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Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies and mortality
for PAAD have remained increasing under the conditions of substantial improvements
in mortality for other major cancers. Although multiple of studies exists on PAAD,
few studies have dissected the oncogenic mechanisms of PAAD based on genomic
variation. In this study, we integrated somatic mutation data and gene expression profiles
obtained by high-throughput sequencing to characterize the pathogenesis of PAAD. The
mutation profile containing 182 samples with 25,470 somatic mutations was obtained
from The Cancer Genome Atlas (TCGA). The mutation landscape was generated and
somatic mutations in PAAD were found to have preference for mutation location. The
combination of mutation matrix and gene expression profiles identified 31 driver genes
that were closely associated with tumor cell invasion and apoptosis. Co-expression
networks were constructed based on 461 genes significantly associated with driver
genes and the hub gene FAM133A in the network was identified to be associated
with tumor metastasis. Further, the cascade relationship of somatic mutation-Long non-
coding RNA (lncRNA)-microRNA (miRNA) was constructed to reveal a new mechanism
for the involvement of mutations in post-transcriptional regulation. We have also
identified prognostic markers that are significantly associated with overall survival (OS)
of PAAD patients and constructed a risk score model to identify patients’ survival risk.
In summary, our study revealed the pathogenic mechanisms and prognostic markers of
PAAD providing theoretical support for the development of precision medicine.

Keywords: pancreatic cancer, somatic mutation, genomic variation, prognostic marker, complex disease

INTRODUCTION

Pancreatic adenocarcinoma (PAAD) remains one of the deadliest cancer types and has become
the leading cause of cancer-related mortality in the United States (Rahib et al., 2014; Ilic and
Ilic, 2016). The incidence and mortality rates of PAAD vary widely worldwide and are highest in
developed countries (McGuigan et al., 2018). Although studies have shown that smoking, obesity,
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hereditary diabetes and irregular diet are risk factors for the
development of pancreatic cancer, the pathogenesis was still
poorly understood. Several of treatments exist that can improve
the prognosis of PAAD patients. For example, nab-paclitaxel
plus gemcitabine (Von Hoff et al., 2013) and FOLFIRINOX vs.
gemcitabine (Conroy et al., 2011). Although these treatments
have improved the survival of some patients, the 5-year survival
rate of PAAD still remains severe at 8% (Siegel et al., 2017).
Therefore, it is necessary to deeply discover the carcinogenic
mechanism and possible therapeutic targets of PAAD.

Genomic variation refers to differences in the structure
and composition of DNA between individuals or between
populations. With the development of high-throughput
sequencing, multiple sources of disease-related genomic
variation have been identified such as copy number variation and
somatic mutations. Large-scale cancer genome sequencing
consortia, such as The Cancer Genome Atlas (TCGA)
(Tomczak et al., 2015) and ICGC (International Cancer
Genome et al., 2010), have provided somatic mutation data from
numerous of tumor patients. The role of somatic mutations
in the development of specific cancer phenotypes is the main
purpose of cancer genomics studies (Vogelstein et al., 2013).
Somatic mutations have significant tumor heterogeneity,
and each individual has different sets of mutations across
many genes. Therefore, exploring the mutation-driven
regulation of gene expression can better serve the purpose
of precision medicine.

Work from the past decade has given us a whole new
perspective on non-coding RNAs. For example, Long non-coding
RNA (lncRNA) have been demonstrated to play an important role
in chromatin reprogramming, transcription, post-transcriptional
modifications and signal transduction (Anastasiadou et al., 2018;
Wang et al., 2021). LncRNA could act as a miRNA sponge to
participate in competitive endogenous RNA (ceRNA) regulation
determined by microRNA (miRNA) response elements (MREs)
(Salmena et al., 2011), which is an important way for it to regulate
gene expression post-transcriptionally. Somatic mutations in the
MRE region of the lncRNA may weaken, enhance or prevent
binding to the pro-miRNA, which may cause some imbalance
in the ceRNA regulatory network and even alter the expression
of related target genes in the regulatory pathway (Thomas et al.,
2011; Thomson and Dinger, 2016).

Here, we have collected mutation data, clinical information
and transcript expression profile of PAAD from TCGA to
conduct a systematic investigation concerning mutation features,
pathogenesis and prognostic markers.

MATERIALS AND METHODS

Data Collection
The somatic mutation profiles (182 samples), clinical
information (222 samples), and RNA-seq profiles (178
tumor and 4 paracancer samples) of PAAD were collected
from TCGA (Tomczak et al., 2015).1 We collected hallmark

1https://portal.gdc.cancer.gov/

gene sets from the molecular feature database (MSigDB
v7.4 Liberzon et al., 2015)2 for enrichment analysis of
carcinogenic functions. The human genome annotation
data of GRCh38 v29 version including the position and
sequence information of lncRNA was collected from GENCODE
(Frankish et al., 2019)3. The sequence information of 2654
miRNA was obtained from miRbase v22 (Kozomara et al.,
2019)4 database. Further, we downloaded the experimentally
validated miRNA-target gene regulatory relationships from
miRTarBase v8.0 (Chou et al., 2018)5 to reconstruct ceRNA
regulatory relationships.

Statistical Analysis of Somatic Mutations
The R package maftools (version 2.8.0) (Mayakonda et al., 2018)
was used for the statistical and visualization of mutation location,
mutation form, mutation frequency and other information. The
package enables efficient aggregation, analysis, annotation and
visualization of MAF files from TCGA sources or any in-house
study. We also used the visualization results of maftools to reveal
new discoveries of PAAD.

Driver Gene Identification
We first counted the number of mutations in each gene
across samples to generate a mutation matrix. Combined
with the gene expression profile of PAAD from TCGA,
we retained genes that were mutated in at least two
samples. Further, the difference in expression of each gene
between mutated and unmutated samples was measured
by Student’s t-test and fold change. We set the cutoff
for p-value and fold change to 0.05 and 1.5, respectively
(He et al., 2021). We define genes that are differentially
expressed between mutated and unmutated samples as
mutation driver genes.

Construction of Gene Co-expression
Networks
For the driver genes affected by mutations, we separately
calculated other genes co-expressed with each driver gene, which
may interact with each other and play a role in the occurrence
and development of PAAD. Pearson’s (Bishara and Hittner,
2012) correlation algorithm was used to calculate the correlation
between the expression of two genes, which was performed by
cor.test function of R. We defined gene pairs with p-value < 0.01
and correlation coefficient | R| > 0.5 as those with significantly
related expression. For all co-expressed genes, cytoscape (v3.7.0)6

(Shannon et al., 2003) was used to plot the co-expression network.
Further, NetworkAnalyzer was used to calculate the topological
properties of the network and to mark the size of the nodes
according to their degree.

2http://software.broadinstitute.org/gsea/msigdb
3https://www.gencodegenes.org/
4http://www.mirbase.org/ftp.shtml
5http://mirtarbase.cuhk.edu.cn/
6https://cytoscape.org/
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Identification of Putative
Mutation-miRNA-LncRNA Regulation
Units
Somatic mutations occurring in lncRNA may affect the affinity
of the original lncRNA and miRNA binding (Wang P. et al.,
2020; Zhang et al., 2021). Based on the lncRNA annotation
information collected from GENCODE (v29, GRCH38),
we relocated the mutations that occurred in the lncRNA.
Considering the requirements of miRNA target prediction
tools for predicted sequences, we extracted sequences of 21
approximately nucleotides (nt) upstream and 7 nt downstream
of the lncRNA somatic mutation site, which will be used to
construct mutation and wild sequences. TargetScan (v.6.0)7 and
miRanda (v2010),8 which are two miRNA target prediction
tools, were used to predict the possible combination of miRNA
and mutant/wild sequence. We also set stringent thresholds
of score > 160 and energy < −20 for miRanda (Betel et al.,
2008) and context score < −0.4 for TargetScan (Friedman
et al., 2009), and miRNA-targets that satisfy this threshold
are considered to be reliable. We define mutations that affect
the affinity of miRNA binding to wild sequences as putative
mutations, and the lncRNA in which the putative mutation
was located as ceL. Further, the altered binding affinity of
miRNA and mutation/wild sequence was divided into four
states including gain, up, loss, and down. For these ceRNAs
perturbed by somatic mutations, we constructed putative
mutation-miRNA-lncRNA (ceL) units.

Next, altered binding affinity of the original lncRNA and
miRNA may affect the expression of other downstream mRNAs
regulated by this miRNA (Wang et al., 2015; Wang P. et al.,
2019; Zhang et al., 2021). We collected miRNA-target mRNA
regulatory relationships from the miRTarBase database that were
validated by experiments including the luciferase reporter assay,
PCR, and western blotting to build the somatic mutation-
lncRNA-miRNA-mRNA (ceRNA dysregulation) network.

Functional Enrichment Analysis
For those mutated genes, we sorted the genes with a weight of
−log10(p-value). The sorted genes and hallmark gene set were
used for gene set enrichment analysis (GSEA) (Subramanian
et al., 2005). Similarly, for those genes co-expressed with the
mutation driver genes, we ordered the co-expressed genes
for each driver gene using the correlation coefficient as a
weight, which was also used for GSEA. The clusterprofiler
(v3.18.0) (Yu et al., 2012) R package was used to perform gene
ontology (GO) functional enrichment and kyoto encyclopedia of
genes and genomes (KEGG) pathway analysis on these mRNA.
We set p-value < 0.05 to screen for significantly enriched
functions and pathways.

Constructing Survival Prediction Model
We integrated significantly differentially expressed mutant genes
(p-value < 0.05 only) and other protein-coding genes perturbed

7http://www.targetscan.org/vert_60/
8http://www.miranda.org/

by putative mutations in these genes through the ceRNA
mechanism. First, we used univariate COX regression to screen
for genes significantly associated with overall survival (OS) in
PAAD patients (the cutoff of p-value was 0.05). Considering
that univariate cox regression was not sufficiently rigorous, lasso
regression (Alhamzawi and Ali, 2018) was used to further screen
for prognosis-related genes. Next, we randomly selected 70%
of all samples as the training set and the remaining as the
testing set. The train set were used to construct a multivariate
COX regression model (Fisher and Lin, 1999). The Hazard
Ratio hypothesis test was also used in the construction of the
regression model. We retained the genes passing the Hazard
Ratio hypothesis test to establish survival risk prediction model
and nomogram to predict the OS of PAAD. The reliability of
this risk prediction model was depicted by the receiver working
characteristic curve (ROC), and the area under curve (AUC)
also was calculated. The train set and test set was, respectively,
divided into high-risk and low-risk groups based on the median
risk score calculated by risk score model, and Kaplan-Meier
(KM) survival analysis was used to measure the difference
in OS between these two groups and bilateral logarithmic
rank test was used.

Statistical Analysis
All statistical analyses and graph generation were performed in
R (version 4.0.2). The R package resources were obtained from
http://www.bioconductor.org/ and https://cran.rstudio.com/bin/
windows/Rtools/.

RESULTS

The Landscape of Pancreatic
Adenocarcinoma Somatic Mutations
In this study, it is necessary to perform an overall statistical
analysis of the somatic mutations in PAAD. First, we evaluated
samples in the TCGA database collection for which somatic
mutation data were available. The result contained 182
samples with 25,470 somatic mutations. We counted the
distribution of somatic mutations on the genome including
chromosomal location and transcript type. We found that
somatic mutations were significantly enriched on chromosomes
17 and 19 (Figure 1A), suggesting the preference of PAAD
somatic mutation in the mutation position. Compared with
transcripts (mRNA) of protein-coding genes, several somatic
mutations occur in lncRNA (Figure 1A). Although relatively
few mutations occur in the non-coding region, studies have
confirmed that mutations within the non-coding genome are
a major determinant of human disease (Maurano et al., 2012).
Somatic mutations, including missense and nonsense mutations,
account for the largest proportion of all somatic mutations,
with missense mutations predominating (Figures 1A,B). We also
found mutations occurring at the transcription start site in only
four samples (Figure 1B). All these suggest that PAAD patients
are more likely to have mutations that alter protein function to
disrupt normal physiological mechanisms. Further, we counted
the frequency of mutations in each gene and the number of
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FIGURE 1 | Genomic overview of somatic mutations in PAAD. (A) The global view of genomic variations location. (B) Somatic mutations were classified into nine
clusters according to function and location. The bar plot shows the number of mutations in each cluster. (C) The bar plot illustrates the proportion of each cluster of
mutation in the top 10 genes in terms of number of mutations. The proportion of samples to which the mutation on each gene belongs was also calculated. (D) The
location and type of mutations occurring on gene TTN were shown by the lollipop chart. (E) The mutation correlation between the top 20 high-frequency mutated
genes. (F) The frequency of base substitutions (transitions and transversions) in PAAD.

samples with mutations in that gene, and the top mutated genes
were illustrated (Figure 1C and Supplementary Figure 1A). We
found that different genes have different preferences in the type
of mutation. For example, TTN, the gene considered to be most
frequently mutated in the pan-cancer cohort (Oh et al., 2020),
tended to have missense mutations in PAAD, whereas the TP53

gene had a high proportion of indel mutations. Studies have
shown that the impact of mutations on the prognosis of patients
is related to the type and background of the tumor (Hainaut
and Pfeifer, 2016). As a mutated gene commonly occurring in
PAAD patients, TTN has multiple non-sense mutation hot spots
(Figure 1D), which will have a significant impact on the function
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and structure of its encoded protein. We found no significant
exclusivity between high-frequency mutated genes in the PAAD
samples, and a general correlation between the TNN gene and
other high-frequency mutated genes (Figure 1E), revealing a
mutational feature of pancreatic cancer that the coordinated
mutation of multiple genes affects the normal physiological
mechanism. We found that nearly half of the point mutations
(base substitution) in PAAD patients are C > T substitutions
(Figure 1F and Supplementary Figure 1B). Transitions, one of
the two types of DNA base conversion, have a high proportion
of overall PAAD point mutations, which are capable of being
retained by evolution. However, transversions as another type
of DNA base conversion account for nearly 30% of overall
point mutations, and these mutations may be key factors in
the deterioration of pancreatic tissue. Taken together, all these
revealed the mutational features of PAAD.

Driver Genes Boost Tumor Invasion
Somatic mutations could indirectly affect biological traits by
regulating gene expression. It is thus intriguing to explore genes
whose expression changes affected by mutations. We integrated
the mutation and gene expression profiles of PAAD, with 173
samples having both mutation and gene expression data. A total
of 4,517 genes that were mutated in at least two samples were
collected to construct the mutation matrix. By comparing the
differential expression of each gene between mutant and non-
mutant samples, we identified a total of 31 driver genes that were
significantly differentially up/down regulated [p-value < 0.05, |
log2(fold change) | > log2(1.5)] (Figure 2A). We next sorted
the genes by fold change. The top 10 driver genes were RP11-
97C18.1 (ENSG00000225191), AC024937.4 (ENSG00000231464),
DRD1, CD5L, PCDH8, GK2, MAGEB6, SORCS3, TRIM51, and
PRDM9 (Figure 2B). The top driver gene RP11-97C18.1 is
a pseudogene of Adaptor-Related Protein Complex 2, Beta 1
Subunit (AP2B1), which is an essential adaptor of the clathrin-
mediated endocytosis pathway (Diling et al., 2019; Wang G.
et al., 2020). The driver gene AC024937.4 is also a pseudogene
of ADP-ribosylation factor-like 8B (ARL8B), which is involved in
cellular endocytosis, autophagy and the movement of phagocytic
vesicles on microtubule tracks to fuse with lysosomes (Marwaha
et al., 2017). All these suggest non-coding genes are essential in
the development and progression of PAAD. Further, consensus
clustering tools were used to cluster PAAD samples based on
driver gene expression profiles. These samples were divided
into six clusters (Supplementary Figure 2). We found that
PCDH8, which acts as a tumor-suppressor gene in multiple types
of cancer and inhibits tumor cell proliferation, invasion and
migration (Yu et al., 2020), was downregulated in clusters 3
and 4 (Figures 2C,D), suggesting that tumor cells may be more
aggressive in the two clusters with lower PDCH8 expression.
Patients in stage I were mainly concentrated in clusters 5 and
6 (Figure 2C). It is intriguing that there is no significant
difference in the number of sample mutations in each cluster
(Figure 2E), revealing that differences in gene expression of
samples among clusters are not simply determined by the number
of mutations. Taken together, all these suggest that driver genes

affected by mutations play an essential role in the proliferation
and invasion of PAAD.

Interaction of Essential Factors With
Driver Genes Regulates Oncogenic
Pathways
For those genes that were mutated, they may play an essential role
in the proliferation and invasion of tumors. In order to explore
the role of these genes in carcinogenic pathways, we performed
GSEA to identify hallmark pathways enriched in mutant genes
explaining somatic mutations in the genome of PAAD patients
(see section “Materials and Methods”). We found that IL2-STAT5
signaling, glycolysis, apoptosis and allograft rejection pathways
are significantly enriched in genes whose expression is affected
by somatic mutations (Figure 3A). Studies have shown that
interleukin-2 (IL-2) and the downstream transcription factor
STAT5 are essential for maintaining regulatory T (Treg) cell
homeostasis and function (Cheng et al., 2018), suggesting that
the immune microenvironment in tumor tissue of PAAD patients
affected by somatic mutations may be disrupted. The altered
glycolytic machinery in PAAD was designed to adapt to the
tumor microenvironment, which is consistent with previous
studies showing that cancer cells are preferentially dependent on
glycolysis (Ganapathy-Kanniappan and Geschwind, 2013). The
allograft rejection pathway affected by mutations may become the
key point of PAAD immunotherapy (Land et al., 2016).

Global reprogramming of the transcriptome occurs in order
to support tumorigenesis and progression. In addition to
the direct effect of mutations on gene expression, there are
other regulatory mechanisms such as transcriptional regulation,
ceRNA mechanisms, epigenetic. Genes co-expressed with driver
genes may have a potential role in tumor development. We
performed the Pearson correlation algorithm to identify genes
that may be influenced by other regulatory mechanisms co-
expressed with driver genes. We identified 495 genes (491 positive
and 4 negative) significantly associated with 19 driver genes (p-
value < 0.01, | R| > 0.5). These significantly related genes were
used to construct gene co-expression networks using cytoscape
(Figure 3B). We also counted the topological properties of the
network using the NetworkAnalyzer tool and found that the
gene FAM133A had the top degree (Supplementary Table 1).
FAM133A has been confirmed in previous studies to be related to
the invasion and metastasis of glioma (Huang et al., 2018). Next,
we performed a functional enrichment analysis of all genes in the
co-expression network using the R package clusterprofiler. We
found that these genes were significantly enriched in immune-
related functions and apoptotic pathways, such as complement
activation, immunoglobulin mediated immune response, B cell
mediated immunity, and apoptosis—multiple species (Figure 3C
and Supplementary Figure 3). For the 19 driver genes identified
as having co-expressed genes, we used GSEA to analyze the
functional features of the driver genes. Hallmark gene sets and
genes ordered by correlation coefficients were available for GSEA.
We found that the oncogenic pathway was significantly enriched
only in genes co-expressed with the driver genes FAM133A
and SORCS3, suggesting that most driver genes are required
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FIGURE 2 | Identification of driver genes. (A) The differential expression analysis comparing mutated and unmutated patients. Differentially expressed genes were
shown as red or green dots. (B) Expression level of the top 10 driver genes between mutated and unmutated samples was shown by boxplot. The rank sum test
was used to check the significance. (C) Distribution of driver gene expression in the samples. Column labels indicate the cluster and stage to which the sample
belongs. Row labels indicate the number of mutations in each driver gene. (D,E) Expression and mutation levels of the driver gene PCDH8 between the 6 clusters of
samples were shown by boxplot.

to synergistically regulate oncogenic mechanisms. In contrast
to the driver gene FAM133A, the driver gene SORCS3, in
combination with its co-expressed genes, plays an important
role in tumor metastasis, hypoxia and apoptosis (Figure 3D).
Taken together, all these indicate that the synergistic interaction
network of multiple driver genes may contribute to the complex
pathogenesis of PAAD.

LncRNA Mutations-ceRNA Indicates
Novel Mechanisms of Mutation
Regulation
LncRNA have been confirmed that genes are essential in pre-
and post-transcriptional regulation. The lncRNA with (miRNA)
response element (MRE) can be used as a miRNA sponge to
participate in the ceRNA regulatory mechanism. To explore
the impact of somatic mutations occurring on lncRNA MREs

on ceRNA regulatory mechanisms, we constructed mutant/wild
sequences to identify mutations that alter the affinity of lncRNA-
miRNA binding. Based on lncRNA annotation data collected
from GENCODE, we identified 497 somatic mutations occurring
on lncRNA compared to 24,604 somatic mutations occurring on
the genome. Affected by mutations, lncRNA may enhance, reduce
and lose their binding affinity to existing miRNAs, or even gain
binding affinity to new miRNAs (Figure 4A). Next, we examined
the influence of lncRNA mutations on miRNA binding sites
according to the TargetScan and miRanda. In total, we identified
277 somatic mutations for PAAD in 235 putative miRNA target
genes (putative lncRNAs). These mutation sites showed different
binding affinities to 447 miRNAs between the mutation and
wild sequences (Figure 4B). All these constituted 552 mutation-
miRNA-lncRNA regulation units. We further constructed ceRNA
dysregulation networks based on the identification of mutation-
miRNA-lncRNA regulation units (Figure 4C). We found that
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FIGURE 3 | Functional enrichment analysis of driving related genes. (A) The GSEA analysis of mutant genes, which explain somatic mutations in the genome of
PAAD patients. (B) Co-expression network of driver genes and their significantly related genes. The size of the node is related to the degree. (C) The top 10 GO
items that are enriched by genes significantly related to driver genes. This network shows the interaction between genes and GO items. (D) Top 10 hallmark
pathways enriched in genes related to driver gene FAM133A or SORCS3. significantly enriched pathways with GSEA p-values < 0.05 are highlighted in red
(FAM133A) or blue (SORCS3).

TTN-AS1 has top degree in the ceRNA dysregulation networks
and that five somatic mutations occurring on it affect the
affinity of binding to 11 miRNAs (8 Up/gain and 3 Down/loss,
Figure 4D). Combining 31 driver genes, we found that only
driver lncRNA AC090099.1 (ENSG00000255470) has mutations
involved in ceRNA regulation imbalance, which suggesting that
the mechanisms underlying changes in driver gene expression are
complex. We found two mutations in AC090099.1 that affected
binding affinity to four miRNAs (3 Up/gain and 1 Down/loss,
Figure 4E). In order to verify our prediction results at the
transcriptome level, we performed one-sample t-test to identify
the difference between the gene expression level of the non-
mutated sample and the mutant sample. We found significant
differences in the expression of AC090099.1 and the target
gene CEBPB and LHFPL3 regulated by miRNA hsa-miR-663a
between mutated and unmutated samples (Figures 4F–H). Taken
together, all these results suggest that ceRNA dysregulation due

to lncRNA mutations is an essential factor in variations of target
gene expression.

Identifying Prognostic Markers for PAAD
Genes affected by mutations played an important role in the
mechanism of carcinogenesis. It is meaningful to identify the
markers associated with prognosis of PAAD patients from
genes that are significantly differentially expressed between
mutated and unmutated samples (p-value < 0.05). In total,
we obtained 171 genes that were significantly differentially
expressed by mutation-driven. We performed univariate cox
regression to identify genes associated with overall survival (OS)
in PAAD patients, and 53 genes were selected by controlling for
p-value < 0.05. We further rigorously screened for these 53 genes
using lasso regression and 8 genes including SLC30A1, RBM10,
PNPLA6, DSG2, CHML, DLGAP5, TTLL6, and PDE4DIPP5
were identified as significantly associated with patient OS
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FIGURE 4 | Construction of the ceRNA dysregulated network. (A) Mutations in lncRNA affect binding intimacy with miRNA. (B) The number of lncRNA, miRNA and
somatic mutations in the ceRNA dysregulated network. (C) The ceRNA dysregulated network constructed by lncRNA, miRNA, and somatic mutations. The red, blue
and yellow nodes represent lncRNA, somatic mutation and miRNA, respectively. Up-regulated or newly gain affinity between miRNA and lncRNA used red line.
Down-regulated or loss affinity between miRNA and lncRNA used yellow line. (D) The ceRNA dysregulated sub-network of lncRNA TTN-AS1. (E) The ceRNA
dysregulated sub-network of lncRNA AC090099.1. (F–H) The distribution of the expression for lncRNA AC090099.1, CEBPB, and LHFPL3 was shown by density
curve. The expression value of these genes in the mutant sample were marked with a red line. One-sample t-test was used to calculate statistical significance.

(Supplementary Figure 4A). The multivariate Cox regression
were performed to construct survival risk prediction model using
these eight feature genes and train set, three of which, RBM10,
SLC30A1, and DLGAP5, were major genes that associated with
the risk of death in patients (Figure 5A). Nomograms were
used to illustrate the probability of survival risk at 6, 12, and
18 months (Figure 5B). The calibration curve was also used to
validate the stability of the risk prediction model (Supplementary
Figure 4B). In order to identify the best predictive time point
for the risk prediction model, we divided the 6–18 months
period into six time periods and evaluated the prediction results
using ROC curve. We found that the risk prediction result

reached the maximum area under curve (AUC) value of 0.84 in
the 474.5 days (Figure 5C). Further, we used multivariate Cox
regression coefficients of eight genes identified by lasso regression
to construct risk score models as follows: risk score = 0.65∗
SLC30A1—0.84∗ RBM10—0.27∗ PNPLA6 + 0.36∗ DSG2—0.21∗
CHML+ 0.54∗ DLGAP5—0.02∗ TTLL6—0.08∗ PDE4DIPP5, and
calculated the risk score for each PAAD sample. The samples of
train and test set were, respectively, divided into two categories
(high-risk and low-risk) based on the median risk score, and we
found that high-risk samples in both the training and test sets
exhibited an association with poorer PAAD OS (Figures 5D,E).
By combining clinical information from the PAAD sample with
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FIGURE 5 | Survival analysis of potential markers in PAAD. (A) Forest plots for multivariate Cox risk regression models. (B) Nomogram for survival risk prediction of
180, 365, and 545 days. The model contains eight features. (C) The ROC curve validation of the risk regression model at 6 time points. The different colored curves
represent specific time-points. (D,E) KM plot of train and test dataset in which high- and low-risk groups were show as different lines. Log-rank test was used to
calculate statistical significance. (F) Box plot of risk scores for samples of different tumor stages, tissue origin, and radiation therapy. The rank sum test and ANOVA
were used to measure differences between groups.

the risk score, we found that patients in stage II, III, and
IV had a significantly higher risk score compared to stage
I (Figure 5F), and found that the origin of the tumor was
significantly related to the patient’s survival risk (Figure 5F), and
found that patients treated with radiation have a significantly
lower risk of survival than those who are not treated with
radiation (Figure 5F). All these may provide support for the
treatment of PAAD.

DISCUSSION

In this study, we have used mutational and transcriptomic
data to reveal mutational features, driver genes and prognostic
markers in PAAD. Statistical analysis of the mutational profile
of PAAD revealed that relatively lower number of mutations
occurred in non-coding regions of the genome, with most
mutations occurring in coding regions affecting the structure and
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function of the protein. We identified 31 driver genes based on
statistical test that are strongly associated with apoptosis, energy
metabolism and invasion of tumor cells. Next, we constructed
a co-expression network determined by driver genes, revealing
the oncogene interaction mechanism and oncogenic pathways
of PPAD. We further constructed a ceRNA dysregulation
network using TargetScan and miRanda tools to reveal that
somatic mutations on lncRNA regulate the expression of target
genes at the post-transcriptional level. Using a dual screen of
univariate cox regression and lasso regression, we identified
eight genes that were strongly associated with the prognosis
of PAAD patients despite the existence of public databases for
studying the prognosis of pan-cancers (Qi et al., 2021). We also
constructed a risk score model to specify the risk of survival
for each patient, showing that higher risk scores have a poorer
probability of survival.

Pancreatic cancer is one of the deadliest malignancies
(Vincent et al., 2011). Multiple of studies have tried to reveal
the pathogenesis of pancreatic cancer and discover effective
treatments. For example, exploring the role of the microbiome
in the occurrence, development and treatment of PAAD (Wang
Y. et al., 2019), and discover the carcinogenic mechanism and
possible treatments of PAAD from the perspective of genetics
(Bhosale et al., 2018). The development of PAAD is influenced
by multiple factors, the most critical is the occurrence of
malignant mutations in the chromosomes. Malignant mutations
in chromosomes, which hold the genetic material of an
organism, will affect the physiological mechanisms of normal
cells. Although there are numerous of research results to support
the conquering of PAAD, few studies have focused on somatic
mutations in the genome (Chang et al., 2014). We integrated
mutagenomic and transcriptomic data to discover the oncogenic
mechanisms and potential prognostic markers of PAAD, which is
the rational application of multi-omics data in the era of big data.
In revealing the carcinogenic mechanism, multi-omics research
has more advantages than previous single-omics research.

CeRNAs are transcript that regulate each other by competing
shared miRNAs. The proposal of the ceRNA competition
mechanism provides a new direction for the post-transcriptional
regulation of genes. Considering the important role of non-
coding RNA in PAAD, we explored the impact of lncRNA
mutations on the ceRNA competition network. We have
identified 552 mutation-miRNA-lncRNA regulation units and

constructed a ceRNA dysregulated network. Although there
is not enough gene expression data (massive absence of
miRNA expression data) to support our prediction results,
it contributes to the exploration of the post-transcriptional
regulatory mechanism of PAAD.

In conclusion, this study provided the mutational landscape
of PAAD and discovered driver genes. The IL2-STAT5 signaling
pathway and allograft rejection affected by mutations provide
a new direction for the treatment of PAAD. Marker genes
associated with patient prognosis were identified through
univariate cox regression and lasso regression. We also provide
a survival risk prognostic model for PAAD patients. All these
findings in this study may provide theoretical guidance for the
diagnosis and treatment of PAAD.
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