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Aplastic anemia (AA) is an autoimmune disease characterized by peripheral blood
pancytopenia and bone marrow failure. Recently, a research study verified bone
marrow failure of AA patients resulting from hematopoietic stem and progenitor cell
(HSPC) attack by active T cells. Nonetheless, whether B cells, as one of the important
immune cells, destruct the hematopoiesis is still unclear. Here, a large-scale single-cell
transcriptomic sequencing of 20,000 bone marrow cells from AA patients and healthy
donors was performed. A total of 17 clusters and differentially expressed genes were
identified in each cluster relative to other clusters, which were considered potential marker
genes in each cluster. The top differentially expressed genes in HSPCs (S100A8, RETN,
and TNFAIP3), monocytes (CXCL8, JUN, and IL1B), and neutrophils and granulocytes
(CXCL8, NFKBIA, andMT-CYB) were related to immune and inflammatory injury. Then, the
B-cell receptor (BCR) diversities and pairing frequencies of V and J genes were analyzed.
The highest pairing frequencies in AA patients were IGHV3-20-IGKJ2, IGHV3-20-IGKJ4,
and IGHV3-20-IGHLJ2. Meanwhile, there were 3 V genes, including IGHV3-7, IGHV3-33,
and IGLV2-11, with elevated expression in B cells from AA patients. Cell type–specific
ligand–receptor was further identified in B-cell interaction with hematopoietic cells in the
bone marrow. The changed ligand–receptor pairs involved antigen presentation,
inflammation, apoptosis, and proliferation of B cells. These data showed the
transcriptomic landscape of hematopoiesis in AA at single-cell resolution, providing
new insights into hematopoiesis failure related with aberrance of B cells, and provide
available targets of treatment for AA.
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INTRODUCTION

Aplastic anemia (AA) is an autoimmune disease characterized by peripheral blood pancytopenia and
bone marrow failure (Young, 2018; Liu et al., 2019). It may occur at any age; however, young
individuals (10–25 years) and the elderly (>60 years) are the most susceptible. No significant
differences in gender have been reported. Although the clinical symptoms of AA can be
improved by bone marrow transplantation and/or immunosuppressive therapy (Bacigalupo,
2017), the lack of suitable donors and the side effects of immunosuppressant therapy remain
problematic (Pierri and Dufour, 2019). Currently, no effective clinical treatments for AA are
available.

In AA patients, hematopoietic stem and progenitor cells (HSPCs) show decreased number as well
as reduced proliferation and differentiation, and immune cells have abnormal activation. However, it

Edited by:
Jinyan Huang,

Zhejiang University, China

Reviewed by:
Shixiong Zhang,

Xidian University, China
Xia Li,

Zhejiang University, China

*Correspondence:
Yin Liming

yinlm0509@zcmu.edu.cn

Specialty section:
This article was submitted to

Human and Medical Genomics,
a section of the journal
Frontiers in Genetics

Received: 22 July 2021
Accepted: 29 November 2021
Published: 03 January 2022

Citation:
Tonglin H, Yanna Z, Xiaoling Y, Ruilan G
and Liming Y (2022) Single-Cell RNA-

Seq of Bone Marrow Cells in
Aplastic Anemia.

Front. Genet. 12:745483.
doi: 10.3389/fgene.2021.745483

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7454831

ORIGINAL RESEARCH
published: 03 January 2022

doi: 10.3389/fgene.2021.745483

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.745483&domain=pdf&date_stamp=2022-01-03
https://www.frontiersin.org/articles/10.3389/fgene.2021.745483/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.745483/full
http://creativecommons.org/licenses/by/4.0/
mailto:yinlm0509@zcmu.edu.cn
https://doi.org/10.3389/fgene.2021.745483
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.745483


is unclear whether the molecular changes of mRNAs in HSPCs
and HPCs due to transcriptome differences among cells are
completely masked when population-level RNA-seq is
performed. Therefore, it is urgent to identify new marker
genes as therapeutic targets.

Most AA cases show effective response to
immunosuppressive agents, while some aplastic patients
respond well to rituximab treatment, indicating that activated
T cells and abnormal B cells destroy hematopoietic cells in AA
patients (Bacigalupo, 2017; Zhu et al., 2021). Further studies
showed a negative correlation between the amount of regulatory
T cells and CD20 + B cells in aplastic patients, suggesting that
the inhibitory effect of regulatory T cells on B cells is weakened
in aplastic patients (Huuhtanen et al., 2019). Therefore, it is
unclear whether clonal expansion of B cells is associated with
aplastic B-cell abnormalities.

Interestingly, single-cell RNA-seq (scRNA-seq) is considered a
powerful tool for comprehensively dissecting cellular
heterogeneity, and these advances have enabled the
transcriptomes of tens of thousands of cells to be assayed at
single-cell resolution in a single experiment. Substantial data have
been obtained by scRNA-seq of T cells and HSPCs in AA patients
(Firat et al., 1998; Butler et al., 2018). It is thus of great interest to
cease this unprecedented opportunity to dissect the cellular
heterogeneity of bone marrow cells from AA patients by large-
scale single-cell transcriptomic profiling.

Here, a large-scale single-cell transcriptomic sequencing
of 20,000 bone marrow cells from AA patients and healthy
donors was performed. A high-quality dataset was provided,
which would be a valuable resource for dissecting the
intrapopulation heterogeneity as well as interrogating
lineage priming patterns for any lineages at single-cell
resolution. Meanwhile, the BCR diversities, pairing
frequencies of the V and J genes, and ligand–receptor pairs
in B-cell interaction with hematopoietic cells in the bone
marrow were analyzed.

METHODS

Cell Preparation
BM samples were collected from two adult healthy donors
and two AA patients at the First Affiliated Hospital of
Zhejiang Chinese University. All participants provided
written informed consent before enrollment in this study.
Biospecimen collection protocols complied with local
guidelines and were approved by the Ethics Committee of
the First Affiliated Hospital of Zhejiang Chinese University.
The isolation procedure was described previously (Macosko
et al., 2015). Mononuclear cells (MNCs) were isolated using
Ficoll–Hypaque gradient separation (Tianjin Hao Yang
Biological Products Technology, China). CD34 + cells were
purified from MNCs with the human anti-CD34 MicroBeads
Isolation Kit (Miltenyi Biotec) according to the
manufacturer’s specifications, and CD34 + cells were
obtained. Then, MNCs mixed with CD34 + cells at a 4:1
ratio were analyzed by 10× Genomics.

Single-Cell RNA-Seq Data Preprocessing
The Cell Ranger software pipeline (version 2.2.0) provided by
10× Genomics was used to demultiplex cellular barcodes,
map reads to the genome and the transcriptome using the
STAR aligner, and down-sample reads as required to generate
normalized aggregate data across samples, producing a
matrix of gene counts versus cells. The unique molecular
identifier (UMI) count matrix was processed using the R
package Seurat (Mabbott et al., 2013) (version 2.3.4). To
remove low-quality cells and likely multiplet captures,
which is a major concern in microdroplet-based
experiments, a criterion to filter out cells with UMI/gene
numbers out of the limit of mean value ± two-fold of standard
deviations was applied, assuming a Gaussian distribution of
each cell’s UMI/gene numbers. Following visual inspection of
the distribution of cells by the fraction of mitochondrial genes
expressed, low-quality cells in which >10% of the counts
belonged to mitochondrial genes were further discarded.
After applying these QC criteria, 20,419 single cells and
33,538 genes in total remained, and were included in
downstream analyses. Library size normalization was
performed with Seurat on the filtered matrix to obtain the
normalized count.

Top variable genes across single cells were identified by the
method described by Macosko et al. (Li et al., 2017). Briefly,
average expression and dispersion were calculated for each
gene, and all genes were subsequently placed into 17 bins
based on their expression. Principal component analysis
(PCA) was performed to reduce the dimensionality of the
log-transformed gene-barcode matrices of top variable genes.
The cells were clustered based on the graph-based clustering
approach and visualized in two dimensions using tSNE. The
likelihood ratio test that simultaneously tests for changes in
mean expression and percentage of expressed cells was used
to identify significantly differentially expressed genes among
clusters. The R package SingleR, a novel computational
method for unbiased cell type recognition of scRNA-seq,
with two reference transcriptomic datasets
“blueprint_encode” (da Silva et al., 2020), was utilized to
infer the cell of origin of each of the single cells independently
and to identify cell types. RNA-seq data are deposited in the
Gene Expression Omnibus database under the accession
number GSE145669.

RESULTS

Study Participants
Aplastic anemia patients 1 (AA1) and 2 (AA2) were
diagnosed with serious aplastic anemia (SAA). Absolute
neutrophil count, platelets, and hemoglobin concentration
were decreased in both patients. Their clinical characteristics
are summarized in Table 1, Supplemental Figure 1, and
Supplementary Table S1.

The features of BM cytology for these patients are described in
Table 1. AA patients presented abnormalities in hematopoietic
cells and non-hematopoietic cells. The percentage of
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hematopoietic cells was decreased in the bone marrow of AA
patients, while that of non-hematopoietic cells was increased.

Single-Cell RNA-Seq Identifies Multiple Cell
Populations in the Bone Marrow
The 10× Genomics Chromium platform was employed to
construct single-cell RNA-seq libraries of four bone marrow
samples, including two each from healthy donors and AA

cases. Saturation curve analysis indicated that the sequencing
depth was almost sufficient for gene detection in each sample,
and the median numbers of genes detected per cell were
comparable among the four samples (Supplementary
Figure S2A). The distribution of the three data quality
metrics, that is, the proportion of UMI counts for
mitochondrial genes, the number of genes detected, and
the sum of UMI counts in each cell, fitted a generalized
liner model by filtering delocalized cells among the four

TABLE 1 | Peripheral blood counts and bone marrow features in patients with aplastic anemia and healthy donors.

Case Gender Age
(years)

WBC Neutrophils Platelets Hb
(g/L)

M/E
ratio

Granulocytes
(%)

Erythroblasts
(%)

Megakaryocytes
(%)

Lymphocytes
(%)109/

L
109/L 109/L

Normal-
1

Female 37 6.7 4.4 195 129 2.5 55.0 22.0 More 16.0

Normal-
2

Female 47 6.5 4 266 128 3.18 62.0 19.5 More 14.0

AA1 Female 56 1.3 0.5 23 69 0.76 36.0 47.0 Rare 14.5
AA2 Male 21 1.5 0.4 9 67 0.2 6.0 30.0 Rare 58.5

FIGURE 1 |Overview of cell heterogeneity in samples from AA patients and healthy donors. Totally 17 cell clusters were identified by scRNA-seq. (A) Totally 17 cell
clusters were identified by heat-distributed stochastic neighbor embedding (tSNE). (B) Marker genes of each cell cluster. (C) Cell type identification and distribution in
each cell cluster. (D) Heatmap depicting representative differentially expressed genes from each cell cluster. (E) Proportions of cell clusters in each sample. (F) Cycle of
each cell cluster.
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samples. To exclude potential low-quality data that may
result from broken cells, multiples, or other technical
issues, stringent thresholds were set for the three data
quality metrics, and high-quality data for 20,000 cells were
finally retained (Supplementary Figure S2B and
Supplementary Table S2). Taken together, a high-quality
large-scale single-cell transcriptomic dataset of cells from
bone marrow specimens was generated.

The single-cell sequencing data matrix contained tens of
thousands of genes, which made cluster analysis difficult. In
order to obtain better clustering results, the t-distributed
stochastic neighbor embedding (tSNE) dimension reduction
algorithm was used to reduce the dimension and to cluster the
obtained single-cell UMI quantitative matrix; 2 (2D) or 3 (3D)
dimensions were taken for clustering. The tSNE program was
used to display the results of single-cell RNA-seq data. The 17
clusters were identified, and their distribution in the AA and
healthy donor groups was analyzed (Figure 1A). Through
differential gene analysis, genes differentially expressed in each
cell group to other cell groups were identified, constituting
potential marker genes in each cell group. SingleR was used to
determine the correlation between the expression profile of the
identified cells and the reference dataset; the cell type with the
highest correlation in the reference dataset was assigned to the
identified cells. The visualization diagrams of marker genes in
various cell clusters in tSNE are shown in Figure 1B. Based on the
gene expression pattern of each cluster, HSPCs, monocytes,
neutrophils, erythrocytes, T cells, B cells, and plasma cells
were identified (Figure 1C). Figure 1D shows the heatmap for
representative differentially expressed genes in each cluster. The
changes in the proportion of each cluster are shown in Figure 1E.
Interestingly, HSPCs were mainly expressed in the G2/S phase of
the cell cycle, and immune cells were mainly expressed in the G1
phase (Figure 1F).

HSPCs
The tSNE program was used to display the results of single-cell
RNA-seq data. The tSNE method gives a sensitive separation of
closely related groups of objects. There were common genes in
Clusters 1, 5, 8, 10, and 13, including SPINK2, SOX4, FAM30A,
CDK6, AC084033.3, STMN1, SMIM24, PRSS57, MEF2C, and
IGLL1. The top 10 marker genes of Clusters 1, 5, 8, 10, and 13 are
shown in Supplementary Table S3. Compared with healthy
donors, the top differentially expressed genes in AA patients
were DEFA4, DEFA3, LYZ, IGKV1-5, IGKV3-20, S100A8,
RETN, S100A9, IL7R, TNFAIP3, CXCR4, SOX4, RPS4X,
STMN1, IGLL1, and SPINK2. With distinct gene expression
patterns and lineage-specific differentiated transcription
factors, HSPCs were segregated into a mixed population of
hematopoietic stem cells and multipotent progenitors (HSC/
MPPs, Cluster 1), granulocyte and monocyte progenitors
(GMPs, Cluster 5), megakaryocyte and erythroid progenitors
(MEPs, Cluster 8), pre-B cells (Cluster 10), and T lymphoid
progenitors (TLPs, Cluster 13).

In KEGG pathway enrichment analysis, upregulated genes
were involved in many signaling pathways, including NF-
kappa B signaling, T-cell receptor signaling, Th1 and Th2 cell

differentiation, Th17 cell differentiation, natural killer
cell–mediated cytotoxicity, and oxidative phosphorylation
(Supplementary Figure S3). Therefore, HSPCs tended to
differentiate into lymphocytes in AA, which may
contribute to hematopoietic repression in AA.

B Cells
The top 10 marker genes of Cluster 7 were MS4A1, TCL1A,
LINC00926, FCER2, CD19, FCRL1, FCRLA, BLK, LINC01857,
and LINC02397 (Figure 2A). CD19 is a known marker for B cells
(Nielsen et al., 2020). Therefore, it was confirmed that Cluster 7
cells were B cells. Compared with healthy donors, the top
differentially expressed genes in AA patients were involved
with protein translation (RPS26 and RPS4Y1),
immunoglobulin production (HLA-DRB5, IGHV3-7, IGKV1-
39, IGKV1-5, IGLV1-40, and IGLV3-1), IL-17 activation genes
(S100A8, S100A9, and S100A12), and cell differentiation
(TMEM107) (Figures 2B,C). In the KEGG pathway
enrichment analysis, the differentially expressed genes were
involved in many signaling pathways, including P53 signaling
pathway, Th1 and Th2 cell differentiation pathways, B-cell
receptor signaling pathway, and IL-17 signaling pathway,
which display a cell-specific expression profile (Figures 2D,E).
Therefore, gene alterations in B cells participated in AA
pathogenesis.

BCR Diversities and Pairing Frequencies of
V and J Genes
BCR diversity was analyzed in healthy donors and AA patients by
rarefaction curve, rank abundance curve, venn diagram, and D50
index analyses (Figure 3A). The number of BCR collotypes in the
AA1 and AA2 samples was 778 and 1,170, respectively. The
number of collotypes in both AA1 and AA2 samples was 19
(Figures 3A–C). The D50 value was also higher in AA patients
than in the Normal group (Figures 3A–D). Therefore, BCR
diversity in AA patients was significantly higher than in
healthy donors.

The frequency of V–J gene pairing was higher in the AA
group than in the Normal group (Supplemental Table 4 and
Figure 3B). The top pairing frequencies in AA patients were
IGHV3-20-IGKJ2, IGHV3-20-IGKJ4, and IGHV3-20-
IGHLJ2 (Supplemental Figure 4A). For CDR3 amino acid
sequence lengths under 30–40 bp, the ratio of the top 10
CDR3 amino acid sequences was lower in the AA group than
in the Normal group. For those >40 bp of CDR3 amino acid
sequence lengths, the ratios of the top 10 CDR3 amino acid
sequences were similar in the AA and Normal groups
(Figure 3C). The distribution map of V gene composition
with the length distribution of CDR3 amino acid sequences is
shown in Supplementary Figure S4B. The 12 high-
abundance V genes in the AA group were mainly
distributed in 30–40 bp CDR3 amino acids. Meanwhile, the
12 high-abundance V genes in the Normal group were mainly
distributed in 30–60 bp CDR3 amino acid sequences. It was
speculated that higher pairing frequencies and CDR3 amino
acid sequence changes participated in AA pathogenesis.
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To assess the unique changes and preferred BCR genes in
AA, the use of VDJ genes between AA patients and healthy
donors was compared. An overrepresentation of the IGHV3
and IGHV2 families was observed, especially IGHV3-7,
IGHV3-33, and IGLV2-11, which were almost not
expressed in healthy donors (Figure 3D). In contrast,
IGLV1-44 was almost not expressed in AA samples
(Figure 3E). The expression pattern of the V gene was
incompletely similar in the AA group versus that in the
healthy donors (Figure 3F). The abovementioned genes
may serve as markers for AA diagnosis.

An increase of clonotypes in AA patients together with a
skewed use of the IGHV gene suggested that abnormal expression
and clonotypes in VDJ genes might contribute to AA
pathogenesis. Notably, the abnormal use of dominated IGV
genes in AA patients, especially IGHV3-7, IGHV3-20, and
IGHV3-33, provided a target for the rational design of
monoclonal antibodies.

Plasma Cells
The top 10 marker genes of Cluster 14 were DERL3, SDC1,
IGHG4, JSRP1, IGLL5, FCRL5, TNFRSF17, SPAG4,

TXNDC5, and TNFRSF13B (Figure 4A). It was reported
that DERL3, SDC1, IGLL5, and FCRL5 are markers of
plasma cells (Holm and Hansen, 2020). SDC1 was only
expressed in Cluster 14. Therefore, it was confirmed that
Cluster 14 cells were plasma cells. Compared with healthy
donors, the top differentially expressed genes in AA patients
were IGHV3-7, IGHV4-39, IGLV3-25, IGLV6-57, IGKV4-1,
IGKV1-27, IGKV2-30, IGLV2-23, IGKV1-6, IGHV1-69D,
IGHG4, HLA-DRB1, CD52, HLA-DRA, ANKRD13A,
HCLS1, TMSB4X, PTGES3, CALM2, MESD, RPL39,
PCBP1, RPS27, ARHGDIB, TMSB10, ATP5MC2, BANF1,
ARGLU1, MCUB, TRMT112, HMGN1, RARRES3,
PPP1R15A, WDR74, TNFAIP3, JUND, IER2,
NEAT1,TMEM107, CYTOR, IGKC, HIST1H4C, JUN,
SQSTM1, NFKBIA, PTCH2, and SEPT6 (Figures 4B,C). In
the KEGG pathway enrichment analysis, differentially
expressed genes were involved in many signaling pathways,
including apoptosis, necroptosis, IL-17 signaling pathway,
osteoclast differentiation, TNF signaling pathway,
mitophagy, and ribosome and oxidative phosphorylation.
Importantly, NFKBIA and IL-17 participate in the positive
feedback regulation mechanism of monocyte inflammation.

FIGURE 2 | Alterations of B-cell genes in samples from AA patients. (A) Violin plot of the top 10 marker genes in B cells. (B) Heatmap of differentially expressed
genes in B cells. (C) Gene clustering of differentially expressed genes in B cells. (D) GO analysis of differentially expressed genes in B cells. (E) KEGG pathways of
differentially expressed genes in B cells.
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Therefore, gene alterations in plasma cells participated in
Th17 cell differentiation in AA patients.

Monocytes
The top 10 marker genes of Clusters 2 and 15 were LGALS2,
TMEM176A, SLC7A7, RBP7, CD300E, LRP1, CD163, TREM1,
NRG1, and HK3 (Figure 5A). Meanwhile, CD14 is a recognized
marker of monocytes and is only expressed in Cluster 2
(Bacigalupo et al., 1980). Therefore, it was confirmed that
Cluster 2 cells were monocytes. Compared with healthy
donors, the top differentially expressed genes in AA patients
were AHSP, C1QA, C1QB, CA1, CCL3, CD52, CLEC12A,

CXCL2, CXCL8, DUSP2, IL1B, JUN, LYPD2, NFKBIA,
RNASE1, RPS26, RPS4Y1, SLC40A1, etc (Figure 5B). The
KEGG pathway enrichment analysis indicated that
differentially expressed genes were involved in many signaling
pathways, including IL-17 signaling pathway, TNF signaling
pathway, NF-kappa B signaling pathway, Th17 cell
differentiation, and NOD-like receptor signaling pathway.
Importantly, NFKBIA and IL-17 participate in the positive
feedback regulation mechanism of monocyte inflammation.
Therefore, monocytes were in a state of inflammatory
activation and participated in Th17 cell differentiation in AA
patients.

FIGURE 3 | BCR diversities and pairing frequencies of V and J genes. (A) BCR diversities, including sample dilution curve (a), rank abundance curve of BCRs (b),
venn diagram of BCRs (c), and the D50 index of BCR diversity (d). (B) Heatmap depicting V–J gene pair use frequency (C) Distribution map of V gene composition with
the length distribution of CDR3 amino acid sequences. (D) Heatmap of the V gene. (E) Heatmap of the J gene. (F) Coincidence comparison of immune group libraries.
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Neutrophil Granulocytes
The top 10 marker genes of Cluster 11 were LCN2, CMTM2,
S100P, PROK2, ANXA3, CD177, MCEMP1, RETN, PGLYRP1,
and FOLR3 (Figure 6A). FOLR3 is specific for neutrophil
granulocytes, which function as antimicrobial and antitumor
cells. The expression of FOLR3 in AA patients was lower than
that of Normal donors. Therefore, it was confirmed that Cluster
11 cells were neutrophil granulocytes. Compared with healthy
donors, the top differentially expressed genes in AA patients were
CA1, AHSP, RPS26, PTMA, CXCL8, RPL10, UBB, NFKBIA,

MT-CYB, DUSP1, PRDX2, RPS8, ZFP36, RPL5, RPL7A, RPS3,
RPLP2, RPL13, RPL8, FCN1, FOLR3, CLEC12A, etc (Figure 6B).
In the KEGG pathway enrichment analysis, these differentially
expressed genes were involved in many signaling pathways,
including ribosome, antigen procession and presentation,
oxidative phosphorylation, B-cell receptor signaling pathway,
and IL-17 signaling pathway. Interestingly, genes associated
with ribosomal protein (RP) were upregulated, including
RPL8, RPL13, RPLP2, RPS3, RPL7A, RPL5, RPS8, and RPS26.

FIGURE 4 | Gene alterations in plasma cells from AA patients. (A) Violin
plot of the top 10 marker genes in monocytes. (B) Heatmap of differentially
expressed genes in monocytes. (C) GO analysis of upregulated genes in
monocytes. (D) KEGG pathway of upregulated genes in monocytes. FIGURE 5 | Gene alterations in monocytes from AA patients. (A) Violin

plot of the top 10 marker genes in monocytes. (B) Heatmap of differentially
expressed genes in monocytes. (C) GO analysis of upregulated genes in
monocytes. (D) KEGG pathway of upregulated genes in monocytes.
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It was speculated that the upregulation of RP genes was associated
with abnormal neutrophil granulocytes in AA patients.

Erythroblasts
There were common genes in Clusters 6, 9, and 12, including
SELENBP1, GMPR, IFI27, DMTN, KRT1, PHOSPHO1,
AC130456.3, and LINC00570. The top 10 marker genes of
Cluster 6 were SELENBP, IFIT1B, GMPR, IFI27, DMTN,
KRT1, PHOSPHO1, AC130456.3, PDZK1IP1, TMCC2, and
LINC00570. The top 10 marker genes of Cluster 9 were

SPTA1, SOX6, YPEL4, TSPO2, ANKRD9, FHDC1, FRMD4A,
HEPACAM2, AC100835.2, and SLFN14. The top 10 marker
genes of Cluster 12 were AQP1, HJURP, A4GALT,
TMEM233, PBK, SKA1, CA3, CCDC68, SLC25A21, and
KREMEN1. Meanwhile, erythrocyte-specific transcription
factors, including GATA-1, GATA-2, and KLF1, were
expressed in Clusters 6, 9, and 12. Though the cells belonged
to erythrocytes in Clusters 6, 9, and 12, it was speculated that they
were in a different cell phase.

Megakaryocytes
The top 10 marker genes of Cluster 16 were PF4V1,
AC147651.1, AP001189.1, ENKUR, AP001189.3, BEND2,
LY6G6F, AC090409.1, C15orf54, and TRAPPC3L. These
are markers associated with megakaryocytes. The genes
associated with megakaryocyte development and
maturation were downregulated in AA patients, including
WDR1, CASP3, MPIG6B, GATA1, CLEC1B, and ACTN1.
Chemokines were upregulated in AA patients, including
VCAM1, NCF1, CXCL12, CYBA, ICAM1, NCF4, and
CYBB. Megakaryocyte hematopoiesis was in a state of
inhibition by immune injury or inflammation in AA
patients.

Molecular Interaction of B Cell With
Hematopoietic Cell in the Bone Marrow
A total of 496 cell type–specific ligand–receptor pairs in AA cells
and 436 ligand–receptor pairs in normal cells were detected. The
total number of each cell interaction was increased in patients.
However, it was found that there were 67 ligand–receptor pairs
in B-cell interaction with other cells in AA patients, including
erythroid-like and erythroid precursor cells, HSCs, monocytes,
neutrophils, NK and T cells, and platelets; there were 72
ligand–receptor pairs in healthy donors. The ligand–receptor
pairs were decreased in AA patients compared with those in
healthy donors, but constitution of ligand–receptor pairs was
different in AA patients compared with healthy donor (Figures
7A,B). Of them, 15 ligand–receptor pairs were different
comparing AA patients with healthy donors. There were four
ligand–receptor pairs that were broadly activated among B cells
and other cells, such as CD55_ADGRE5 that regulates the
complement system, LAMP1_VSTM1 that regulates IL-17
secretion, TNFRSF10A_TNFSF10 that regulates the NKκB
signal pathway, and CXCR4_CXCL12 that regulates homing
of B cells (Figure 7C). There were five ligand–receptor pairs
broadly inactive among B cells and other cells, such as
LILRB1_HLA-F involved in inhibiting immune response,
LAMP1_FAM3C involved in inflammation, CD40_CD40LG
involved in anti-apoptosis signaling, CD22_PTPRC involved
in the regulation of B-cell antigen receptor signaling, and
CD47_SIRPG involved in preventing the maturation of
immature dendritic cells and inhibiting cytokine production
by mature dendritic cells. These results suggest that immune
dysfunction in B cells, monocytes, neutrophils, and NK and
T cells may be stimulated by B cells and accelerate bone marrow
hematopoiesis failure.

FIGURE 6 | Gene alterations in neutrophil granulocytes from AA
patients. (A) Violin plot of the top 10 marker genes in neutrophil granulocytes.
(B) Heatmap of differentially expressed genes in neutrophil granulocytes. (C)
GO analysis of upregulated genes in neutrophil granulocytes. (D) KEGG
pathways of upregulated genes in neutrophil granulocytes.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7454838

Tonglin et al. Heterogeneity of Bone Marrow cells

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | Molecular interaction of B cells with hematopoietic cells in the bone marrow. (A) Heatmap of the pairs of interactions between different cells. (B)
Stacked bars of the ligand–receptor pairs interacting between cells. (C) Spectrum of ligand–receptor pairs between B cells (columns) and hematopoietic cells (rows). Dot
sizes and colors represent logarithmic-transformed P values and mean expression of interacting molecules in corresponding cells.
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DISCUSSION

Great advances in AA have been achieved in acknowledging its
pathophysiology and performing treatment in the past decade.
However, HSPC heterogeneity, BCR diversity, and VDJ gene
pairing frequency in AA remain unclear.

In this study, MNCs mixed with CD34 + cells at a 4:1 ratio
were classified into 17 clusters by single-cell RNA-seq. Our
results are incompletely different with reported studies. A
previous report classified CD34 + cells into nine clusters by
single-cell RNA-seq (Zhu et al., 2021). In this study, HSPCs
were found in Clusters 1, 5, 8, 10, and 13. Compared with
healthy donors, upregulated genes in HSPCs were involved in
signaling pathways related to lymphocyte development. A
study reported that in vitro co-culture of patient bone
marrow–derived T cells with healthy bone marrow results
in significant repression of hematopoiesis (Bacigalupo et al.,
1980). It was found that the top differentially expressed genes,
including S100A8, TNFAIP3, and IGLL1, in HSPCs were
associated with the development of lymphocytes (Du et al.,
2013; Yun et al., 2018; Das et al., 2019; Lu et al., 2019).
Therefore, it was speculated that HSPC tendencies to
differentiate to lymphocytes may destroy hematopoiesis in
patients with AA.

Abnormalities were found in monocytes and neutrophil
granulocytes in patients with AA. In the KEGG pathway
enrichment analysis, both cell types were associated with
Th17 cell differentiation. It was reported that inflammatory
factors secreted by monocytes and neutrophil granulocytes
could induce the differentiation of Th17 cells (Li et al., 2018).
In addition, regulators associated with the development of
Th17 cells are expressed in the peripheral blood monocytes
from patients with AA (Du et al., 2013). Therefore, monocytes
and neutrophil granulocytes are in a state of inflammatory
activation and participate in the differentiation of Th17 cells in
AA patients.

Mounting evidence indicates that not only T cells but also
B cells contribute to AA pathogenesis. Currently, many
researchers focus on the functions and markers of T cells
and B cells (Das et al., 2019; Huuhtanen et al., 2019). Studies
have recently found one or more types of antibodies in AA
patients that prompt B cell–mediated humoral immunity
(Hirano et al., 2003; Takamatsu et al., 2009). However, BCR
diversity and pairing frequency of the VDJ gene are rarely
examined. It was found that three V genes (IGHV3-7, IGHV3-
33, and IGLV2-11) were highly expressed in AA. It was
reported that elevated expression of IGHV3-7 and IGHV3-
33 is related to tissue injury in autoimmune diseases
(Pramanik et al., 2011). Moreover, high pairing frequency
of the V and J genes was found in virus-induced lung
diseases (Wen et al., 2020). Therefore, it was speculated that
B-cell participation in AA pathogenesis is related to altered V
and J gene expressions.

Molecular interactions reflect the effect of B cells on the
development of the hematopoietic cell of the bone marrow. It
was found that the immune abnormalities of AA are related
to the abnormalities of immune activation and immune

negative regulation. Hence, the treatment of AA mainly
focuses on the suppression of immune and
immunosuppressive therapy is as the first line treatment
for AA patient, now.. However, the efficacy is not
satisfactory. And, a study reports that ligand–receptor
pairs in AA patients treated with immunosuppression still
actively interacted in HSPCs and T cells (Zhu et al., 2021).
So, it was found that the changed ligand–receptor pairs
suggest that immune dysfunction in B cells, monocytes,
neutrophils, and NK and T cells may be stimulated by
B cells, and thus accelerate bone marrow hematopoiesis
failure. Both NK and T cells are derived from lymphoid
progenitor cells, and they share many similarities in
collotypes and function (Sun et al., 2009; Schlub et al.,
2011). One must admit that there must be differences
between the two. Considering the following points, there
are no clear distinction: 1. Single-cell dimensionality
reduction clustering often gathers cells with similar
expression, and T cells and NK tend to gather together
because their expression profiles are similar, especially
T cells with lethal function (e.g., CD8 toxic T cells) and
NK; 2. The difference between NK and T cells is often the
difference of individual molecules, such as CD3d.
Considering the similarity between them, they were not
distinguished here.

In summary, the effects of elevated V gene expression, high
pairing frequencies of the V and J genes, and change of
ligand–receptor pairs on B cell functions are unknown and
deserve further investigation. Data from two samples may not
be enough to comprehensively analyze changes in B cell genes
and BCR diversity in AA patients. Therefore, single-cell RNA-seq
data will be refined in future studies by addingmore samples from
AA patients.
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