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Low-cost genome-wide single-nucleotide polymorphisms (SNPs) are routinely used in
animal breeding programs. Compared to SNP arrays, the use of whole-genome sequence
data generated by the next-generation sequencing technologies (NGS) has great potential
in livestock populations. However, sequencing a large number of animals to exploit the full
potential of whole-genome sequence data is not feasible. Thus, novel strategies are
required for the allocation of sequencing resources in genotyped livestock populations
such that the entire population can be imputed, maximizing the efficiency of whole genome
sequencing budgets. We present two applications of linear programming for the efficient
allocation of sequencing resources. The first application is to identify the minimum number
of animals for sequencing subject to the criterion that each haplotype in the population is
contained in at least one of the animals selected for sequencing. The second application is
the selection of animals whose haplotypes include the largest possible proportion of
common haplotypes present in the population, assuming a limited sequencing budget.
Both applications are available in an open source program LPChoose. In both applications,
LPChoose has similar or better performance than some other methods suggesting that
linear programming methods offer great potential for the efficient allocation of sequencing
resources. The utility of these methods can be increased through the development of
improved heuristics.
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1 INTRODUCTION

The discovery of genome-wide single-nucleotide polymorphisms (SNPs) and effective ways to assay
them has revolutionized genetic analyses of quantitative traits in animal breeding (VanRaden, 2008;
Hayes et al., 2009; VanRaden et al., 2009; Habier et al., 2010; Wolc et al., 2012). In conventional
breeding programs, low-cost SNP array data are routinely used in genomic selection to estimate
breeding values. Compared to SNP arrays, the use of whole-genome sequence data generated by
next-generation sequencing technologies (NGS) has great potential in livestock populations for
causal mutation detection (Daetwyler et al., 2014) in genome-wide association studies and more
stable or accurate prediction of breeding values in genomic selection (Meuwissen and Goddard,
2010).

As sequencing is expensive, there is considerable interest in extracting as much information as
possible by sequencing a limited number of animals and then imputing to other animals. Some
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strategies for allocating limited sequencing resources in
genotyped livestock populations require that certain key
individuals be sequenced at high coverage (Druet et al., 2014)
while others consider sequencing a large number of animals at
lower coverage (VanRaden et al., 2015; Li et al., 2011). Sequencing
a large number of animals at low coverage offers certain
advantages; in VanRaden et al. (2015), the authors comment
on the improvement in genotype imputation attained through
increasing the number of animals sequenced at low coverage, and
in Li et al. (2011), the authors point out the benefits of sequencing
many individuals at low coverage in complex trait association
studies. The methods we present in this paper are better suited for
selecting animals to be sequenced when selecting a large number
of animals at low coverage.

The choice of which animals to sequence has been studied
from the perspective of maximizing the efficiency of whole
genome sequencing experiments. To this end, in Bickhart
et al. (2016), the authors discuss the problem of finding a
subset of animals of limited size which covers all of the
haplotypes present in a given population with a frequency
above a predefined threshold. The selection of animals for
sequencing based on haplotypes and their frequencies has also
been extensively discussed in Butty et al. (2019). The methods we
will present for the selection of animals assume that a low-density
haplotype library has been constructed, and that low-density
haplotype information on all animals is available. We will not
make use of pedigree information (Ros-Freixedes et al., 2020), or
discuss overall imputation accuracy (Gonen et al., 2017; Ros-
Freixedes et al., 2017). We will however assume that in order to
recover through imputation a given haplotype in any animal, at
least one animal containing that haplotype must be sequenced.
This requirement imposes a number of constraints to be
simultaneously satisfied.

Selecting the best set of animals in a population capable of
satisfying certain constraints is an optimization problem in a
space whose dimension is equal to the total number of animals in
the population. In practical applications the optimization must be
performed for tens of thousands of animals subject to tens of
thousands of constraints. Despite the large dimension of the
search space, and the large number of constraints, the
optimization problem we are trying to solve here can be
addressed through the use of a well-established set of
techniques known as linear programming [for a review see
(Luenberger and Ye, 2015)]. Linear programming has been
previously applied in animal and plant breeding to optimize
breeding decisions (Diaz et al., 1999; Moeinizade et al., 2019), but
not to the allocation of sequencing resources. In this paper, we
will study the application of linear programming to the allocation
of sequencing resources to address two different questions which
may arise in breeding programs.

The first question is to determine the minimum number of
animals needed to permit sequence imputation into all other
members of the population without loss of haplotype diversity,
and then to identify these animals. If a subset of animals which
contains all the haplotypes in the population can be identified,
then the animals in this subset can be considered to be a starting
point for sequencing to eventually permit imputation into the

entire population. In order to minimize overall costs, we will
attempt to find the smallest subset of animals with this property.

In practice, however, even after the smallest subset of such
animals has been identified, it may not be possible to sequence all
the animals identified in this manner due to budget constraints. It
may then become necessary to choose a limited subset of animals
carrying haplotypes whichmay be considered to be representative
of the population on the basis of being more frequent. Identifying
this limited subset of animals is the second question which will be
addressed in this paper. The objectives of this paper are to study
the use of linear programming models to address all of the
questions described above, and to compare the performance of
linear programming methods with previously published
methods.

We will describe in detail the application of our linear
programming based method, LPChoose, and also compare the
numerical results obtained from LPChoose to several approaches
including IWS (Bickhart et al., 2016; Butty et al., 2019), AHAP
(Druet et al., 2014; Bickhart et al., 2016) and AlphaSeqOpt
(Gonen et al., 2017). This numerical comparison between
the results obtained by different methods is completely
based on observed haplotype frequencies, we do not make
use of ancestral haplotype frequencies or haplotypes
frequencies from databases in our selection criteria for
animals to sequence. We will also explain how some key
criteria of the HSH and GDI schemes in Butty et al. (2019)
and the IWS scheme in Bickhart et al. (2016) for the selection
of individuals can be understood in the language of linear
programming. Two important questions related to
imputation, haplotype phasing and resolution, which are
addressed in Gonen et al. (2017), and in Ros-Freixedes
et al. (2017), will not be discussed here.

2 METHODS

We now establish some notation which will be used throughout
this paper. For each animal we associate an indicator variable xj
such that xj ∈ (0, 1) and j ∈ (1, 2, . . ., n) where n is the total
number of animals. xj � 1(0) means that the animal j is selected
(not selected) for sequencing.We next introduce binary constants
aij where i ∈ (1, 2, . . ., p) and p is the total number of unique
haplotypes. aij � 1(0) if animal j carries haplotype i (or not). Since
we are solving systems of inequalities in which the variables are
binary valued, we actually work within the framework of integer
linear programming, which is more restricted than linear
programming.

The first application of integer linear programming we
consider is to identify the minimum number of animals for
sequencing while meeting the criteria that each haplotype is
contained in at least one of the animals selected for
sequencing. If haplotype i is carried in at least one animal in
the population, then we require that∑n

j�1aijxj ≥ 1. This condition
can be satisfied only if xj � 1 for at least one value of 1 ≤ j ≤ n. A
similar constraint must hold separately for all i ∈ 1, 2, . . ., p.

In order to minimize the number of animals to be sequenced,
we additionally require z1 � ∑n

j�1xj, where z1 is the number of
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selected animals, to be as small as possible. These inequalities can
be collectively written as.

minimize z1 � ∑
n

j�1 xj, xj ∈ 0, 1 (1)

subject to the constraints ∑n
j�1 aijxj ≥ 1, i � 1, 2, 3,/ , p

(2)

Equation 1 is the objective function tominimize the total number
of selected animals. Equation 2 is the set of constraints which
ensures that each haplotype is present in at least one of the
animals selected for sequencing.

The objective function and the constraints can also be written
in matrix notation as follows.

minimize z1 � 1Tx, (3)

subject to Ax ≥ 1 (4)

where A is the matrix of values aij and x denotes the vector of
xi values. This system of inequalities can be solved by
integer linear programming. The solution for x will
contain some values equal to zero and others equal to one.
The xj which are equal to 1 correspond to the animals which
should be sequenced.

The second question, to select a fixed number of animals with
most common haplotypes, can also be addressed using integer
linear programming. In order to prioritize animals with more
frequent haplotypes we define a vector with elements hi with 1 ≤
i ≤ p whose ith element is the frequency of the ith haplotype. The
vector h is then used to define another vector c � htA. The
number of elements of c is equal to the number of animals. Values
of c are larger for animals which carry many more frequent
haplotypes. Thus the values of c will be used as a guide to select
animals when sequencing resources are limited. In addition, it is
important to ensure that the same haplotype is not sequenced in a
large number of different animals so as to maximize the haplotype
diversity in the animals selected for sequencing. All these different
requirements can be summarized in the following set of
inequalities.

maximize z2 � ∑n

j�1 cjxj, xj ∈ 0, 1 (5)

subject to ∑n
j�1 xj ≤ nmax (6)

∑n
j�1 aijxj ≤ rmax i � 1, 2, 3,/ , p (7)

Equation 5 is the objective function to maximize the number of
more frequent haplotypes represented by the selected animals.
Equation 6 is the constraint to set the maximum number of
animals to be sequenced to be equal to nmax. Equation 7 is the
constraint to ensure that each haplotype covered is at the most
covered by rmax animals, where rmax should be a positive integer
≥ 1 and is chosen to be considerably smaller than nmax. Ideally,
the objective function should be maximized with rmax chosen
to be small and the maximization performed in one step. This
would permit the optimal selection of multiple animals
without introducing any approximations. In our data
analysis, for reasons which will soon be discussed, we will
introduce a number of additional approximations in the
solution to Eqs 5–7.

The form of Eqs 5–7 are generic in a linear programming
context, and in a broader context the coefficients cj in Eq. 5 may
be freely chosen, as long as the coefficients are positive. With the
coefficients chosen as described in Butty et al. (2019), it is possible
to prioritize the selection of animals in the IWS scheme (Bickhart
et al., 2016). The highly segregating haplotype (HSH) scheme
mentioned in Butty et al. (2019) uses coefficients similar to the
ones we suggest, but with some additional multiplicative factors
which are introduced to avoid including the same haplotype in
multiple animals. In our framework, this is achieved by the choice
of rmax. One important issue addressed in Bickhart et al. (2016),
how to select the smallest number of samples needed to sequence
all haplotypes above a given frequency threshold, can be
addressed within the framework of linear programming by
solving Eqs 3, 4 after discarding the rows corresponding to
the low frequency haplotypes. If no rows, or very few rows are
discarded in Eqs 3, 4, then animals containing rare haplotypes
can be targeted, which is one of the objectives of the optimized
GDI method discussed in Butty et al. (2019). Thus many of the
main key ideas for the prioritization of animals in Bickhart et al.
(2016) and Butty et al. (2019) can be incorporated into a Linear
Programming framework.

Linear programming problems described above cannot be
solved analytically, however branch and bound methods (Land
and Doig, 1960) are guaranteed to converge to the global
optimum. In practice, for reasons which will be discussed
later, the convergence can be very slow without the use of
approximations. It turns out that for the first application Eqs
1, 2 can be solved rapidly and exactly. No approximations are
needed and the identification of which animals to sequence with a
view to include all haplotypes is done in LPChoose in a single
step. In Gonen et al. (2017) the authors also comment on the
possibility of determining which animals are needed to cover all
haplotypes, but through the solution of a system of equations in
multiple stages.

In the case of the second application, it turns out that
convergence in LPChoose is very slow if exact solutions are
sought. In order to facilitate convergence in the second
application we will set the value of rmax to 2 and instead of
selecting all nmax animals at once, we will first select 2 animals
(i.e., nmax � 2). Once the first two animals have been identified,
these animals and all the haplotypes present in them are removed.
Then the optimization in Eqs 5–7 is repeated but with the
objective function in Eq. 5 suitably modified to reflect the
absence of the first two animals and also the haplotypes that
they carry. This procedure can be carried out until the desired
number of animals has been found. This approach amounts to
breaking up the larger optimization, which cannot be solved
exactly in reasonable time, into a smaller number of problems
each of which can be solved exactly and quickly by linear
programming, and then combining the results.

In Bickhart et al. (2016), both the AHAP selection schemes,
AHAP1 and AHAP2, use the same weights as LPChoose, those in
Eq. 5, but consider only homozygous haplotypes. Furthermore, in
the AHAP1 scheme, there is no updating of weights to take into
account animals already selected. We will present results with no
updating of weights, as in AHAP1, but using both homozygotes
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and heterozygotes. Our results for AHAP1 will use nmax � 1
repeatedly until the desired number of animals is obtained. Even
though the AHAP2 scheme in Bickhart et al. (2016) uses the same
weights and updating as LPChoose, there is an important
difference between LPChoose and AHAP2 as implemented in
Bickhart et al. (2016). LPChoose is able to select multiple animals
at a time in contrast to the AHAP2 scheme in Bickhart et al.
(2016).

In the results we present for IWS, we will prioritize the animals
using the IWS weighting scheme in Bickhart et al. (2016) and
Butty et al. (2019), and select a single animal at a time, in order to
facilitate a comparison with the IWS implementation in Bickhart
et al. (2016). Multiple rounds of selection are performed until the
desired number of animals is obtained.

In order to compare the different methods described, genotype
data for five different scenarios were simulated following the
general scheme for simulating artificial populations in Gonen
et al. (2017). The number of generations considered in these 5
scenarios are 5, 10, 15, 30, or 50. These scenarios resemble
modern cattle populations. The genome of 10,000 segregating
loci on 10 chromosomes was simulated using the “cattle genome”
option in AlphaSimR (Gaynor et al., 2020). A quantitative trait
controlled by 150 QTL of effects sampled from standard normal
distributions distributed equally on 10 chromosomes was
simulated. First, founders of 1,000 cattle of equal sex ratio
were generated. At each generation, the best 25 males were
selected as sires on the basis of their highest breeding value
and mated to all 500 females as dams to produce next generations
with 1,000 cattle of equal sex ratio. In our analysis, 10 replicates
were simulated for each of the five scenarios. From these
simulations, all individuals had haplotypes for 10,000 SNPs
distributed equally across the 10 chromosomes. In each
population, haplotype blocks of length 100 SNPs were
obtained across 10 chromosomes. A mismatch of up to 10%
was used to ensure that haplotypes with small differences were
considered as identical.

In the results, the selection of a fixed number animals will also
be made after the exclusion of haplotypes with a frequency of less
than 1%, similar to the strategy adopted in Su et al. (2014). For the
rest of the manuscript, haplotypes which are retained after this
exclusion will be referred to as common haplotypes. The results in
Bickhart et al. (2016) are also based on the exclusion of low
frequency haplotypes but with a more drastic restriction on
haplotype frequency than in Su et al. (2014). A brief
description of the simulation scenarios is presented in Table 1.
We will also briefly discuss results in which the number of

animals in Table 1 remains the same but the number of
haplotypes is considerably increased. An open-source, publicly
available Julia package called LPChoose (https://github.com/
reworkhow/LPChoose.jl) which makes use of the GNU Linear
Programming Kit (GLPK) has been developed. For the sake of the
reproducibility of our results, we make no use whatsoever of any
proprietary solvers for linear programming.

3 RESULTS

The minimum numbers of animals identified in LPChoose,
AlphaSeqOpt, IWS, and AHAP to cover all unique
haploptypes in five populations are shown in Table 2. The
results for AlphaSeqOpt in the third column of Table 2 were
obtained from repeated runs of AlphaSeqOpt with varying
numbers of focal animals as defined in Gonen et al. (2017) to
be selected. In the case of IWS and AHAP, animals were selected
one at a time until all haplotypes were covered. For these
methods, the selection of successive animals was done using
the weights discussed earlier. The minimum numbers of
animals identified by LPChoose were consistently smaller than
those fromAlphaSeqOpt, IWS, and AHAP. The results of Table 2
suggest that the difference between LPChoose and the other
methods in the smallest number of animals increases as the
size of the population increases.

We emphasize that the results in column 2 ofTable 2 obtained
from LPChoose are obtained without any approximations, and
are thus equal to the theoretically lowest values attainable for
this kind of problem. Furthermore, when LPChoose is used to
select the minimum number of animals to cover all haplotypes,
some haplotypes may be covered by multiple animals. This
introduces a certain level of redundancy in sequencing which
may be desirable when certain haplotypes should be covered

TABLE 1 | Simulation scenarios.

Scenario Total
number of animals

Number
of unique haplotypes

Number of unique
common haplotypes

1 6,000 27,399 ± 332 2,638 ± 42
2 11,000 37,922 ± 758 2,376 ± 50
3 16,000 44,591 ± 826 2,216 ± 49
4 31,000 56,036 ± 1,313 1,959 ± 54
5 51,000 61,418 ± 2,023 1,815 ± 44

TABLE 2 |Minimum number of animals identified representing all haplotypes in the
population.

Scenario Minimum number of animals (mean ± SD)

LPChoose AlphaSeqOpt IWS AHAP

1 4,086 ± 13 4,988 ± 30 4,154 ± 30 5,998 ± 2
2 6,663 ± 18 8,563 ± 51 6,802 ± 84 10,999 ± 2
3 8,648 ± 34 11,563 ± 132 8,821 ± 75 15,998 ± 3
4 12,229 ± 86 17,506 ± 275 12,738 ± 225 30,997 ± 6
5 14,241 ± 119 21,098 ± 494 15,028 ± 356 50,999 ± 1
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more frequently for facilitating imputation (Ros-Freixedes et al.,
2017).

LPChoose, AlphaSeqOpt, IWS, and AHAP were also used to
select a fixed number of animals (100 animals) whose haplotypes
represent the maximum proportions of the total haplotypes in the
population. The results obtained are shown in Tables 3, 4. In
Table 3, the proportion of all haplotypes (with no lower limit on
haplotype frequencies) represented by 100 selected animals were
compared. In this scenario IWS performed best in terms of
haplotype coverage, followed by LPChoose. However,
independent of the method only a small proportion (0.1–0.3)
of all haplotypes were covered.

In Table 4, the proportion of common haplotypes represented
by 100 selected animals were compared. This scenario is similar
to that discussed in Bickhart et al. (2016). LPChoose performed
better than the other three methods consistently across different
populations, and the proportions of common haplotypes
identified in LPChoose were usually higher than 0.99, followed
by IWS with slightly lower proportions.

The better results obtained by using the IWS weighting
scheme in Table 3 are to be expected since IWS preferentially
selects animals with low-frequency haplotypes by assigning larger
weights to individuals containing rare haplotypes (Bickhart et al.,
2016), unlike LPChoose where more common haplotypes are
preferred. The prioritization of animals in IWS, however, can be
easily accommodated in a Linear programming framework by
changing the weights in Eq. 5.

All the results discussed so far were obtained in 10 min or less
of execution time. If the number of haplotypes is increased five
fold compared with our original simulations keeping the number
of animals unchanged, there is a five fold increase in running
times for LPChoose in application 1 and a ten fold increase for
application 2. Our earlier conclusions about the relative merits of
the different methods considered remain unchanged; for the
analyses in Table 2 and in Table 4, LPChoose still performs best.

4 DISCUSSION

In this paper, linear programming methods are used to answer
two questions for the allocation of sequencing resources, to
identify the minimum number of animals whose haplotypes
represent all the haplotypes in the population, and to choose
for sequencing a fixed number of animals whose haplotypes
represent the maximum proportion of the common haplotypes
in the population. The results from Tables 2, 4 suggest that linear
programming methods, which permit the selection of more than
one animal at a time, may still offer a number of advantages in
comparison with other methods which rely on the selection of a
single animal at a time. It is noteworthy that these improvements
were obtained using relatively straightforward approximations,
and a publicly available implementation of linear programming.

We make no explicit use of pedigree information, which may
be important in deciding which animals to sequence (Boichard,
2002; Ros-Freixedes et al., 2020). If the animals to be sequenced
should also be selected based on positions in the pedigree, then
additional requirements based on pedigree structure can be
incorporated in a Linear Programming framework.

The expected accuracy of genotype imputation has also been
used as a criterion to determine the best animals to be sequenced
(Ros-Freixedes et al., 2020; Yu et al., 2014). Genotype imputation
accuracy is expected to improve when a larger number of animals
are sequenced at lower coverage as opposed to a smaller number
of animals at high coverage (keeping the product of read depth
and number of sequenced animals fixed) (VanRaden et al., 2015).
Our results suggest that for a fixed number of animals, LPChoose
covers more haplotypes than competing methods, suggesting that
selecting animals through Linear Programming could permit a
higher level of genotype imputation accuracy.

In Bickhart et al. (2016), the authors point out that the
accuracy of imputation of rare variants is affected by the lower
limit put on haplotype frequencies and suggest the importance of

TABLE 3 | Proportion of all haplotypes represented by 100 selected animals in the population.

Scenario Proportion of all haplotypes (mean ± SD)

LPChoose AlphaSeqOpt IWS AHAP

1 0.2218 ± 0.0036 0.2052 ± 0.0048 0.2504 ± 0.0032 0.1441 ± 0.0041
2 0.1700 ± 0.0020 0.1528 ± 0.0048 0.1951 ± 0.0024 0.1007 ± 0.0024
3 0.1498 ± 0.0026 0.1319 ± 0.0047 0.1735 ± 0.0009 0.0805 ± 0.0029
4 0.1249 ± 0.0032 0.1119 ± 0.0037 0.1464 ± 0.0022 0.0584 ± 0.0024
5 0.1145 ± 0.0027 0.1084 ± 0.0036 0.1370 ± 0.0023 0.0435 ± 0.0025

TABLE 4 | Proportion of common haplotypes represented by 100 selected animals in the population.

Scenario Proportion of common haplotypes (mean ± SD)

LPChoose AlphaSeqOpt IWS AHAP

1 0.9934 ± 0.0017 0.9239 ± 0.0032 0.9917 ± 0.0017 0.8520 ± 0.0159
2 0.9911 ± 0.0028 0.9041 ± 0.0071 0.9899 ± 0.0017 0.8288 ± 0.0142
3 0.9921 ± 0.0018 0.8766 ± 0.0171 0.9875 ± 0.0032 0.7625 ± 0.0257
4 0.9899 ± 0.0021 0.8444 ± 0.0109 0.9780 ± 0.0030 0.7004 ± 0.0247
5 0.9993 ± 0.0006 0.8335 ± 0.0088 0.9600 ± 0.0061 0.6287 ± 0.0336
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including additional animals to improve the accuracy of
imputation of rare variants. In Bhati et al. (2020) as well, the
authors comment on how the inclusion of rare variants is affected
by the choice of animals sequenced. The linear programming
methods we present here can be adapted to the selection of
multiple animals with low frequency haplotypes by modifying the
right hand sides of Eqs 6, 7 to increase the values of rmax in Eq. 7
for those rows corresponding to rare haplotypes. The selection of
multiple animals with low frequency haplotypes can also be
achieved in the framework of Method 1, by increasing the
right hand side of Eq. 2 for those rows corresponding to low
frequency haplotypes.

Furthermore, if additional animals with previously known
sequence information are to be included in the set of animals
to be sequenced, these animals can be included through
additional constraints in Eq. 4. Thereafter, any additional
selection can be carried out while maximizing the information
present in the animals included by requirement.

There are some unavoidable limitations associated with the
linear programming methods which necessitate the use of
approximations discussed earlier. To understand the necessity
of approximations it is useful to use graph theory to rephrase the
first problem we address as that of finding a minimum set cover
on a bipartite graph via integer linear programming (Vazirani,
2003). The problem of finding a suitable subset of animals with
common haplotypes, can also be rephrased as a set cover problem
along with additional weighting factors. As there is no known
polynomial time algorithm for solving the set cover problem
approximations are unavoidable in large data sets. Greedy
approximations which select a single element (or animal in the
context of sequencing) at a time are relatively straightforward to
implement, but frequently do not lead to the true optimum
(Vazirani, 2003). Hence methods which rely on the selection
of more than one animal at a time, such as those we have
presented here, may lead to improved results.

To conclude, we have illustrated the use of linear
programming for optimizing the allocation of sequencing
resources. Our results suggest how linear programming can be
used to extend and improve the approximations used in Butty
et al. (2019) and Bickhart et al. (2016) to address the important
questions discussed in these papers. It is encouraging that the
superior results found by LPChoose in Tables 2, 4 were obtained
without using proprietary linear programming solvers, and
applying straightforward heuristics when necessary. The use of
more sophisticated heuristics in conjunction with proprietary
solvers could lead to additional improvements in both efficiency
and lowered running time.
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