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Background: Esophageal cancer is one of the most leading and lethal malignancies.
Glycolysis and the tumor microenvironment (TME) are responsible for cancer
progressions. We aimed to study the relationships between glycolysis, TME, and
therapeutic response in esophageal adenocarcinoma (EAC).

Materials and Methods: We used the ESTIMATE algorithm to divide EAC patients into
ESTIMATE high and ESTIMATE low groups based on the gene expression data downloaded
from TCGA. Weighted gene co-expression network analysis (WGCNA) and Gene Set
Enrichment Analysis (GSEA) were performed to identify different glycolytic genes in the
TME between the two groups. The prognostic gene signature for overall survival (OS) was
established through Cox regression analysis. Impacts of glycolytic genes on immune cells
were assessed and validated. Next, we conducted the glycolytic gene mutation analysis
and drug therapeutic response analysis between the two groups. Finally, the GEO
database was employed to validate the impact of glycolysis on TME in patients with EAC.

Results: A total of 78 EAC patients with gene expression profiles and clinical information
were included for analysis. Functional enrichment results showed that the genes between
ESTIMATE high and ESTIMATE low groups (N � 39, respectively) were strongly related with
glycolytic and ATP/ADP metabolic pathways. Patients in the low-risk group had
probabilities to survive longer than those in the high-risk group (p < 0.001). Glycolytic
genes had significant impacts on the components of immune cells in TME, especially on
the T-cells and dendritic cells. In the high-risk group, themost commonmutant genes were
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TP53 and TTN, and the most frequent mutation type was missense mutation. Glycolysis
significantly influenced drug sensitivity, and high tumor mutation burden (TMB) was
associated with better immunotherapeutic response. GEO results confirmed that
glycolysis had significant impacts on immune cell contents in TME.

Conclusion: We performed a comprehensive study of glycolysis and TME and
demonstrated that glycolysis could influence the microenvironment and drug
therapeutic response in EAC. Evaluation of the glycolysis pattern could help identify
the individualized therapeutic regime.

Keywords: glycolysis, tumor microenvironment, immunotherapy, drug response, esophageal adenocarcinoma

INTRODUCTION

Esophageal cancer is the eighth most common malignancy and
the sixth cause of cancer death globally, which accounts for more
than 570,000 new cases and 500,000 deaths annually (Bray et al.,
2018; Wang et al., 2018). Esophageal adenocarcinoma (EAC) is
the predominant pathological type in western countries, with an
increasing proportion from 35 to 61% over the past 30 years
(Alsop and Sharma, 2016). The global incidence rate of EAC is
approximately 0.7/100,000 person-years, and the 5-year survival
rate is merely less than 20%, although multidisciplinary
treatments have been applied, including esophagectomy,
radiation, and chemotherapy (Arnold et al., 2015; Markar
et al., 2017; Smyth et al., 2017; Zhao et al., 2019). Considering
the chemotherapeutic resistance, several targeted agents have
been applied in patients with EAC, such as imatinib (Mayr
et al., 2012). Unfortunately, the efficacy is still not satisfactory.
Recently, immunotherapy-targeting PD-1 has revolutionized the
therapy in cancer patients. However, not all patients with EAC
respond to immunotherapy (Däster et al., 2020). Therefore, there
is an urgent necessity to better understand the molecular
characteristics and genetic features that could help predict
accurate survival and identify suitable patients who will benefit
from immunotherapy.

The tumorigenesis and development of EAC is a highly
complex biology, involving the tumor cell-intrinsic and cell-
extrinsic factors (Quante et al., 2018; Talukdar et al., 2018).
Genetic alterations are the primary mechanisms that drive the
initiation and progression of EAC, not only conferring tumor
cells infinite proliferative abilities but also reprogramming
metabolic pathways to adapt to the hostile environment, such
as aerobic glycolysis (Hochwald and Zhang, 2017; Talukdar et al.,
2018). The seminal discovery of tumor glycolysis has been
considered a hallmark of cancer, proposed by Otto Warburg
in 1923 (Warburg and Minami, 1923). The glycolytic phenotype
renders cancer cells selective advantages by unlimited growth and
attenuated apoptosis (Xu et al., 2017). In addition, it is gradually
evident that elevated glycolysis is closely related to the immune
escape by changing the microenvironment and inhibiting the
functions of immune cells (Jiang et al., 2019a). Mounting
evidence from cell-based assays has linked glycolysis to TME,
and preclinical investigations have demonstrated the effectiveness
targeting glycolysis in some cancers (Lim et al., 2017; Kornberg

et al., 2018; Jiang et al., 2019a; Jiang et al., 2019b; Kang et al.,
2020).

Genetic mutation results in the rewire of the glucose
metabolism decreased cancer cell apoptosis and immortal
growth. Consequently, these events bring about the
component reconstruction in the tumor microenvironment
(TME), thus changing the purity of the tumor. Reciprocally,
the intimate interactions between glycolytic cells and the
extracellular matrix further exacerbate the remodeling of TME,
including the stromal and immune cells. It is well accepted that
the tumor is highly dependent on TME, which is preponderant on
prognosis and impacts the therapeutic efficacy profoundly, such
as the immune checkpoint therapy (Wu and Dai, 2017; Alsina
et al., 2018; Taube et al., 2018; Hinshaw and Shevde, 2019; Li et al.,
2020). However, there are few studies exploring the associations
between glycolysis and TME in EAC, and far less is known about
how genetic mutations orchestrate the glycolysis under these
aberrant TME conditions. Herein, we investigated the effects of
glycolysis on immune cells and revealed the genetic mutation
diversity. Our study unraveled that glycolysis could influence
TME under the driver of genetic mutation and could serve as
prognostic biomarkers. Moreover, we constructed the risk score
system to predict drug sensitivity and immunotherapeutic
response. The results hold great promise in targeting glycolysis
and utilizing TME to improve the treatment in patients
with EAC.

MATERIALS AND METHODS

Data Acquisition
Gene expression data and clinical information were downloaded
from the Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). The mRNA expression profiles were log2
normalized for further analysis. Clinical information included
gender, age, stage, survival status, and follow-up time.

Tumor Microenvironment and Glycolysis
TME is composed of resident stromal cells and infiltrating
immune cells (IICs), reflecting tumor purity. With the increase
of stromal cells and IICs, the tumor purity becomes lower. The
stromal score, immune score, and ESTIMATE score were
calculated by applying the ESTIMATE algorithm (Chakraborty
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and Hossain, 2018). The ESTIMATE score is the comprehensive
parameter of the stromal and immune scores. Then, patients with
EAC were classified into ESTIMATE high and ESTIMATE low

groups according to the median of the ESTIMATE score. The
differently expressed genes (DEGs) were screened by the
weighted gene co-expression network analysis (WGCNA) with
the false discovery rate (FDR) ≤0.05 and log2 fold change
(log2FC)| >2.

To explore whether glycolysis affects tumor purity, we
performed gene set enrichment analysis (GSEA) between the
ESTIMATE high and ESTIMATE low groups. Five glycolysis-
related gene sets, namely, Hallmark, BioCarta, KEGG, GO,
and Reactome, were downloaded from the Molecular
Signatures Database (http://www.gsea-msigdb.org/gsea/msigdb)
and analyzed using the GSEA software (version 4.1.0). The
permutation number was set as 1,000 for every phenotype.
The gene sets were considered statistically significant when the
nominal (NOM) p-value ≤0.05, FDR ≤0.05, and normalized
enrichment score |(NES)| >1. Finally, the intersection genes
(IGs) from the WGCNA and GSEA gene sets were identified
for further analysis.

Gene Interaction Analysis and Enrichment
Analysis
Gene interaction analysis was performed through the “corrplot”
package in R software (version 4.1.0). Hub genes were screened
with “cytoHubba” in Cytoscape software.

The IGs based on TME and glycolysis were analyzed for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) by the “clusterProfiler” R package. GO analysis has three
functional parts, including the biology process (BP), cellular
component (CC), and molecular function (MF).

Next, we performed functional similarity analysis, which
was measured through the “GOSemSim” R package (Wang
et al., 2007). Functional similarity could be used for the
purpose of assessing the intimacy and relationship between
each gene and its partners by evaluating the function and
location.

Establishment of Prognostic Signatures
First, univariate Cox regression analysis was used to identify IGs
which were related to patients’ overall survival (OS). Then,
statistically significant IGs (p < 0.05) were enrolled into the
multivariate Cox regression. Finally, patients were divided into
high- and low-risk groups according to the median of the risk
score, in which the risk score was calculated as follows:
risk score � ∑  j

n�1 Coefj pXj, with Coef j indicating the
coefficient and Xj representing the relative expression levels of
each IG standardized by the z-score.

TME and Gene Mutation
Next, we selected the prognostic glycolysis-related genes and hub
genes to investigate their relations with IICs between the two
groups through single-sample gene set enrichment analysis
(ssGSEA) using the “GSVA” R package. The effects of OGG
on immune cells were assessed using the linear regression.

To analyze why glycolysis affects TME, we calculated the
glycolytic gene mutation frequency, variant classification,
variant type, and single nucleotide variants (SNVs) between
the ESTIMATE high and ESTIMATE low groups. Additionally,
to fully understand the role of gene mutation in TME, we
performed tumor mutation burden (TMB) analyses and
explored their relationships with IICs through the simple
nucleotide variation data from TCGA and cBioPortal online
databases (http://www.cbioportal.org/).

Drug Sensitivity Analysis and
Immunotherapy Response
The drug sensitivity of each patient with EAC was predicted by
the Genomics of Drug Sensitivity in Cancer database (GDSC;
https://www.cancerrxgene.org/). The half-maximal inhibitory
concentration (IC50) was calculated through the “pRRophetic”
R package, and the IC50 differences between the high- and low-
risk groups were compared (Geeleher et al., 2014).

The response to immunotherapy was estimated using the
Tumor Immune Dysfunction and Exclusion website (TIDE;
http://tide.dfci.harvard.edu/login/). The TIDE and PDL-1
scores were compared between the high- and low-risk groups.

External Cohort Validation
The impacts of glycolysis on TME in EAC were validated through
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/gds/). The study was considered eligible for
external cohort validation according to the following criteria:
1) studies with Homo sapiens samples and 2) studies with a
sample number more than 50, and 3) studies with detailed
experiment information and complete expression profiles. The
primary goal of validation was to confirm whether the
ESTIMATE algorithm method is suitable for patients with
EAC, and the secondary goals were to determine whether
glycolysis could influence the components of the
microenvironment and affect drug sensitivity. The overall
design of this study is shown in Figure 1.

Statistical Analysis
All statistical analyses were performed by the R software (version
4.1.0). The DEG analysis between the ESTIMATE high and
ESTIMATE low groups was carried out by applying the
unpaired t-test. Cox regression analysis was used to determine
the prognostic factors. Kaplan–Meier (K-M) curves and log-rank
tests were utilized to assess the prognostic outcome. The
Mann–Whitney U test was used to compare the immune
score, immune cell infiltrations, and immune signatures.
Spearman’s correlation analysis was used to evaluate the
interactions. p < 0.05 was considered significant.

RESULTS

Identification of Tumor Purity andGlycolysis
A total of 87 EAC samples and gene expression data were
available from the TCGA database, including 9 normal and 78
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FIGURE 1 | Schematic of the study design. A total of 78 EAC patients were recruited for further study. TME is mainly composed of tumor cells, stromal cells, and
immune cells. With higher stromal and immune cells, the tumor purity is low.

FIGURE 2 | Identification of the intersection genes. (A) 78 EAC sample clustering. All samples were clustered, and difference analysis was performed. (B) Gene
dendrogram and dynamic tree cuts. Each color represents a module, and genes with similar expression patterns will be classified into the samemodule. (C)Module-trait
relationships. Every row represents a module eigengene (ME). The red module corresponds to the significant positive correlation, and blue corresponds to the significant
negative correlation. (D) GO glycolytic process gene set. (E) Reactome glycolysis gene set. (F) Hallmark glycolysis gene set. (G) Biocarta glycolysis pathway. (H)
KEGG glycolysis gluconeogenesis. (I) Venn diagram shows the 34 IGs (intersection genes from WGCNA and GSEA). L: ESTIMATE low; H: ESTIMATE high.
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EAC cases. Based on the ESTIMATE algorithm, the stromal score
ranged from –2,315.387 to 1903.167 and the immune score
ranged from –1,224.491 to 3,362.338. The range of the
comprehensive ESTIMATE score was from –3,375.446 to
5,265.505 (Supplementary Table S1). According to the
median of the ESTIMATE score, 78 patients with EAC were
categorized into the ESTIMATE high and ESTIMATE low groups
(39 cases, respectively). There are 8,135 DEGs between two
groups according to WGCNA results (Figures 2A–C)
(Supplementary Table S2).

Then, GSEA was conducted to assess the glycolytic differences
between the ESTIMATE high and ESTIMATE low groups. The
results showed that the GO glycolytic process (NES � −1.54,
NOM p � 0.050, FDR � 0.050) and Reactome glycolysis (NES �
−1.83, NOM p � 0.008, FDR � 0.008) were significantly enriched
in ESTIMATE high group patients (Figures 2D,E). There were no
significant enrichments in the Hallmark (NES � −1.44, NOM p �
0.067, FDR � 0.067), BioCarta (NES � −1.23, NOM p � 0.227,
FDR � 0.227), and KEGG (NES � −1.20, NOM p � 0.228, FDR �
0.228) pathways (Figures 2F–H). There were 117 DEGs between
GO and Reactome glycolysis gene sets. After screening, a total of
34 IGs were selected from WGCNA and GSEA for further

analysis (Table 1) (Figure 2I). The details about IGs in each
EAC sample are shown in Supplementary Table S3.

Gene Interaction Networks and Functional
Enrichment Analysis
To explore the correlation between the IGs, we calculated their
coefficients. Gene interaction analysis showed that GAPDH and
TPI1 had the strongest positive correlation (coef � 0.81), whereas
PRKACB and RAE1 had the strongest negative correlation (coef
� −0.48) (Figure 3A). To explore the IG functions, we performed
GO and KEGG enrichment analyses using R packages. GO results
showed that IGs were significantly enriched in the glycolytic and
ATP/ADP metabolic pathways. In addition, nuclear-, glucose-,
and carbohydrate-related activities were closely associated with
CC and MF terms (Figure 3B). KEGG results demonstrated that
carbon, gluconeogenesis, and HIF−1 signaling pathways were
enriched (Figure 3C).

Based on the GO analysis and semantic similarities, we ranked
the genes by average functional similarities between IGs and their
partners, with the cutoff value at 0.75. The box plots and
raincloud plots are demonstrated in Figures 3D,E. From the
pictures, we can clearly see that NUP43, NUP37, and DDIT4 had
strong similarities and weak correlation with BPGM.

Prognostic IG Signatures
Univariate Cox regression analysis revealed that NUP88, RAE1,
SEH1L, NUP37, and NUP43 were significantly associated with
patients’ OS (all p < 0.05) (Figure 4A). After multivariate Cox
regression analysis, three IGs (NUP88, SEH1L, and NUP37) were
used to develop the risk score based on the following formula: risk
score � 0.637 * expression of NUP88 + 0.494 * expression of
SEH1L + 0.657 * expression of NUP37. Also, the three genes were
all risk genes with hazard ratio (HR) > 1. A total of 78 patients
with EAC were classified into low- and high-risk groups
according to the median risk score (n � 39). The K-M survival
plot showed that patients in the low-risk group had significant
probabilities to survive longer than those in the high-risk group
(median time � 1.75 vs 0.745 years, p < 0.001) (Figure 4B).

In order to evaluate the prognostic values of clinical
information in OS, we integrated the patients’ clinical features
with IGs. Univariate Cox regression analysis showed that the
tumor stage (HR � 3.308, p < 0.001) and risk score (HR � 1.954,
p � 0.013) were significantly associated with OS (Figure 4C).
Multivariate Cox regression analysis results demonstrated that
tumor stage (HR � 7.971, p < 0.001), metastasis (HR � 0.167, p �
0.033), and risk score (HR � 2.822, p � 0.002) were independent
risk factors for OS (Figure 4D). In addition, the distributions of
each patient and their survival statuses are shown in Figures
4E–G. We can clearly see that patients in the low-risk group had a
better prognosis than those in the high-risk group.

Effect of Glycolytic Genes on IICs
We selected three prognostic genes and five hub genes (NUP88,
SEH1L, NUP37, GCK, NUP62, NUP155, NUP205, and NUP214)
to assess whether glycolysis affects the IICs in TME. The results
demonstrated that NUP62, NUP155, NUP205, and SEH1L had

TABLE 1 | Significant IG expression levels in the ESTIMATE low and ESTIMATE high

tissues.

Gene ESTIMATE low ESTIMATE high logFC p FDR

GAPDH 693.986 509.158 −0.447 0.002 0.011
NUP133 9.617 8.402 −0.195 0.035 0.118
GCK 0.077 0.232 1.595 0.000 0.001
HTR2A 0.037 0.323 3.116 0.000 0.000
NUP205 15.387 12.149 −0.341 0.037 0.122
NUP43 11.641 9.217 −0.337 0.000 0.004
SEH1L 7.027 5.367 −0.389 0.023 0.086
INSR 11.440 15.775 0.464 0.003 0.017
BPGM 5.508 7.941 0.528 0.000 0.000
PRKACB 4.543 6.572 0.533 0.010 0.045
CBFA2T3 0.390 1.505 1.947 0.000 0.000
NUP214 9.564 8.187 −0.224 0.015 0.062
NDC1 16.439 12.273 −0.422 0.001 0.006
HK3 0.409 1.216 1.572 0.000 0.000
NUP62 14.909 12.765 −0.224 0.027 0.096
EIF6 105.279 83.551 −0.333 0.022 0.084
PRXL2C 4.076 5.085 0.319 0.020 0.080
DDIT4L 0.098 0.215 1.134 0.000 0.001
ZBTB20 1.195 1.939 0.699 0.001 0.006
ENO1 227.228 180.617 −0.331 0.006 0.031
MLXIPL 7.779 4.578 −0.765 0.001 0.005
PRKAG1 9.508 8.284 −0.199 0.022 0.084
P2RX7 0.417 1.300 1.641 0.000 0.000
RAE1 10.815 8.043 −0.427 0.002 0.012
GPI 48.943 35.859 −0.449 0.005 0.026
NUP188 19.729 17.185 −0.199 0.037 0.122
HIF1A 49.095 66.493 0.438 0.002 0.014
HKDC1 18.783 12.578 −0.579 0.039 0.127
NUP37 6.737 5.076 −0.408 0.002 0.013
HK1 16.837 20.341 0.273 0.045 0.140
IGF1 0.090 0.414 2.196 0.000 0.000
TPI1 142.420 116.178 −0.294 0.025 0.091
ENO3 1.130 0.929 −0.281 0.022 0.084
NUP88 10.051 8.744 −0.201 0.045 0.140

LogFC: log fold change; FDR: false discovery rate.
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FIGURE 3 | Gene interaction analysis and functional enrichment. (A) Gene interaction network. Red represents positive correlation, while negative correlation is
represented in green. (B)GO enrichment analysis, including the biological process (BP), cellular component (CC), and molecular function (MF). Every term shows top 10
pathways. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the IGs. IG network analysis. (D) Summary of OGG similarities. The boxes
indicated the middle 50% of the similarities, and the upper and lower boundaries show the 75th and 25th percentiles, respectively. (E) Raincloud plots of OGG.
Data are expressed as the mean and standard error. Each dot represents the single gene. The dashed line represents the cutoff value (0.75).
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significant impacts on the IIC expression level, especially on the
T-cells and mast cells (all p < 0.05). The details are shown in
Figure 5A.

To fully explore the relationships between these genes and
IICs, we performed Spearman correlation analysis by using the
“Limma” package. The results showed that NUP62 was strongly
associated with T-cells, dendritic cells, and antigen-presenting
cells (all p < 0.05) (Figure 5B). NUP155 had a close relationship
with T-cells, mast cells, and MHC class I activity (all p < 0.05)
(Figure 5C). NUP205 showed close relationships with T-cells,
mast cells, and type I IFN response (all p < 0.05) (Figure 5D).
SEH1L exhibited significant associations with dendritic cells,
antigen-presenting cells, and chemokine receptors (CCR) (all
p < 0.05) (Figure 5E). Collectively, these findings suggested
that the IGs had profound effects on immune cells and
immunological functions.

Genetic Mutation and the Tumor
Microenvironment
Gene mutations were analyzed for further investigation into the
mechanisms that TME is affected by gene alteration. The genetic
mutations are significantly different between the ESTIMATE high

and ESTIMATE low groups. In the ESTIMATE high group, the five
most common mutant genes were TP53, TTN, HMCN1,
DNAH5, and SYNE1, and the most common mutational type
was missense mutation (Figures 6A,C). In the ESTIMATE low

group, the most common mutant genes were TP53, TTN,
MUC16, SYNE1, and PCLO. The most common mutational
type was also missense mutation (Figures 6B,F). The
frequencies of missense mutation were significantly lower than
that in the ESTIMATE high group, indicating that the glycolytic
level and tumor purity were different from those of the
ESTIMATE high group (Figures 6A,B). Single-nucleotide

polymorphism (SNP) had the highest frequency in the variant
type (Figures 6D,G). G > A was the most frequent type in the
SNV class (Figures 6E,H). The results imply that these mutant
genes drive a higher glycolytic level, consequently changing the
tumor purity in the microenvironment.

To broaden the understanding of the glycolytic gene
mutations, the cBioPortal database was applied to validate
these findings. We selected the most common glycolytic genes
(TP53, TTN, HMCN1, DNAH5, SYNE1, MUC16, and PCLO) for
further verification. Consistent with the above findings, the
results from the cBioPortal database showed that TP53, TTN,
and MUC16 possessed the highest mutation frequencies (87, 42,
and 26%, respectively), and missense mutation was the
commonest type (Figure 7).

Tumor Mutation Burden Analysis and
Immunotherapy Response
TMB refers to the total number of mutations per mega base in
tumor tissues. By analyzing the SNP data downloaded from
TCGA, we calculated the TMB frequency in each patient with
EAC. The range of TMB is from 0.053 to 41.053 in EAC.
Moreover, we further analyzed the effect of TMB on survival
in patients with EAC. A total of 78 patients were classified into
high- and low-TMB groups according to the median TMB. As
shown in the K-M curves, patients in the high-TMB group had
significantly higher mortality than those in the low-TMB group
(p � 0.05) (Figure 8A). To exhibit the relationships between
TMB, glycolysis, and TME (ESTIMATE score), we applied the
Sankey diagram to visualize their correlations with the
“ggalluvial” package in R. The result is shown in Figure 8B.

Low TMB usually implies poor response for immunotherapy
(Chan et al., 2019). To explore whether TMB will influence the
immunotherapy response, we compared the PDL-1 and TIDE

FIGURE 4 | Prognostic signatures of OS in EAC patients. (A) Forest plot of univariate Cox regression analysis based on IGs. (B) K-M survival plot of high- and low-
risk score patients. (C) Forest plot of univariate Cox regression analysis based on the clinical information and risk score. (D) Forest plot of multivariate Cox regression
analysis based on the clinical information and risk score. (E) Heatmap of NUP88, NUP37, and SEH1L in EAC patients. Green represents low gene expression, and red
represents high expression. (F) Risk score curve of high- and low-risk score patients. The dotted line represents every individual, and patients are categorized into
low-risk and high-risk groups at the inflection point. (G) Survival status and time distributed by the risk score. The red dot represents the dead, and blue represents the
living. With an increase in time, more and more patients died. T: tumor; M: metastasis; N: lymph node.
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scores between high- and low-TMB groups. As a result, patients
in the high-TMB group significantly responded to anti–PDL-1
therapy (p � 0.040) (Figure 8C). In Figure 8D, patients with high
TMB had a higher TIDE score than those with low TMB (p �
0.000). In addition, the correlations between the immune
checkpoints are also explored in Figure 8E.

Drug Sensitivity Analysis
We compared the IC50 differences of chemotherapeutic and
targeted drugs between high- and low-risk score groups,

including bexarotene (Figure 9A), camptothecin (Figure 9B),
gemcitabine (Figure 9C), imatinib (Figure 9D), methotrexate
(Figure 9E), and vorinostat (Figure 9F). The results
demonstrated that there were higher IC50 levels of bexarotene
and imatinib in the high-risk score group, which indicated that
patients with a low-risk score were more sensitive to the two
drugs. Oppositely, the IC50 levels of camptothecin, gemcitabine,
methotrexate, and vorinostat were higher in the low-risk score
group, implying that patients in the high-risk score group were
more sensitive to the four drugs.

FIGURE 5 | Analysis of glycolytic gene effects on immune signatures. (A) Heatmap demonstrating the correlation between 8 genes and the ssGSEA scores of 29
immune signatures. (B) NUP62 and immune signatures. (C) NUP155 and immune signatures. (D) NUP205 and immune signatures. (E) SEH1L and immune signatures.
Spearman’s correlation analysis was used to evaluate the relations with p < 0.05.
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Validation of Glycolysis and Its Impact
on TME
For external cohort validation, GSE12898 was employed, which
consisted of 75 EAC samples. Consistent with the classification
result of the ESTIMATE algorithm in TCGA, this method
successfully divided 75 patients with EAC into the ESTIMATE
high and ESTIMATE low groups (n � 38 and 37, respectively).
There were 3,428 genes between the two groups, including 52
significantly different glycolysis-related genes (Supplementary
Table S4). The correlation analysis showed that 28 glycolytic
genes had significant impacts on immune cells in the
microenvironment, and the majority were B-cell and T-cell
subtypes. The details are shown in Table 2.

Furthermore, the drug sensitivities were also analyzed between
the ESTIMATE high and ESTIMATE low groups. The results
showed that the IC50 level of bexarotene (Figure 10A) was
higher in the ESTIMATE high group. However, the IC50 levels
of camptothecin (Figure 10B), gemcitabine (Figure 10C), and
vorinostat (Figure 10F) were lower in the ESTIMATE high group,
implying that the patients in the ESTIMATE high group were
more sensitive to the four drugs. There were no significant
differences regarding IC50 in imatinib (Figure 10D) and

methotrexate (Figure 10E). Taken together, glycolysis directly
changed TME and indirectly influenced drug sensitivity.

DISCUSSION

The abilities of cancer cells to switch metabolisms and evade the
immunity system in TME are well-documented characteristics in
tumors. Elevated glycolysis is commonly observed in cancer
progression and is associated with significant disruptions of a
previous finely tuned microenvironment (Chang et al., 2015;
Jiang et al., 2019a). As the tumors develop, they constantly
interact with neighboring cells, such as stromal cells and
immune cells, under the driver of genetic mutations, thus
altering their phenotypes and functions (Butturini et al., 2019).
In the context of these intricate crosstalks betweenmalignant cells
and non-malignant cells, the impacts of increased glycolysis and a
dysregulated TME on immune response and effective therapy are
of vital importance (Roma-Rodrigues et al., 2019). Although the
research studies focusing on the tumor glycolysis and TME have
exploded exponentially in recent years, the underlying
mechanisms of how they act both independently and

FIGURE 6 | Landscape of gene mutations in EAC patients. (A)Waterfall plot of mutational genes in the ESTIMATE high group. (B)Waterfall plot of mutational genes
in the ESTIMATE low group. The left panel shows the gene mutational frequencies, and the right panel represents the mutational type. (C) Variant classification and
frequency of gene mutations in the ESTIMATE high group. (D) Variant type in the ESTIMATE high group. (E) Frequency of SNV classes in the ESTIMATE high group. (F)
Variant classification and frequency of gene mutations in the ESTIMATE low group. (G) Variant type in the ESTIMATE low group. (H) Frequency of SNV classes in the
ESTIMATE low group.
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FIGURE 7 |Overview of the seven most commonmutant genes in EAC patients. (A) Proportion and mutation type of genes. Different color bars represent different
mutational types. (B) TP53-specific mutation site. (C) TTN-specific mutation site. (D) HMCN1-specific mutation site. (E) DNAH5-specific mutation site. (F) SYNE1-
specific mutation site. (G) MUC16-specific mutation site. (H) PCLO-specific mutation site.
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synergistically still remain elusive. In this study, we explored
systematically the links between glycolysis and TME in patients
with EAC as well as the relations with genetic mutations. In the
present study, we found that the glycolytic level was higher in the
ESTIMATE high group, reasonably reflecting the fact that
glycolysis may change the tumor purity. By constructing the
predictive survival model based on IG signatures, we discovered
that three genes (NUP88, SEH1L, and NUP37) may serve as
independent prognostic biomarkers for OS in EAC. In addition,
we revealed that gene mutation types and frequencies were
distinct between the different ESTIMATE score groups,
lending us a hypothesis that genetic alteration may drive TME

changes. In addition, our data suggested that glycolysis could
influence drug sensitivity and immunotherapeutic response.

Several studies have confirmed the close relationships between
glycolysis and EAC (Lynam-Lennon et al., 2014; Harada et al.,
2020; Kang et al., 2020). Consistent with these findings, our
functional enrichment analysis results showed that IGs were
strongly enriched in the glycolytic processes, ATP generation,
the HIF−1 signal pathway, RNA activities, and so on. The
presence of aerobic glycolysis under normal conditions
efficiently promotes tumor cell growth by the following
mechanisms: 1) the rate of glycolysis is accelerated at
100 times compared to oxidative phosphorylation to

FIGURE 8 | TMB and immunotherapy response. (A) K-M survival plot. Patients with low TMB have significant probabilities to survive longer than those with high
TMB. (B) Sankey diagram showing the relations between TMB, glycolysis, and the ESTIMATE score. (C) PD-L1 score comparison between high- and low-TMB groups.
(D) TIDE algorithm analysis showed that patients with high TMB had better immunotherapeutic response than those with low TMB. (E) Correlations plots between the
immune checkpoints.
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compensate for the mathematical disadvantage in terms of net
ATP production (glucose oxidative phosphorylation although
mitochondria generate 18 times ATP compared to glycolysis)
(Pfeiffer et al., 2001); 2) glycolysis provides sufficient and essential
intermediates, such as NADPH and ribose-5-phosphate, which
are indispensable for biosynthesis to meet avid proliferative
requirements (Boroughs and DeBerardinis, 2015); 3) lactate,
the obligatory product derived from glycolysis, could activate
the HIF−1 signal pathway to induce vascular endothelial growth
factor (VEGF) expression to stimulate angiogenesis in the
microenvironment (Sonveaux et al., 2012). In addition, lactate
is crucial to reorganize the tumor physical architectures in TME,
and the accumulation of extracellular lactate is detrimental for
normal healthy cells, such as immune cells (Romero-Garcia et al.,
2016; Cassim and Pouyssegur, 2019). The study about how RNA
interacts precisely with glycolysis is still in its infancy. However,
Hua Q et al. gave us a hint that long non-coding RNA may
promote glycolysis by sponging miRNA (Hua et al., 2019). Hence,
it is reasonable to speculate that certain mutational genes
regulated and modified by RNA may be involved in the
glycolysis in EAC (Hochwald and Zhang, 2017).

The prognostic signature of glycolysis in EAC was
established based on three genes (NUP88, SEH1L, and
NUP37). NUP88, located at chromosome 17p13, encodes
Nup88 protein (Zhao et al., 2012). Nup88 is a nucleoporin
comprising nuclear pore complexes (NPCs) and plays critical
roles in maintaining the spindle stability and preventing
aneuploidy formation during mitosis (Hashizume et al.,

2010). Unanimously, the GO results in our study also
illustrated that glycolytic genes had intimacy with the
nuclear pore, emphasizing the importance of nuclear
proteins in glycolysis. The Nup88 overexpression is highly
associated with tumor development and decreased survival,
suggesting that NUP88 acts as an oncogene (Martínez et al.,
1999; Naylor et al., 2016). In line with these studies, our
results also proved that NUP88 was a risk factor for OS (HR >
1). Another prognostic gene is NUP37, which shares
similarities with NUP88 and is also a member of NPC. It
exerts primary functions of sustaining NPC integrity and
modulates the cell cycle (Chen et al., 2019). Previous studies
showed that the elevated expression of NUP37 is associated
with worsened survival rates in liver cancer (Uhlen et al.,
2017). In addition, a latest study by Huang L et al.
demonstrates that NUP37 silencing induces inhibition of
lung cancer cell proliferation (Huang et al., 2020). These
findings were in agreement with our results, pointing out that
NUP37 played an oncogenic role in OS (HR > 1).
Nonetheless, the function of NUP37 in EAC has never
been explored and needs further experiments to confirm
in vitro and in vivo. SEH1L, also known as Seh1, is a part
of NPC as well. However, the field is still in its infancy, and
only a handful of animal models have been developed to
investigate the role of SEH1L. Studies have shown that Seh1
could promote oligodendrocyte differentiation (Liu et al.,
2019; Raices and D’Angelo, 2019). However, little is known
about how it works in EAC. Undeniably, more research

FIGURE 9 | Drug sensitivity analysis in the TCGA database. Box plots demonstrate the estimated IC50 values of bexarotene (A), camptothecin (B), gemcitabine
(C), imatinib (D), methotrexate (E), and vorinostat (F). The lower the IC50 value, the higher is the sensitivity to the drug.
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studies are warranted to understand the specific effects of
SEH1L on EAC.

The notion that glycolysis has profound impacts on immune
cells in TME is well recognized. The investigation linking
metabolic demands and immune cells was first documented in
neutrophils and macrophages (Alonso and Nungester, 1956;
Newsholme et al., 1986). Immune cells hold a resemblance
with tumor cells to engage glycolysis, which require rapid
energy sources to produce immune-mediators for migration
and phagocytosis. Our study demonstrated that NUP88 had
significant correlation with B-cells and mast cells (all p < 0.05)
and NUP37 had positive correlation with T-cells and negative
correlation with dendritic cells (DCs) and macrophages (all p <
0.05). These findings enforced the concept that glycolysis
contributes to dramatic alterations of immune cells in TME,
hence influencing the immune response and immune-based
treatments. Glycolytic tumor cells compete with T-cells for
glucose and impair T-cell activation (Peng et al., 2016). In
addition, IFN-γ secreted by Th1 cells is sensitive and is
unstable to lactate. Noteworthily, this could polarize the
T-cells toward differentiating into the Th2 subpopulation that
favors tumor progression by inhibiting the antitumor effect of M1
macrophages (Kareva and Hahnfeldt, 2013). Paradoxically, direct
evidence from in vivo experiments supports that glycolysis could
promote Th1 cell differentiation through an epigenetic
mechanism (Peng et al., 2016). This calls for further studies

aiming to shed light on the characteristics of glycolysis on T-cells.
The divergent effects of glycolysis on DC are also observed.
Glycolysis produces excessive lactate and lowers the pH in
TME. Lactate together with decreased pH suppresses DC
differentiation and consequently abolishes the antigen-
presenting functions to T-cells (Harmon et al., 2020).
However, inhibition of glycolysis also blocks DC maturation
through HIF−1α. This highlights the multiple roles of DC in
glycolysis and needs to be carefully interpreted in a context-
dependent manner.

Gene mutations facilitate tumor cell metabolic plasticity to
create favorable microenvironments beneficial to uncontrolled
proliferation. Deepening our knowledge about the differences of
gene alterations between different TMEs may allow for the
development of therapeutic strategies. Spurred by this
promising target, we explored upon this issue and showed that
ESTIMATE high and ESTIMATE low groups manifested different
gene mutation profiles, in which TP53 and TTN were the most
prevalent mutant genes. Moreover, the most common type is
missense mutation. Mutant TP53 endows tumor cells with
adaptabilities to cope with the harsh microenvironment by
providing adequate nutrients, thereby escaping from antitumor
immune attack. Experimental mice models in the study by Basu S
et al. testified that mutant TP53 could rewire the tumor glycolytic
metabolism and enhance metastasis in TME (Basu et al., 2018).
Mutant TP53 has additional impacts on TME beyond changing

TABLE 2 | Impacts of glycolytic genes on immune cells in TME.

Type B n B m M2 Mono CD4 a CD4 r CD4 n Tfh NK r Neu DC a γδT

ADPGK 0.016* 0.490 0.037* 0.199 0.482 0.728 0.922 0.881 0.336 0.934 0.892 0.768
ALG1 0.037* 0.119 0.254 0.723 0.238 0.376 0.718 0.385 0.762 0.269 0.765 0.670
CACNA1H 0.457 0.535 0.031* 0.805 0.157 0.166 0.372 0.673 0.846 0.676 0.366 0.409
CHST12 0.230 0.739 0.201 0.010* 0.567 0.367 0.713 0.927 0.250 0.159 0.390 0.713
COL5A1 0.080 0.637 0.024* 0.018* 0.129 0.437 0.718 0.653 0.680 0.472 0.514 0.158
CXCR4 0.067 0.856 0.013* 0.339 0.298 0.769 0.718 0.881 0.260 0.678 0.828 0.768
DCN 0.037* 0.446 0.330 0.076 0.312 0.538 0.870 0.976 0.196 0.507 0.532 0.450
DPYSL4 0.259 0.488 0.556 0.527 0.009* 0.727 0.137 0.976 0.361 0.738 0.702 0.120
DSC2 0.123 0.913 0.889 0.178 0.734 0.767 0.197 0.047* 0.719 0.330 0.460 0.155
FUT8 0.007* 0.490 0.126 0.287 0.555 0.320 0.922 0.590 0.196 0.934 0.765 0.974
GALK2 0.012* 0.075 0.303 0.891 0.216 0.689 0.922 0.590 0.492 0.580 0.807 0.870
GPC3 0.039* 0.053 0.300 0.094 0.713 0.267 0.869 0.470 0.455 0.559 1.000 0.120
GPC4 0.016* 0.119 0.277 0.643 0.312 0.347 0.718 0.385 0.237 0.934 0.496 0.577
GUSB 0.132 0.537 0.079 0.643 0.238 0.470 0.158 0.905 0.045* 0.619 0.683 0.224
HSPA5 0.037* 0.637 0.070 0.219 0.978 0.728 0.718 1.000 0.336 0.580 0.807 0.870
KDELR3 0.007* 0.490 0.126 0.287 0.555 0.320 0.922 0.590 0.196 0.934 0.765 0.974
NDUFV3 0.642 0.537 0.277 0.339 0.030* 0.574 0.158 0.255 0.051 0.333 0.978 0.818
NT5E 0.396 0.690 0.015* 0.076 0.555 0.689 0.533 0.491 0.309 0.176 0.957 0.718
NUP210 0.659 0.742 0.110 0.051 0.224 0.979 0.197 0.195 0.489 0.019* 0.956 0.974
PFKFB3 0.508 0.116 0.123 0.564 1.000 0.025* 0.447 0.880 0.934 1.000 0.035* 0.716
PLOD1 0.539 0.970 0.094 0.522 0.197 0.892 0.366 0.329 0.978 0.866 0.868 0.048*
PLOD2 0.870 0.046* 0.597 0.429 0.757 0.437 0.039* 0.072 0.309 0.825 0.870 0.158
SDC2 0.013* 0.361 0.153 0.197 0.224 0.936 0.372 0.833 0.978 0.867 0.622 0.120
STC1 0.338 0.690 0.079 0.604 0.933 0.503 0.224 0.454 0.022* 0.868 0.663 0.670
TGFBI 0.639 0.535 0.053 0.045* 0.045* 0.851 0.372 0.292 0.306 0.303 0.239 0.530
TPST1 0.934 0.635 0.077 0.011* 1.000 0.687 0.574 0.382 0.391 0.182 0.239 0.221
VCAN 0.218 0.856 0.021* 0.067 0.072 0.376 0.718 0.436 0.284 0.376 0.913 0.251
ZBTB20 0.119 0.537 0.172 0.643 0.086 0.810 0.158 0.811 0.039 0.619 0.978 0.577

B n: naïve B-cells; B m: memory B-cells; M2: M2 macrophages; Mono: monocytes; CD4 a: memory-activated CD4 T-cells; CD4 r: memory resting CD4 T-cells; CD4 n: naïve CD4 T-cells;
Tfh: follicular helper T-cells; NK r: resting NK cells; Neu: neutrophils; DC a: activated dendritic cells; cδT: gamma delta T-cells.
*: p<0.05.
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tumor metabolic phenotypes. Myriad studies have indicated that
mutant TP53 can remodel TME by several mechanisms. First,
mutant TP53 could induce neo-angiogenesis by stimulating
VEGF secretion (Kieser et al., 1994). Second, mutant TP53
could regulate chemokines that are involved in the
homeostatic microenvironment (Yeudall et al., 2012). Last but
not the least, mutant TP53 could reprogram the infiltrating
immune cells and reshape the microenvironment (Cooks et al.,
2018). TTN is located on chromosome 2q31, consisting of 364
exons, and it is the longest described coding gene (Chauveau
et al., 2014). TTN ranks the third most abundant protein in both
cardiac and skeletal muscle tissues, followed by actin and myosin
(Chauveau et al., 2014). However, its mutation is not a rare entity
in various cancers. Consistent with prior investigation by Cheng
X et al., we also found that TTN missense mutation was a rather
frequent type (Cheng et al., 2019). In addition, TTN and TP53 co-
mutation is often accompanied during tumorigenesis and may
serve as a prognostic biomarker either alone or in combination
[61-63].

Current guidelines recommend adjuvant chemotherapy
for patients at an advanced stage. However, how to select
suitable patients who will benefit more from the
chemotherapeutic regime is the prior concern. Our data
demonstrated that patients with a high-risk score were
more sensitive to camptothecin, gemcitabine,
methotrexate, and vorinostat, suggesting that targeting
glycolysis may alleviate the chemotherapeutic resistance.
Despite immunotherapy bringing about a breakthrough for

cancer patients, only a minority of patients could reap
survival benefits actually. The TMB analysis in our study
will accurately and effectively identify which patients will
respond to immunotherapy in patients with EAC.
Collectively, the proposed risk score system in our study
has potency to help clinicians devise an individualized
treatment strategy.

The strength of the present study is such that we performed a
systematic analysis about glycolysis and TME in EAC for the first
time based on the National Public Database, which provides
robust data and statistical support. This study draws a close link
between tumor glycolysis and the microenvironment and
tentatively explains the mechanisms from the viewpoint of
genetic alteration. Meanwhile, there are several limitations.
First of all, TME is a complex mixture of parenchymal cells,
the extracellular matrix, and numerous cytokines except for
tumor and immune cells. These are not available from the
public database and may greatly affect the analysis. Second,
the results are not validated in in vitro and in vivo
experiments. Last, the methods proposed in this study may
not be applicable to all tumors as a result of heterogeneity.
Notwithstanding its limitations, our study does provide an
overview of glycolysis and TME in EAC, and this lays the
foundation for further basic research in the area of
metabolism and the microenvironment.

In summary, we found that glycolysis could change the
microenvironment under the driver of genetic mutation and
influence the immunotherapy in EAC. New efforts target that

FIGURE 10 | Validation of drug sensitivity analysis in the GEO database. Box plots demonstrate the estimated IC50 values of bexarotene (A), camptothecin (B),
gemcitabine (C), imatinib (D), methotrexate (E), and vorinostat (F). The lower the IC50 value, the higher is the sensitivity to the drug.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 74313314

Zhu et al. Landscape of Glycolysis and Microenvironment

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


EAC should incorporate the idea that the glycolytic metabolism
could reshape TME. Further studies are necessary to confirm our
conclusion.
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APPENDIX A:

TABLE A1 | R Glycolytic Effects in Other Cancers

Glycolysis factors Tumor Glycolytic effects

GRG Bladder cancer Influences cell proliferation and cycle
GRG Breast cancer Pro-tumor immunity
glycolysis Cervical cancer Indirect effect
SPAG4, ENO3, et al Colon adenocarcinoma Double effects on prognosis
GRG Colorectal cancer Double effects on prognosis
STC1, CLDN9, et al Gastric cancer Influence the microenvironment and prognosis
GGESS Glioblastoma Poor prognosis and poor chemotherapy
GRGPs Hepatocellular carcinoma Double effects on prognosis and treatments
GRG HNSCC Double effects on prognosis and treatments
HMMR, GPC1, et al Lung cancer Poor prognosis and metastasis
GRG Ovarian cancer Influence the microenvironment and therapy
glycolysis Pancreatic cancer Promote progression and reduce drug sensitivity
GRG Prostate cancer Cell migration and invasion inhibition
CD44, PLOD1, et al Renal cell carcinoma Tumor-promoting
GRG Uveal melanoma Influence the microenvironment, prognosis, and therapy

GRG: glycolysis-related gene; GGESS: glycolytic gene expression signature score; GRGPs: glycolysis-related gene pairs; HNSCC: head and neck squamous cell carcinoma.
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