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A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma 
is not fully established yet. This study aims to present an overview of non-malignant cells 
in the complex microenvironment of glioblastoma with detailed characterizations of their 
prognostic effects. We curate 540 gene signatures covering a total of 64 non-tumor cell 
types. Cell type-specific expression patterns are interrogated by normalized enrichment 
score across four large gene expression profiling cohorts of glioblastoma with a total 
number of 967 cases. The glioblastoma multiforms (GBMs) in each cohort are hierarchically 
clustered into negative or positive immune response classes with significantly different 
overall survival. Our results show that astrocytes, macrophages, monocytes, NKTs, and 
MSC are risk factors, while CD8 T cells, CD8 naive T cells, and plasma cells are protective 
factors. Moreover, we find that the immune system and organogenesis are uniformly 
enriched in negative immune response clusters, in contrast to the enrichment of nervous 
system in positive immune response clusters. Mesenchymal differentiation is also observed 
in the negative immune response clusters. High enrichment status of macrophages in 
negative immune response clusters is independently validated by analyzing scRNA-seq 
data from eight high-grade gliomas, revealing that negative immune response samples 
comprised 46.63 to 55.12% of macrophages, whereas positive immune response samples 
comprised only 1.70 to 8.12%, with IHC staining of samples from six short-term and six 
long-term survivors of GBMs confirming the results.
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HIGHLIGHTS

 1) A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma.
 2) Astrocytes, macrophages, monocytes, NKTs, and MSC are risk factors, while CD8 T cells, 

CD8 naive T cells, and plasma cells are protective factors.
 3) Mesenchymal differentiation is observed in the negative immune response clusters.
 4) High enrichment status of macrophages is in negative immune response clusters of glioblastomas.
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INTRODUCTION

Gliomas account for 70% of all brain tumors (Ohgaki and 
Kleihues, 2005) and are categorized into four types: Grade 
I pilocytic astrocytoma and grade II astrocytoma are low-grade 
gliomas, whereas grade III anaplastic astrocytoma and grade 
IV glioblastoma multiform (GBM) are malignant tumors 
(Kleihues et  al., 1993). The GBMs have poor prognosis with 
a median survival rate of 1 year after diagnosis and a 2-year 
survival rate of only 12.7 to 19.8% according to the 
SEER database.

Categorization of gliomas previously focused on 
histological features (Bailey and Cushing, 1927); however, 
characterization methods have shifted toward high-resolution 
molecular profiling, including identification of isocitrate 
dehydrogenase (IDH) mutation, co-deletion of chromosomal 
arms, O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, and miR-181d expression (Jiang et al., 
2016). Additionally, new stratifications have been proposed 
using gene expression profiles or specific gene mutations 
(Phillips et  al., 2006; Ceccarelli et  al., 2016), methylation 
status (Hegi et al., 2005; Shah et al., 2011), and the presence 
of neoantigens (Zhang et  al., 2019; Sun et  al., 2021). 
Numerous studies have focused on interpreting the RNA-seq 
profiles of gliomas in an attempt to elucidate their dynamics 
and mechanisms, with studies on recurrent glioblastoma 
able to distinguish comprehensive transcriptome profiling 
in the malignant progression of human gliomas (Zhao et al., 
2017) and find critical clues of MET-related mutations (Hu 
et  al., 2018) and oncogenic fusions (Bao et  al., 2014). The 
findings of these studies have markedly advanced the 
investigation of GBM and facilitated prognostic and 
therapeutic developments, but the highly heterogeneous 
nature of GBM still often leads to the failure of extensive 
treatment regimens.

The complexity of GBM components and the immune 
microenvironment has attracted significant attention in recent 
years, with categorizations based on molecular profiling revealing 
tissue similarities between proneural, proliferative, and 
mesenchymal-type gliomas, respectively (Phillips et  al., 2006). 
Certain immune components, such as tumor-associated 
macrophages (TAMs), have been identified as regulators of 
the proneural-to-mesenchymal transition (Bhat et  al., 2013) 
and contributors to immunosuppression (Gabrilovich, 2017), 
thus leading to poor prognosis. However, a comprehensive 
characterization of non-tumor cells in the niches of primary 
glioblastoma has not been fully established. Investigations into 
the tumor components and immune microenvironment would 
help unravel the cross-talk between the immune system and 
cancer cells and allow determination of therapeutic targets for 
the development of novel cancer treatments.

In this study, we  generated a comprehensive non-tumor 
cell landscape in the microenvironment of GBM by integrating 
four large-scale gene expression profiling data cohorts of primary 
glioblastoma with gene signatures covering a total of 64 
non-tumor cell types. The GBMs in each cohort are hierarchically 
clustered into negative or positive immune response classes 

with significantly different overall survival. Additionally, 
we  investigated the risk levels associated with immune cell 
types and the enrichment of Gene Ontology (GO) terms. In 
particular, we  confirmed enrichment of a negative prognostic 
factor (macrophages) in scRNA-seq data of high-grade gliomas 
and in samples from GBM patients exhibiting short-term 
survival by immunohistochemical (IHC) staining.

MATERIALS AND METHODS

Gene Expression and Clinical Data
Four cohorts of gene expression profiles of GBM tumor tissues 
were collected from public domains including Cohort 1 (Wang 
et  al., 2016; Zhang et  al., 2019), Cohort 2 (TCGA; RNA 
sequences; Cancer Genome Atlas Research, 2008), Cohort 3 
(REMBRANDT, mRNA microarray; Gusev et  al., 2018), and 
Cohort 4 (TCGA, mRNA microarray; Brennan et  al., 2013), 
respectively. Samples that were not diagnosed as GBM or 
did not include complete gene expression or clinical data 
were removed, resulting in 75, 152, 181, and 559 samples 
in Cohorts 1, 2, 3, and 4, respectively. The single-cell RNAseq 
data of eight HGGs can be accessed through Gene Expression 
Omnibus (accession: GSE103224; Yuan et  al., 2018). Tumor 
samples were obtained from 12 glioblastomas, including from 
six short-term-survival and six long-term-survival patients. 
All research protocols and ethics comply with the Declaration 
of Helsinki. Sample collection and data analyses were approved 
by the Beijing Tiantan Hospital institutional review board 
(KY 2020–093-02), and written informed consent was obtained 
from each participant.

Gene Signatures of Immune Cells
Gene signatures (n = 540) covering 64 cell types were collected 
from multiple sources (Bindea et al., 2013; Rooney et al., 2015; 
Tirosh et al., 2016; Aran et al., 2017; Charoentong et al., 2017). 
The 64 cell types were further categorized into five groups: 
hematopoietic stem cells (HSCs) and hematopoietic cells 
(lymphoid and myeloid lineage), stromal cells, and others, as 
shown in Supplementary Material 1A,B.

Generating a Normalized Enrichment Score 
for Estimating Cell-Enrichment Status
An normalized enrichment score (NES) for the Mann–Whitney–
Wilcoxon gene set test was adapted to evaluate the enrichment 
status of cells (Frattini et  al., 2018). The NES was determined 
as follows:

 NES U
mn

= −1  

 U nm
m m

T= +
+( )
−

1
2

 

where m is the number of genes in a gene set, n is the 
number of genes outside the gene set, and T is the sum of 
the ranks of the genes in the gene set (Zhang et  al., 2019).
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Given a gene signature, the gene expression data of a 
glioblastoma tumor sample were separated into two sections 
comprising genes expressed in the gene signature and the rest 
of the genes, respectively. The Wilcoxon rank-sum test was 
then applied to calculate the NES. For each cell signature, the 
NES value was calculated to quantify the probability that the 
expression of a gene in the gene signature was greater than 
the expression of a gene outside of the gene signature. The 
higher the NES value, the more likely that the cell is enriched 
in the tumor sample.

Risk Level for Gene Signatures
Cox regression (proportional hazards regression) in the R was 
applied for every gene signature in each cohort. The protective 
factor was defined when the hazard ratio of a gene signature 
was <1, and the risk factor was defined when this was >1. 
Signatures with a p ≤ 0.05 were defined as significantly associated 
with survival (addressed as prognostic signatures below), with 
only prognostic signatures used for further analysis. If all 
prognostic signatures of one cell type were either protective 
or risk factors, they were defined as consistent factors, otherwise, 
inconsistent factors.

Stratification of Glioblastoma Patients
Hierarchical clustering of GBMs was applied to z-score 
transformed NESs of these signatures using R. Euclidean distance 
and complete method were used for clustering, and heat maps 
were drawn using the R: “pheatmap.” Kaplan–Meier survival 
analysis was performed using R: “survival” and “survminer.”

Go Enrichment Analysis
Gene Set Enrichment Analysis (GSEA; Subramanian et  al., 
2005) was performed upon negative and positive immune 
response clusters using a total of 6,166 GO terms from the 
Molecular Signatures Database (MSigDB; Liberzon et al., 2011), 
including cellular component (cc), molecular function (mf), 
and biological process (bp), followed by visualization through 
cytoscape (Shannon et  al., 2003). The results are shown in 
Supplementary Material 2A-D.

Identification of Non-Transformed Cells 
From scRNA-Seq Data
For scRNA-seq data, genes expressed in less than or equal to 
10 cells were eliminated, followed by a moving average method 
(Chung et  al., 2017) to determine chromosome expression 
patterns. The number of original molecules per cell was converted 
to log2(cpm + 1). The moving average used 100 gene lengths 
as the window, and the value for the gene in the center of 
the window was considered the average expression of the 
window. We  used the Seurat package (v.3.0; Butler et  al., 2018; 
Stuart et  al., 2019) to analyze the screened data according to 
standard procedures. Amplification of chromosome 7 and loss 
of chromosome 10 were used to differentiate malignant 
(transformed) cells from non-malignant (non-transformed) cells 
(Weller et  al., 2015).

Determination of Non-Transformed Cell 
Types
Scibet (Li et  al., 2020) was used to predict the identities of 
the non-transformed cells in the scRNA-seq data. The trained 
model “30 major human cell types,”1 including 30 major human 
cell types from 42 scRNA-seq datasets, served as the reference 
for cell type identification.

Stratification of Single-Cell Gene 
Expression Samples
To determine whether a sample in the scRNA-seq data was 
positive or negative immune response, Spearman correlation 
analysis was applied between the sample in the scRNA-seq 
cohort and the samples in the four gene expression profiling 
cohorts, respectively. Only positive correlations were retained, 
and the mean value of the correlation coefficients in each 
cohort was calculated. The fold change for a sample in the 
scRNA-seq data was calculated as the mean correlation 
coefficient of the sample in the scRNA-seq data involving 
samples in the positive immune response clusters divided by 
the mean correlation coefficients of the sample in the scRNA-seq 
data involving samples in the negative immune response 
clusters. The fold changes in the correlation coefficients 
calculated for the four cohorts were multiplied to determine 
the total fold change. A total fold change >1 indicated that 
the Spearman correlation coefficient was higher in the positive 
immune response clusters, and thus, the sample in the 
scRNA-seq data was determined as positive immune response; 
otherwise, it was designated as negative immune response 
(Supplementary Material 3).

IHC Staining for Macrophage Markers
Tumor samples used for IHC staining were obtained from 
12 GBMs, including six short-term-survival and six long-
term-survival patients. The surgically removed tumor tissues 
were stored in formalin immediately after excision and 
embedded in paraffin within 3 days. IHC staining and image 
capture were performed as previously described (Hu et  al., 
2018). The primary antibody for the detection of macrophage 
marker MS4A4A was obtained from Sigma-Aldrich 
(HPA029323; St. Louis, MO, United  States), with staining 
was performed according to manufacturer instructions. The 
proportion of positive cells was counted using ImageJ software 
(v.1.52; National Institutes of Health, Bethesda, MD, 
United  States). Clinical information and IHC staining results 
are summarized in Supplementary Material 4.

Statistical Analysis
Values of p for NES distributions in negative immune response 
and positive immune response clusters were calculated using 
Student’s t-test, and those for IHC staining percentages were 
generated from the Wilcoxon test. All analyses were conducted 
in R. Values of p ≤ 0.05 were determined as statistical significance.

1 http://scibet.cancer-pku.cn/download_references.html
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RESULTS

Stratification of Glioblastomas Based on 
Cell Type-Specific Enrichment Status
Based on a total of 540 gene signatures covering 64 cell types 
(Supplementary Material 1A), we  applied the NES algorithm 
we  previously developed (Frattini et  al., 2018) to determine 
the enrichment status of each cell type, followed by filtering 
the gene signatures with enrichment status correlated with 
overall survival (prognostic signatures). The workflow for 
stratifying samples is shown in Figure  1A. Unsupervised 
hierarchical clustering stratified samples into two significantly 
different prognostic clusters among the four cohorts (p = 0.025, 
p = 0.015, p = 0.0004, and p = 0.00056 for cohort 1–4, respectively; 
Figures 1B–E; Supplementary Figures 1A–D; Table 1). Clusters 
with patients exhibiting long-term overall survival were found 
universally enriched with CD8 T cells, whereas short-term 
overall survival clusters were characterized by enrichment of 

“stromal cells,” such as mesenchymal stem cells (MSCs). Therefore, 
we designated the long- and short-term overall survival clusters 
as positive and negative immune response, respectively. 
Additionally, we discovered that the enrichment status calculated 
from different gene signatures exhibited similar and stable 
trends for CD8 naïve T cells, common lymphoid progenitors 
(CLPs), epithelial cells, HSCs, lymphoid endothelial cells, neurons, 
natural killer T cells (NKTs), and γΔT cells (Figure  1F).

The Predicted Risk and Protective 
Landscape of Non-Tumor Cells in the 
Glioblastoma Microenvironment
To understand the prognostic effect of different cell types, 
we  estimated associations between the enrichment status of 
gene signatures and overall survival through Cox regression 
analysis across four gene expression profiling cohorts. In each 
cohort, statistically significant gene signatures with a hazard 

A

B

F

C D E

FIGURE 1 | NES-based stratification of patient survival. (A) Workflow of NES-based stratification and validation of survival time. (B–E) Kaplan–Meier survival curves 
of the NIR and PIR clusters in the four cohorts (PIR, orange; NIR, green). (F) NES distribution of four gene expression profiling cohorts of tumor tissues from GBM 
patients. Cell types and cohorts are noted. NES, normalized enrichment score; NIR, negative immune response; and PIR, positive immune response.
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ratio > 1 or < 1 were defined as risk or protective factors, 
respectively. We found that risk effects consistently agreed with 
statistically significant gene signatures for given cell types, 
including activated dendritic cells (aDCs), astrocytes, class-
switched memory (CSM) B cells, epithelial cells, fibroblasts, 
macrophages, M2 macrophages, monocytes, MSCs, NKTs, and 
plasmacytoid (p)DCs. By contrast, CD8 naïve T cells, CD8 T 
cells, endothelial cells, eosinophils, megakaryocyte–erythroid 
progenitor cells, plasma cells, and regulatory T cells (Tregs) 
were consistently estimated as being protective. Additionally, 
basophils, B cells, CD8 central memory T cells, mast cells, 
multi-potent progenitor cells, memory B cells, naïve B cell, 
and T helper 1 (Th1) cells were predicted as being protective 
according to majority of gene signatures across the four cohorts, 
whereas CD4 central memory T cells, mesangial cells, and 
pericytes were predicted as a risk by most of the gene signatures. 
Interestingly, the risk and protective effects of CD8 effector 
memory T cells, DCs, myocytes, and NK cells were inconsistent 
according to the different gene signatures (Figure  2A).

Notably, we  identified inconsistencies in some estimated risk 
or protective effects predicted by the gene signatures across the 
four cohorts. The prognostic effects of enrichment status estimated 
from one gene signature for basophils, B cells, pericytes, and 
Th1 cells were inconsistent among the four cohorts (Figures 2A,B); 
however, basophils, B cells, and pericytes were more likely to 
manifest an enrichment-dependent effect on survival time, with 
basophils and B cells being protective when highly enriched 
and pericytes presenting a risk when highly enriched.

Statistically significant signatures showed consistency across 
risk levels valued from different perspective, i.e., risk level 
NES distribution, risk factor hazard ratio, and occurrence cohort 
count. Figure  2C shows the hazard ratios for cell types 
demonstrating consistent agreement in their prognostic effects 
across all corresponding signatures in at least two cohorts. 
MSCs, pDCs, CSM B cells, and CLPs were consistent risk 
factors with relatively high hazard ratios in at least two cohorts. 
Conversely, common myeloid progenitors, CD4 naïve T cells, 
plasma cells, and CD4 T cells showed hazard ratios <1, suggesting 
potentially strong protective effects (Figure  2C). Figure  2D 
shows the group count of consistent risk levels. Astrocytes, 
MSCs, monocytes, pDCs, NKTs, macrophages, M2 macrophages, 
fibroblasts, epithelial cells, CSM B cells, and aDCs were consistent 
risk factors appearing in at least two cohorts, with astrocytes 
being significantly negatively correlated with overall survival 
in all four cohorts. CD8 T cells, Tregs, plasma cells, MEPs, 
eosinophils, endothelial cells, and CD8 naïve T cells were also 
consistent risk factors, with CD8 T cells most frequently 
identified in three cohorts; however, for risk factors identified 

in only two cohorts (i.e., Tregs), more evidence is needed to 
support these findings.

Identification of Immune Dysregulation in 
the Negative Immune Response Cluster
We then performed GSEA for the four cohorts. Enrichment 
map analysis of dysregulated GO terms revealed that those 
related to the immune system, metabolism, and organogenesis 
were highly enriched in all four cohorts (Figure  3A; 
Supplementary Figures  2A–C; Supplementary Material 2). 
Specifically, GO terms related to the immune system (defense 
response, cytokines, myeloid lineage, and lymphoid lineage cell 
regulation) were enriched in negative immune response clusters, 
suggesting uniform dysregulation of the immune response in 
negative immune response clusters. Interferon (IFN)-related GO 
terms were significantly enriched in the negative immune response 
group (Figure  3B), consistent with constitutive type I  IFNs 
(IFN-α and IFN-β) facilitating glioma-related immune escape 
(Silginer et  al., 2017), unfavorable prognosis, chemotherapy 
resistance, and more aggressive immune response (Zhu et al., 2019).

Activities associated with several interleukins (ILs), including 
IL-6, IL-8, and IL-10, were enriched in negative immune 
response clusters (Figure  3C), with IL-8 expression negatively 
correlated with GBMs survival and positively correlated with 
the expression of genes associated with the glioblastoma-initiating 
cell phenotype, as well as the possibility of GBM recurrence 
(Hasan et  al., 2019). Additionally, IL-1β contributes to cancer 
cell stemness, invasiveness, and drug resistance in glioblastoma 
(Wang et  al., 2012; Yeung et  al., 2013).

Moreover, we identified macrophage activation, differentiation, 
and chemotaxis as enriched activities in negative immune 
response clusters (Figure  3D), consistent with identification 
of macrophages as risk factors. Downregulation of major 
histocompatibility complex (MHC)-I and -II molecules is 
associated with glioma migration and invasion (Zagzag et  al., 
2005), with their altered expression associated with the negative 
immune response cluster (Figure  3E).

Majority of nervous system-associated GO terms (nervous 
system organogenesis in G1, nervous system organogenesis, 
neural function and synaptic in G2, and nervous system 
organogenesis in G4) was enriched in the positive immune 
response cluster (Figure  3A; Supplementary Figures  2B,C), 
demonstrating that regulation of the nervous system was a shared 
feature in the positive immune response cluster. This agrees 
with the proneural subtype of gliomas categorized by molecular 
profiling, in that this subtype usually demonstrated tissue similarity 
with adult and fetal brain and biological processes related to 

TABLE 1 | Hierarchical clustering results for the four cohorts.

Cohort Sample Signature Cell type PIR NIR p Data source (References)

1 75 31 18 22 53 0.02499 Wang et al., 2016; Zhang et al., 2019
2 152 51 24 67 85 0.01462 Cancer Genome Atlas Research, 2008
3 181 57 24 60 121 0.0004 Gusev et al., 2018
4 559 138 46 198 361 0.00056 Brennan et al., 2013

NIR, negative immune response; PIR, positive immune response.
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neurogenesis (Phillips et  al., 2006). Additionally, this glioma 
subtype is regarded as less malignant relative to other subtypes 
(e.g., proliferative and mesenchymal; Phillips et  al., 2006).

Mesenchymal Differentiation 
Characterized in the Negative Immune 
Response Cluster
Gliomas of the mesenchymal subtype are defined by high 
expression of chitinase 3-like 1 and MET5, as well as a high 

frequency of neurofibromatosis type 1 (NF1) mutation/deletion 
and low levels of NF1 mRNA (Verhaak et  al., 2010). The 
negative immune response clusters defined by cell-enrichment 
analysis shared an obvious similarity with this glioma subtype. 
We discovered that five stromal cell types (fibroblasts, pericytes, 
MSC, mesangial cells, and endothelial cells) exhibited a 
significantly higher NES value in the negative immune response 
cluster than in the positive immune response cluster in at 
least three cohorts (Figures  4A–E). Of note, negative immune 
response clusters with endothelial cells showed higher NESs 

A B

C D

FIGURE 2 | Risk levels according to calculated NESs. (A) NES distribution of prognostic signatures as denoted by risk levels (risk factors, orange; protective 
factors, green). (B) Variety of NES distribution within signatures. ns, p > 0.05; and ****p ≤ 0.0001. (C) Hazard ratio of consistent risk factors (>1, risk factor; <1, 
protective factor; and ∆, mean value). (D) Group count of consistent risk factors. NES, normalized enrichment score; NIR, negative immune response; ns, not 
significant; and PIR, positive immune response.
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in three cohorts but distributed between two different signatures 
(Supplementary Figure 2D). Lymphoid endothelial cells showed 
higher negative immune response enrichment in one cohort, 
with no significant differences observed in other cohorts. These 
results supported tissue similarities between negative immune 
response clusters and the mesenchymal subtype.

Furthermore, we  identified aspects related to mesenchymal 
differentiation in negative immune response clusters, with 

enrichment of activities related to tumor necrosis factor (TNF)-α 
and nuclear factor-kappaB (NF-κB) identified from three cohorts 
and all four cohorts (Figures  4F,G), respectively. Previous 
studies of glioma sphere cultures indicated that TNF-α promotes 
mouse embryonic stem cell differentiation accompanied by 
increased resistance to radiotherapy in an NF-κB-dependent 
manner (Bhat et al., 2013). Macrophages are also an important 
source of TNF-α secretion.

A

B C

D E

FIGURE 3 | GO enrichment in clusters. Enrichment map of GO terms (selected according to p < 0.05) aggregated by functions for Cohort 2 (A). Enrichments 
scores for GO terms (selected according to p < 0.05) associated with the immune-related (B) interferons, (C) interleukins, (D) macrophages, and (E) major 
histocompatibility complex (MHCs). GO, Gene Ontology; MHC, major histocompatibility complex.
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scRNA-seq and IHC Confirmation of the 
Negative Prognostic Effects of TAMs
To validate our findings, we  collected scRNA-seq data for cell-
component analysis. We classified all eight samples with available 
scRNA-seq data into negative or positive immune response 
clusters by calculating NES-based Spearman similarity between 
single-cell samples and bulk tumor samples 
(Supplementary Material 3). The results identified samples 
PJ016, PJ017, PJ032, and PJ048 as negative immune response 
and PJ018, PJ025, PJ032, and PJ035 as positive immune response.

We applied Seurat and copy number variation analyses to 
distinguish non-transformed cells from malignant transformed 
glioma cells in the scRNA-seq data. All HGGs, except PJ016, 
harbored clear amplification of chromosome 7 and loss of 
chromosome 10 (Supplementary Figures  3A–H), consistent 
with transformed tissues demonstrating large-scale copy number 

alterations and aneuploidies (Venteicher et  al., 2017; Taylor 
et  al., 2018), as well as glioblastoma often being accompanied 
with amplification of chromosome 7 and loss of chromosome 
10 (Zagzag et  al., 2005). PJ016 was found apparent loss of 
chromosomes 13 and 19, revealing that the cell population 
had indeed undergone transformation (Lee et al., 1995; Ritland 
et  al., 1995; Nakamura et  al., 2000).

The identities of non-transformed cells in the glioma 
microenvironment were then determined using Scibet (Li et al., 
2020; Figures  5A–H). We  found no immune cells in PJ016 
or PJ048 (Table 2), possibly due to the heterogeneity of different 
sampling areas. Those with a high percentage of macrophages 
(PJ017 and PJ032; 46.63 and 55.12%, respectively) belonged 
to the negative immune response cluster (Table  2), whereas 
samples with fewer macrophages (PJ018, PJ025, and PJ035; 
2.28, 1.70, and 8.12%, respectively) overlapped with the positive 

A

C

E

F G

B

D

FIGURE 4 | NES distributions in NIR and PIR clusters. (A) Fibroblasts, (B) pericytes, (C) mesenchymal stem cells (MSCs), (D) mesangial cells, and (E) endothelial 
cells. ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; and ****p ≤ 0.0001. Enrichment scores for GO terms associated with the mesenchymal differentiation-related 
cytokines (selected according to a p < 0.05; F) NF-κB and (G) tumor necrosis factor (TNF)-α. GO, Gene Ontology; MSC, mesenchymal stem cell; NES, normalized 
enrichment score; NF-κB, nuclear factor-kappaB; NIR, negative immune response; PIR, positive immune response; and TNF-α, tumor necrosis factor-α.
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immune response cluster (Table  2), confirming macrophage 
enrichment as a risk factor.

Moreover, we  confirmed the negative prognosis associated 
with macrophages IHC staining for the macrophage marker 
MS4A4A in 12 glioblastoma samples, including six from short-
term-survival and six from long-term-survival patients 
(Figure 5K; Supplementary Material 4). The short-term-survival 
samples showed a significantly higher percentage of MS4A4A-
positive cells relative to the six long-term-survival samples 
(p = 0.00051; Figures  5I,J).

DISCUSSION

In this study, we  generated a landscape of glioblastoma 
niches using four gene expression profiling cohorts of tumor 
tissues from GBMs based on the NES method. The patients 
in each cohort were divided into two categories (positive 
or negative immune response) according to hierarchical 
clustering analysis of cell type-based enrichment status and 
showing a significantly different survival (p < 0.05). The 
analysis revealed risk factors, including astrocytes, 
macrophages, monocytes, NKTs, and MSC, as well as protective 
factors, CD8 T cells, CD8 naive T cells, and plasma cells. 
Additionally, GSEA demonstrated that immune system- and 
organogenesis-related GO terms were uniformly enriched 
in negative immune response clusters, whereas positive 
immune response clusters were enriched in the nervous 
system. Moreover, significant signs of mesenchymal 
differentiation were observed in the negative immune response 
clusters, and validation using scRNA-seq analysis and IHC 
staining showed correlations between the presence of 
macrophages and negative immune response.

Potential mechanisms associated with specific cell types 
manifested consistent risk levels. Some cell types exhibited 
identical risk levels across the four cohorts and all gene 
expression signatures. Specifically, astrocytes were frequently 
observed as a consistent risk factor with a high hazard 
ratio. As an important component of the blood–brain barrier 
and the tripartite synaptic neural network, the normal 
physiological role of astrocytes involves promoting mutual 
communication with neurons. However, astrocytes can also 
develop into tumor cells and form astrocytomas. Given the 
heterogeneity of gliomas, the high frequency of astrocytes 
as a risk factor is explainable. Moreover, evidence suggests 
that tumor-reactive astrocytes can interact with glioma tumor 
cells and promote the development, invasion, and survival 
of gliomas by releasing different cytokines or regulating the 
entry and exit of calcium and hydrogen ions in cell channels 
(Guan et  al., 2018).

NKTs were also a consistent risk factor. miR-92a was 
reported to induce immune tolerance of NKTs to glioma 
cells (Tang et  al., 2014). Co-culture of glioma cells and 
NKTs showed miR-92a expressing in glioma cells played a 
key role in inducing the elevated expression of IL-6 and 
IL-10  in NKTs (Tang et  al., 2014). In the present study, 
we  found IL-6- and IL-10-related GO terms in the negative 

immune response cluster. Compared with NKTs cultured 
alone, the expression of antitumor molecules, including 
perforin, Fas ligand, and IFN-γ, was significantly reduced 
in NKTs co-cultured with glioma cells (Tang et  al., 2014). 
Moreover, IL-6 + IL-10+ NKTs exhibit a weak ability to induce 
apoptosis in glioma cells but have an immunosuppressive 
effect on CD8 T cell activity (Tang et  al., 2014).

CD8 T cells play defensive roles against cancer cells, consistent 
with the risk levels generated in the present analysis. Serologic 
analysis of antigens using recombinant cDNA expression cloning 
identified several tumor-associated antigens capable of generating 
a specific response in a variety of human cancers, including 
malignant glioma (Struss et al., 2001; Prins et al., 2003). Tumor-
related antigens can be  recognized by cytotoxic CD8 T cells 
in the context of tumors expressing MHC-I (Prins and Liau, 
2003; Yang et  al., 2004), suggesting that a T cell-dependent 
immune response might improve the outcome of glioma patients 
through an antigen-mediated immune response. This was 
supported by a clinical study of newly diagnosed glioblastoma 
patients that reported significantly attenuated CD8 T cell 
infiltration in samples from long-survival patients (>403 days) 
relative to that in samples from short-survival patients (<95 days; 
Yang et  al., 2010). These findings agreed with those of the 
present study showing that CD8 T cells were categorized as 
a protective factor.

Some cell types exhibited inconsistent risk levels. In these 
cases, it is likely that other conditions caused a shift in 
risk levels (e.g., age, co-existence with other cells, or a 
combination of other clinical symptoms). Different signatures 
of the same cell type might display different risk levels, 
suggesting the impact of cell status. To further investigate 
this concept, a specific gene in each gene signature should 
be  investigated. Other conditions, such as the presence of 
neoantigens (Zhang et  al., 2019), IDH mutation(s) (Phillips 
et  al., 2006; Parsons et  al., 2008), and MGMT methylation 
(Shah et  al., 2011), can also provide insight into conditions 
causing a shift in risk levels. Furthermore, the data used 
in this study were from primary gliomas; therefore, 
comparisons between recurrent and primary glioma samples 
would provide additional information concerning dynamics 
in the glioma microenvironment.

Myeloid lineage cells, such as monocytes and macrophages, 
were consistent risk factors in agreement with previously 
reported results (Hambardzumyan et  al., 2016). These cells 
(i.e., TAMs) account for more than 30% of the total number 
of solid tumor cells (Boussiotis and Charest, 2018, 1–3). 
Numerous studies report that the frequency of TAM detection 
is usually higher in tumors with a mesenchymal subtype 
and/or recurrent tumors (Wang et  al., 2017). Glioma stem 
cells are recently shown to release periostin, which accumulates 
in the surrounding environment of blood vessels and acts 
as an inducer of TAM chemotaxis through signaling via 
the integrin receptor αvβ3 (Zhou et al., 2015). Transforming 
growth factor (TGF)-β released by TAMs induces matrix 
metalloprotein-9 expression in glioblastoma stem cells, thereby 
increasing their invasiveness (Ye et  al., 2012). Furthermore, 
the supernatant from glioma stem cells (GSCs) inhibits the 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. Prognostic Landscape of Glioblastoma Niches

Frontiers in Genetics | www.frontiersin.org 10 September 2021 | Volume 12 | Article 741325

phagocytic activity of TAMs and induces IL-10 and TGF-β 
secretion (Wu et  al., 2010).

Ontogeny analysis revealed that macrophages in human 
GBM can be divided into either blood-derived or tissue-resident 
variants (i.e., microglia; Wang et al., 2017). These two ontogenies 

were also found in other types of cancer and displayed different 
prognostic effects. In mouse mammary carcinoma, a distinction 
was made between monocyte-derived TAMs and resident 
mammary tissue macrophages; it was found that only the 
former contributes to the suppression of antitumor cytotoxic 
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FIGURE 5 | Cell type analysis using scRNA-seq data. (A–H) Cell type counts in scRNA-seq samples. (I) IHC staining of macrophages (NIR samples, upper; PIR 
samples, bottom). (J) Percentage of macrophages in NIR and PIR samples (according to staining for MS4A4A; scale bar: 100 μm). (K) Kaplan–Meier survival curves 
of NIR and PIR samples. IHC, immunohistochemical; LTS, long-term survival; NIR, negative immune response; PIR, positive immune response; scRNA, single-cell 
RNA; and STS, short-term survival.
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T cell responses (Franklin et  al., 2014; Pombo Antunes et  al., 
2020). Normal naïve microglial cells can reduce the ability of 
human stem cells to acquire a spheroid morphology, thereby 
adversely affecting GSCs and inhibiting the growth of gliomas. 
However, another study suggested that microglial cells or 
monocytes derived from gliomas lack such antitumor potential 
(Sarkar et  al., 2013). scRNA-seq analysis of human gliomas 
showed that blood-derived TAMs upregulate immunosuppressive 
cytokines and demonstrate an altered metabolism relative to 
microglial TAMs and that the gene signature of blood-derived 
TAMs but not microglial TAMs correlates with significantly 
inferior survival in low-grade glioma (Wu et al., 2010). Signatures 
of microglial TAMs were not included among the curated 
markers used for tumor tissue analysis; however, scRNA-seq 
analysis showed that negative immune response samples 
comprised a significantly higher macrophage: microglia ratio 
than positive immune response samples (98 vs. 34.5, respectively; 
Table  2).

CONCLUSION

We present a comprehensive characterization of non-tumor 
cells in the niches of primary glioblastoma by integrating 
four large cohorts of GBM gene expression data and 540 
gene signatures covering 64 non-tumor cells types. We  find 
that non-tumor cell type enrichment status is useful for 
stratifying glioblastomas into different prognostic groups 
(positive or negative immune response clusters). The negative 
immune response clusters are uniformly enriched with immune 
system- and organogenesis-related GO terms, whereas positive 
immune response clusters are enriched with the nervous 
system. The mesenchymal differentiation is also observed 
in the negative immune response clusters. Moreover, risk 
analysis using cell components to determine glioma niches 
helps interpret the impact of cell type on cancer prognosis. 
Astrocytes, macrophages, monocytes, NKTs, and MSC are 
found as risk factors, and CD8 T cells, CD8 naive T cells, 
and plasma cells are protective factors. Particularly, the high 
presence of macrophages in the negative immune response 
clusters is validated using scRNA-seq analysis and IHC 
staining of GBMs from independent cohorts. Future 

investigations should focus on cell types with variable risk 
levels in order to elucidate the potential mechanisms involved 
in shifts in prognostic effects. Other stratification methods 
should be established and evaluated for categorizing samples 
individually rather than as groups.
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