
neg_S4 CNS negative None negative CNS negative
neg_S5 CNS negative None negative CNS negative
neg_S6 CNS negative None negative CNS negative
neg_S7 CNS negative None negative CNS negative
neg_S8 CNS negative None negative CNS negative
neg_S9 CNS negative None negative CNS negative
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FIGURE 2 |Workflow of SeekFusion pipeline. The pipeline begins with deduping the reads utilizing the UMIs; the deduped reads are then aligned to target genes.
The aligned reads are pooled based on the genes and for each gene-based read pool a de-novo assembly is performed to construct longer contigs. The contigs are
aligned to the reference genome to identify potential breakpoints. The potential breakpoints are annotated, and reads are aligned to the breakpoints to visualize the
fusions.
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abundance. The QIAseq RNAscan chemistry utilizes UMIs that
are random nucleotide sequences incorporated into sequence
fragments prior to amplification to enable the identification of
PCR duplicate reads originating from the same sequence
fragment. Barring technical and sequencing errors, each of
these duplicated reads will share identical nucleotide sequence.
In reality, however, sequencing errors introduce differences in
duplicate reads. The “deduping”module accounts for these errors
and attempts to identify the PCR duplicates irrespective of
sequencing error. It then builds a single consensus read from
identified PCR duplicates and produces an updated Phred quality
score for each base that accurately represents the summary
evidence when estimating the probability of an erroneous base
call. This approach produces higher confidence base calls that
facilitate accuracy of downstream processing and improves the
ability to discern true calls.

The deduping algorithm assumes a prior probability for the
nucleotides at a particular position and uses Bayes theorem to
update the probability of the base in a particular position of a
UMI using conditional independence (See Supplementary
Methods).

FASTQ files are used as input to the deduping module. The
algorithm is written in C and based on a highly efficient and
customized data structure. Efficient binary representation of
k-mers (up to length 16) enables perfect hashing and rapid
computations of hamming distances. The algorithms also
make use of BGZF compressed FASTQ files (this is the same
compression method used in bam files) which enables indexing
and fast random read access within the compressed FASTQ files.

Trimming Adapters
Fastp (Chen et al., 2018) was implemented with default settings to
trim the adapters from reads produced by the QIAseq RNAscan
chemistry, with adapter sequences provided in a FASTA file using
the--adapter_fasta option.

Alignment-Based Read Reduction and
De-Novo Assembly
De-novo assembly is a computationally intensive process that has
the potential to overwhelm computational resources (Sze et al.,
2017). To alleviate this potential bottleneck, a pre-processing step
was formulated to reduce the number of identical or high
similarity reads entering the de-novo assembly stage. A target
reference database for read alignment was created using the full
nucleotide sequence of the longest coding transcript for all genes
targeted by the neuro oncology NGS panel, identified by HGNC
(Yates et al., 2017) gene names. BWA-mem (Li and Durbin, 2009)
from Sentieon (Sentieon, Mountain View, CA, United States) was
used to enable rapid alignment to the gene-based reference
database. BWA-mem can be substituted with the open source
BWA-mem tool using profile settings for the pipeline. Default
parameters for paired-end alignment were used. Best alignments
were selected for each read and binned into gene-specific SAM
files utilizing the SAMTOOLS (Li et al., 2009) view functionality
with the aligned BAM file. A custom python module was
developed to identify alignments sharing identical length and

chromosomal start and end coordinates and filter the subsequent
output to five copies or fewer. Reads passing this stage were
output in FASTA format for de-novo assembly. Following
alignment-based reduction, reads were assembled using the
CAP3 (Huang and Madan, 1999) de-novo assembly tool with
default settings (Supplementary Table S1). Assembly was
performed individually on each gene-specific SAM file to
improve the specificity of the de-novo assembly.

Aligning Contigs to the Reference Genome
De-novo assembled contigs were aligned to the human reference
genome (hg19) using BLAT (Kent, 2002). Those generating
multiple non-contiguous alignments were retained as potential
fusion candidates or splice-variants for downstream
characterization. The parameters for BLAT are specified in
Supplementary Table S1. Custom modules were developed to
remove multiple contigs mapping to identical genomic regions
from BLAT results, reducing redundancy in the putative gene
fusion breakpoints.

Filtering Modules
Filtering modules were developed to reduce false positive calls
occurring due to mononucleotide repeats, homology, and other
recurrent artifacts. To filter the false positives due to
mononucleotide repeats, the filtering script looks for repetitive
regions using a Mononucleotide Repeat Ratio (MRR). The
mononucleotide repeat ratio calculation is described in the
Supplementary Methods.

For filtering highly homologous regions, SeekFusion flags calls
that are recurrent in every sample due to homology/low
complexity using a blocklist. The blocklist calls are presented
in the Supplementary Data. Events involving a single transcript
are filtered from the output by default. An inclusion feature is
provided to enable detection of clinically relevant single transcript
events, such as epidermal growth factor receptor variant III
(EGFRvIII) in glioblastoma (An et al., 2018).

Annotation of Contigs Representing
Potential Fusions
A custom script was developed to annotate identified contig
breakpoints and provide genomic context. Annotations
generated include the gene, exon and coding frame status of
the fusion, i.e., if the fusion is likely protein-coding. One of the
key annotations provided by the annotation module is if a fusion
is In-frame, which implies that there was no frame shift in the 3′-
gene, regardless of single amino acid mutation or insertion events
at the fusion junction. Table 2 contains examples of fusion
annotations generated by the pipeline.

Putative Fusion Reference Generation and
Alignment-Based Event Confirmation
All reads originally passing the UMI-based deduping and adapter
trimming steps were retrieved and aligned to the hg19 human
reference transcriptome from Ensembl and Refseq using BWA-
mem. Reads that produced perfect alignments to known gene
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transcripts were removed from further consideration as they
likely represent normal transcriptional events. For each gene
fusion candidate identified by the alignment of assembled
contigs to the human genome, a chimeric construct of the
purported fusion sequence was created (150 base pairs
bidirectional beyond the putative breakpoint). Constructs
annotated as occurring within a single known transcript
were removed from further consideration, with the
exception of select known aberrant single-gene events. The
retained reads were aligned against the potentially chimeric
gene fusion reference sequences using BWA-mem. Only
reads spanning at least 10 bases beyond a breakpoint were
considered as evidence of a potential fusion. A single
supporting read was required as evidence of a fusion
candidate and all candidates were output in a standardized
variant call format (VCF) file. While minimal read support
was required to facilitate downstream benchmarking, the
supporting read threshold is user configurable. Finally, the
fusion-construct aligned BAM file was used to create an
Integrative Genomics Viewer (IGV) (Robinson et al., 2011)
session to enable visual inspection of the evidence supporting
each fusion candidate (Figure 3).

Packaging of Pipeline for General Use
The pipeline is available in a Docker container (Docker, 2014)
image and is available to download from https://hub.docker.com/
repository/docker/jagadhesh89/seekfusion. The usage details are
explained in the README file. In addition to the easy to use
docker image, the source code is also made available via github
(https://github.com/jagadhesh89/seekfusion).

Benchmarking
Benchmarking was performed for SeekFusion, JAFFA-hybrid
(Davidson et al., 2015), STAR-Fusion (Haas et al., 2019) and
TOPHAT-Fusion (Kim and Salzberg, 2011), mirroring
benchmarking analyses performed by the STAR-Fusion study
(Haas et al., 2019). Selected samples were processed through the
four pipelines for benchmarking in two separate analyses. In
Analysis 1, FASTQs were trimmed with FASTP (Chen et al.,
2018), subsequently deduped using UMIs, and supplied as inputs
to the pipelines. In Analysis 2, the raw FASTQs were provided as
pipeline inputs for the 12 gene fusion positive cases, the 9 gene
fusion negative cases, and the positive controls. Analysis 2 was
used to assess tool performance with raw sample FASTQs,
without deduping, however the adapters and UMIs were

TABLE 2 | Fusion annotation generated by the pipeline for documented fusions.

Fusion Fusion location Frame status 59 exon annotation 39_exon_annotation

FGFR3-TACC3 Exon-exon_boundary In-frame +|End_E17|FGFR3|NM_001163213 +|Start_E11|TACC3|NM_006342
FN1-FGFR1 Exon-exon_boundary In-frame -|End_E27|FN1|NM_212482 -|Start_E5|FGFR1|NM_023110
ETV6-NTRK3 Exon-exon_boundary In-frame +|End_E5|ETV6|NM_001987 -|Start_E15|NTRK3|NM_001012338
SSX1-SSX8 Exon-exon_boundary In-frame +|End_E5|SSX1|NM_005635 +|Start_E6|SSX8|NR_027250

FIGURE 3 | An example of the C11ORF95-RELA positive fusion on IGV. Multiple reads generate high-confidence alignments and span the breakpoint in support of
the putative fusion transcript.
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trimmed to prune the reads for specific tools (see Supplementary
Section S2.5). In Analysis 2, JAFFA-Hybrid posed a scalability
challenge; the pipeline ran for over 24 h per sample before failure
due to memory requirements. Due to the scalability issue, JAFFA-
Hybrid was excluded from Analysis 2. However for the analysis 2,
we benchmarked JAFFA-Direct to circumvent the scalability
issues of JAFFA-hybrid.

Accuracy was measured based on putative gene fusion calls
using the following equation at varying levels of fusion read
support thresholds.

Accuracy � True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

Algorithm sensitivity was also measured using True Positive rate

� True Positive

True Positive + False negative

For in-silico generated fusions, supporting reads are a known
quantity. Mean Absolute Percentage Error (de Myttenaere et al.,
2016) (MAPE) and Symmetric Mean Absolute Percentage Error
(Tofallis, 2015) (SMAPE) values were calculated as a measure of
known supporting reads detected by the four algorithms. A
Wilcoxon test was performed on the SMAPE values
between SeekFusion and other tools. Key considerations
on determining the winning tool from benchmarking
involved high accuracy, high true positive rate, ease of
installation, ease of usage in a clinical setting and
turnaround time for the pipeline.

Clinical Testing on Neurological Oncology
and Sarcoma Samples
The neurological oncology assay was developed, verified,
validated, New York (NY) State approved and implemented
clinically using the SeekFusion algorithm. In the verification
study, 63 total unique samples were processed (59 CNS tumor
samples, 1 CNS tumor sample spiked with 13 known synthetic
oligonucleotides and 3 brain gliosis samples). The NGS assay
results were confirmed by RT-PCR and CMA tests. The overall
accuracy of the NGS assay was 96.1% and no fusion transcripts
were detected in negative control samples indicating an overall
specificity of 100%. Following the clinical go-live of the assay,
2,979 clinical patient samples ordered for neurological oncology
testing and were processed using the SeekFusion algorithm. A
sarcoma assay was developed, verified, validated and approved for
clinical testing by NY state. The assay uses the SeekFusion
algorithm and evaluates 138 gene targets for presence of
somatic gene fusions and common BCOR internal tandem
duplications (ITDs) using the same QIAseq RNAscan
chemistry. In the verification study, this next-generation
sequencing (NGS) assay was performed in 111 sarcoma
formalin-fixed, paraffin-embedded (FFPE) and cytology
samples (86 fusion positive and 25 fusion negative). The NGS
assay results were confirmed by RT-PCR and FISH tests. The
overall accuracy of the NGS assay was 95.5%. No targeted gene
fusions were detected in 20 negative control samples (100%
specificity), A total of 1,505 clinical cases were processed using

the SeekFusion algorithm. An IRB request was submitted and
approved to share the clinically reported gene fusions.

RESULTS

Accuracy and Sensitivity-Based
Performance
The accuracy of SeekFusion was highest among the benchmarked
tools, followed by JAFFA-hybrid, STAR-Fusion and TOPHAT-
Fusion (Figure 4A). True positive rate was measured as a
surrogate of clinical utility and SeekFusion consistently
performed best among the tools at all levels of read support
cut-off (Figure 4B). Read support cut-off is commonly applied to
fusion detection algorithms for reducing false positive rate and
improving accuracy (Liu et al., 2016). Read cut-offs for calling a
fusion were assessed for all tools at levels of 1, 2, 3, 4, 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100 supporting reads, and accuracy and
true-positive rates were calculated. Intuitively if an algorithm
consistently reports gene fusions with fewer reads supporting the
event, a higher read cut-off will result in a lower accuracy and true
positive rate. JAFFA hybrid was ranked second, followed by
STAR-Fusion; however, both JAFFA and STAR-Fusion
produced higher numbers of calls beyond the known fusion
events. These calls were closely examined and are documented
in Supplementary File S1. Manual curation was performed, and
the extra calls were classified as false positives; all these calls were
due to homology, low complexity, or identified with very low
frequency (Supplementary Table S5). Tophat Fusion performed
the worst, with a high rate of false negatives. SeekFusion was the
only tool observed to be 100% concordant with the expected
positive gene fusions whereas STAR-Fusion, JAFFA-Hybrid and
TOPHAT-Fusion detected 83, 77 and 1% respectively.

Levels of Read Support for Detected
Fusions
The number of gene fusion-supporting reads detected by the four
tools was assessed for the true positive gene fusions. Deduped and
trimmed FASTQs were utilized in the analysis since only
SeekFusion demonstrated the ability to successfully detect the
true positive fusions from raw FASTQs. SeekFusion reported
more gene fusion supporting reads than the other tools in 83% of
cases (Figure 5). SeekFusion was followed by JAFFA, STAR-
Fusion and Tophat Fusion for the number of fusion
supporting reads.

MAPE and SMAPE are widely used measures of forecast
accuracy; they aid in assessing accuracy based on percentage
errors from the actual. MAPE (de Myttenaere et al., 2016) and
SMAPE (Tofallis, 2015) values indicate that SeekFusion
performed the best in terms of observed to expected gene
fusion-supporting reads amongst the four tools (Table 3). A
Wilcoxon test (Wilcoxon, 1945) on the SMAPE values between
SeekFusion and other tools supported the hypothesis that
SeekFusion retrieved the highest proportion of known fusion-
supporting reads in the in-silico samples (Table 3). Each tool
considered has a different method of fusion transcript
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identification and these account for differences in levels of read
support.

Computational Time Requirements and
Peak Memory Utilization
In addition to analytical performance, clinical bioinformatics
pipelines are required to perform in a time-efficient manner to
maintain necessary assay turnaround time. Benchmarking of
runtimes was performed to assess the suitability of the
algorithms for real-world clinical use. The single in-silico
sample was excluded from the benchmarking since it does not

represent a true patient sample. For both Analysis 1, JAFFA
exhibited time-requirements that exceeded all other tools
(Figure 6). The remaining three tools were comparable in
their runtimes and were all considered amenable to routine
clinical use, with STAR-Fusion performing most favorably in
terms of time-requirements alone. In Analysis 2 due to scalability
challenges posed by JAFFA-hybrid mode, analysis was performed
in JAFFA-Direct mode and it was found that JAFFA-Direct mode
was most favorable in terms of time-requirements alone.

Peak memory utilization of the individual tools benchmarked
were assessed. The maximum input memory for each of the
pipelines were capped at 180 GB. For each sample, the maximum

FIGURE 4 | (A) Accuracy of the tools was assessed for the tools JAFFA, STAR-Fusion, Tophat Fusion and SeekFusion at varying read support thresholds.
SeekFusion demonstrated highest accuracy in detecting the gene fusions at all levels of read support. The median accuracy of SeekFusion was 82% followed by JAFFA-
Hybrid at 60%, STAR-Fusion at 39% and Tophat-Fusion at 20% for Mode1. SeekFusion was the only pipeline that demonstrated high accuracy in detecting fusions from
raw FASTQs. (B) True Positive Rate of the tools was assessed for the tools JAFFA, STAR-Fusion, Tophat Fusion and SeekFusion at varying read support
thresholds. SeekFusion demonstrated the highest sensitivity in detecting the gene fusions at all levels of read support. For the deduped and trimmed FASTQs, we
observed that the median true positive rate of SeekFusion was 89% followed by STAR-Fusion at 69% and JAFFA-Hybrid at 65%. Tophat Fusion performed least
favorably among the tools assessed with a median true positive rate of 1%. SeekFusion was the only tool that successfully detected true positives in the raw FASTQs.
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memory used by the tool is used for calculating a per tool median
memory utilization for analysis 1 and analysis 2. The median is
rounded to the nearest GB. JAFFA utilized the most memory with
a median memory utilization of 171 GB in analysis 1 and 172 GB
in analysis 2. SeekFusion peaked at a median memory of 58 GB in
analysis 1 and 64 GB in analysis 2, with CAP3 assembly being the
most memory consuming module in the SeekFusion pipeline.
STAR-Fusion peaked at a median memory of 30 GB in analysis 1
and 34 GB in analysis 2. Tophat-Fusion used the least memory;
with peak of median memory in analysis 1 and analysis 2 of 2 GB.

Taken together, while considering high accuracy, high true
positive rate, ease of installation, ease of usage in a clinical setting
and turnaround time for the pipeline, SeekFusion was identified
as the method for use of clinical assay development. Neurological
oncology assay and sarcoma assay were developed, verified and
approved as detailed in the Methods, Clinical Testing On
Neurological Oncology and Sarcoma Samples section.

Clinical Testing Using Neurological and
Oncology Assays
Of the 2,979 cases tested clinically using the neurological
oncology assay, 569 cases were reported with clinically

relevant gene fusions after careful variant review and
orthogonal confirmation using RT-PCR (Figure 7A). Out of
the 1,505 cases tested clinically using the sarcoma assay, 476
cases were reported (Figure 7B).

In the neurological oncology assay, EGFRvIII was the most
commonly found rearrangement, 195 out of 2,979 patients tested
were identified with this rearrangement. EGFRvIII has been
established to be present in up to 28–30% of the glioblastoma
cells and constitutes to be a therapeutic target (Rutkowska et al.,
2019). KIAA1549-BRAF was identified in 120 patients and this
rearrangement has been established to be frequently found in
pilocytic astrocytoma (Chen et al., 2019). In addition, our pipeline
picked up several established fusions related to glioblastoma such
as FGFR3-TACC3 and PTPRZ1-MET. Confirming the presence
of NTRK gene fusions can guide treatment of the solid tumors
(Filippi et al., 2021). Using our SeekFusion method on this assay,
we reported NTRK gene fusions for 46 cases.

In the sarcoma assay, EWSR1 was the most commonly
rearranged gene in our case series, with 3′ partners including
FLI1, ERG, WT1, CREB1, ATF, PBX3, CREB3L1, TFCP, NR4A3,
NFATC2, POU5F1, DDIT3, CREM, PATZ1, and COLCA2 in a
wide variety of tumor types. SS18-SSX1 was reported in 32
synovial sarcoma cases. PAX3 was the 5′ fusion partner in 29
cases with 3′ partners being FOXO1 fusions identified in alveolar
rhabdomyosarcoma cases, MAML3 and NCOA1 fusions in two
different biphenotypic sinonasal sarcoma cases.

Novel Fusion Discovery
As described previously the assay chemistry is gene-partner
agnostic, enabling identification of novel gene fusions, and
many novel fusions were detected in the clinical patient
cohort. We have summarized all the neurological cancer and
sarcoma gene fusions identified by our method in the
Supplementary Table S7. We present two cases here in detail.

Case 1 is a 45-year-old male who presented with a lower left
extremity mass suggestive of a low-grade mesenchymal
neoplasm. By immunohistochemistry (IHC) the neoplastic
cells were focally positive for desmin, epithelial membrane
antigen and STAT6 and showed limited expression of TRK.
ALK, OSCAR keratin and TLE1 were negative. Histologically
the neoplasm was a very unusual appearing, multicystic
proliferation of rather bland small round epithelioid cells, in
areas showing the presence of an apparent second cell population,
consisting of flattened cells with more abundant eosinophilic
cytoplasm. This morphologic appearance was suggestive of at
some level an adnexal lesion however a variety of epithelial
markers are essentially negative. It also appeared to be related
to angiomatoid fibrous histiocytoma although the morphologic
features of this lesion are atypical and although it showed very
limited coexpression of desmin and EMA it was negative for the
EWSR1 and FUS gene fusions that characterize this tumor. Based
on the very bland morphology of this lesion and the extremely
low mitotic rate it is believed that the lesion is either entirely
benign or at most has some limited capacity for local recurrence.
NGS testing identified a novel TFG-ZBTB10 fusion (Figure 8A).
The specific fusion TFG-ZBTB10 has not been described as a
recurrent oncogenic event. However, both genes have been

FIGURE 5 | The gene fusion read support in log scale for each fusion
detected by SeekFusion, STAR-Fusion, Tophat Fusion and JAFFA. In 83% of
cases, SeekFusion demonstrated the highest read support amongst the
algorithms tested.

TABLE 3 |MAPE and SMAPE values for the 4 tools and the p-values based on the
Wilcoxon test on SMAPE values between SeekFusion and other tools.

Tool MAPE SMAPE p-value from Wilcoxon
test on SMAPE

values between SeekFusion
and other tools

SeekFusion 0.21077 0.12887 Not applicable
STAR-fusion 0.78855 0.67441 1.490116e-08
TOPHAT-fusion 1 1 1.490116e-08
JAFFA hybrid 0.54454 0.47727 0.0009347796
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involved in fusion events with several other partners. TFG
(Trafficking for Endoplasmic Reticulum to Golgi Regulator)
has been reported as a 5′ partner in several fusions genes in
acute leukemias, sarcomas and carcinomas. In contrast, ZBTB10
(Zinc Finger and BTB Domain-Containing Protein 10), which
encodes for a zinc finger protein, has been found in isolated
fusion events with other partner genes in breast and colonic
adenocarcinomas.

Case 2 is a 23-year-old male who presented with a 14 × 4.8 ×
7.8 cm right chest mass which was eroding the underlying
clavicle. Microscopically, this is a spindle cell neoplasm
showing a whorling, fascicular growth pattern with scattered
chronic inflammatory cells and foci of hyalinized fibrosis. The
somewhat enlarged nuclei raise concern for the possibility of a
low-grade sarcoma, but they maintain a rather uniform
appearance and lack significant atypia. IHC studies show the
tumor cells to be positive for FLI-1 and negative for S100 protein,
SOX10, desmin, myogenin, WT1, SMA, CD34 and pan-
cytokeratin. Given these findings, the differential diagnosis
included follicular dendritic sarcoma and angiomatoid fibrous
histiocytoma. Additional stains performed locally showed the
cells to be negative for CD31, CD35 and CD21. NGS testing
revealed a novel RRFIP1-ALK gene fusion (Figure 8B). ALK
fusions have been identified in a variety of neoplasms, including
inflammatory myofibroblastic tumor, many subtypes of
lymphomas and leukemias, adenocarcinomas, benign fibrous
histiocytoma, and several other tumors. LRRFIP1 encodes the
leucine-rich repeat flightless-interacting protein 1 (FLI-1
interacting protein), a DNA binding transcriptional repressor
and may regulate expression of TNF, EGFR and PDGFA.
Additionally, it may regulate smooth muscle cell proliferation

following arterial damage through PDGFA repression.
Previously, an LRRFIP1-MET fusion was identified in an
atypical Spitz tumor (PMID: 26013381). There is also another
report of an LRRFIP1-FGFR1 fusion in a myeloid neoplasm
(PMID: 19369959). While the LRRFIP1-ALK gene fusion
observed in this case has not been previously reported in the
literature, tumors with ALK fusions have been shown to respond
to ALK-inhibitor therapies. Given the histologic findings, it was
felt that the tumor was within the spectrum of an inflammatory
myofibroblastic tumor.

DISCUSSION

We have developed a novel bioinformatics pipeline to enable
accurate and precise gene fusion detection for commonly used
RNA UMI-based amplicon NGS assays. A combination of
traditional alignment and de-novo assembly-based approaches
enables SeekFusion to increase accuracy of fusion calling over
other published and widely used gene fusion-calling algorithms,
while maintaining reasonable computational expense. We have
demonstrated that SeekFusion exhibits analytical sensitivity with
minimal false positive calls and produces higher read support per
gene fusion call when compared to other benchmarked
bioinformatics tools. Furthermore, SeekFusion is computationally
efficient and capable of facilitating realistic turnaround times in a
clinical setting. The bioinformatics pipeline and quality check
turnaround times are less than a day for the neurological oncology
assay and the sarcoma assays mentioned in our study, which enables
an analytic time of 14 days for the assay, from sample collection, until
clinical report.

FIGURE6 | Pipeline completion time inminutes for the 4 tools. For Analysis 1, STAR-Fusion was the fastest among the 4 tools withmedian completion time of 6 min
followed by Tophat Fusion at 20 min, SeekFusion at 45 min and JAFFA-Hybrid at 196 min. For Analysis 2, STAR-Fusion had a median completion time of 29 min,
SeekFusion had a median completion time of 36 min, Tophat-Fusion had a median completion time of 53 min and JAFFA-Hybrid exhibited scalability issues withe
pipeline failing due to memory issues after running for over 24 h (so the data was capped at 400 min for JAFFA Hybrid in the raw FASTQmode). To circumvent the
scalability issues, analysis in direct mode of JAFFA was performed and this mode demonstrated the fastest median completion time of 20 min.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 73905411

Balan et al. SeekFusion Fusion Transcript Detection Pipeline

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Although STAR-Fusion, JAFFA-Hybrid and TOPHAT-
Fusion have previously been benchmarked to perform
adequately for gene fusion detection using standard RNA-Seq
assays (Haas et al., 2019), our study demonstrates these tools lack
in performance for RNA UMI-based amplicon NGS assays.
SeekFusion provides a tailored solution capable of sensitive
and specific fusion gene detection from commonly used assays
such as QIAseq RNAscan or Archer FusionPlex, thus making it
widely applicable for clinical use. SeekFusion pipeline’s
applicability to routine clinical use is further aided by its
DOCKER-based deployment. Despite the pipeline’s complex
multi-step operation, this packaging is compatible with a wide
range of deployment systems including high performance clusters
and cloud computing platforms. The implementation conceals
the minutiae of the pipeline architecture from end-users and

ensures ease of configuration with limited requirements for
computational expertise.

In terms of computational run-time, all tested algorithms
performed at a level that is amenable to clinical turnaround
times, with the possible exception of JAFFA, which demonstrated
obvious scalability issues and required as much as 6 hours per
sample to complete a single analysis. STAR-Fusion, Tophat-
Fusion and SeekFusion performed similarly, although STAR-
Fusion showed overall lower run-times than the other tools.
Considered in totality, however, the overall performance
characteristics of SeekFusion combined with clinically
favorable run-times demonstrate it to be the optimal solution
for fusion transcript identification.

SeekFusion pipeline’s use of common output file formats
represent another advantage for its implementation. Most gene

FIGURE 7 | (A)Clinically reported gene fusions in neurological oncology cases indicating frequency of common occurring events in the tested cohort. It is observed
that the EGFRvIII is the most observed event followed by the KIAA1549-BRAF and the FGFR3-TACC3 fusion. (B) Clinically reported gene fusions in sarcoma assay
indicating frequency of common occurring events in the tested cohort. EWSR1 related fusions are the most commonly observed in our tested cohort.
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fusion calling algorithms utilize arbitrary formats which present
compatibility issues with downstream tools. The use of a standard
VCF output for candidate events enables more seamless
integration with existing tools and workflows. The generation
of an IGV session file further facilitates the utilization of
SeekFusion’s outputs with common downstream components.

The ability to readily visualize the level of support and alignment
quality for fusion-supporting reads is a key functionality. The
visualization functionality is currently unavailable in the other
tested gene fusion calling software and allows end-users to
visually judge the quality of the supporting reads and infer
confidence of a gene fusion call.

FIGURE 8 | (A) Case 1 showing the reads spanning the TFG-ZBTB10 fusion. (B) Case 2 showing spanning reads for the LRRFIP1-ALK fusion.
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A limitation of the previously published tools profiled in this
study, beyond core performance metrics, is the lack of ability
to detect clinically relevant single gene events
(Supplementary Table S4), such as the EGFR vIII
transcript variant that is a relatively frequent event in
glioblastomas (An et al., 2018). The ability of SeekFusion
to detect aberrant single-gene events expands its clinical
utility and offers additional advantages over pre-existing
algorithms. Customization of filter settings in the
SeekFusion pipeline enables the inclusion of specific
single gene events as required by clinical end-users, while
maintaining a low rate of false positives by excluding normal
transcript variants. Furthermore, we have demonstrated
SeekFusion’s ability to detect novel fusions leveraging the
gene-partner agnostic Qiaseq RNA, or similar chemistry,
further evidencing its clinical utility. It should be noted that
SeekFusion has been tailored to utilize the outputs from
common PCR and UMI-based RNA assays such as the
Qiaseq assay. It is therefore not likely to natively
generalize to alternative, clinically utilized, capture-based
methods. While these alternative approaches may be
fundamentally similar, further customization and
benchmarking will be required to assess the potential
applicability of SeekFusion to other chemistries and
represents a foundation for future development.

A potential limitation of our study was the relatively small
number of clinical samples that were available for initial
benchmarking. This reflected the difficulties in obtaining
broader research consent, which we overcame by
supplementing real clinical samples with oligonucleotide
spike-ins and in-silico simulated data. Despite the
diversity of the test data utilized, SeekFusion
demonstrated high analytical sensitivity and specificity
across all datatypes when compared to other available
tools, further supporting SeekFusion pipeline’s accuracy
and versatility. SeekFusion pipeline’s packaging allows it
to be installed and deployed in a clinical setting with
minimal efforts. The pipeline enables customization of
thresholds, tools, and settings through a configuration
file. The setup of SeekFusion for another clinical assay is
easily enabled through simple user configuration, as
mentioned in the readme instructions in https://hub.
docker.com/repository/docker/jagadhesh89/seekfusion. To
validate SeekFusion and establish analytical sensitivity
and specificity for a similar clinical assay, it is
recommended to run the pipeline on a robust set of
known positives and negatives, including positive in-silico
controls and a positive control with spiked in
oligonucleotides.

In summary, SeekFusion represents an accurate, time-efficient
and versatile solution for the clinical detection of fusion
transcripts from common RNA UMI-based amplicon NGS
assays. It is our hope that the tool’s public availability and
cross-platform capabilities will enable ready deployment and
facilitate accurate gene fusion identification in a range of
clinical laboratory and disease settings.
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